文档视界 最新最全的文档下载
当前位置:文档视界 › 光栅传感器的结构及工作原理

光栅传感器的结构及工作原理

光栅传感器的结构及工作原理

光栅传感器的结构及工作原理

光栅式传感器指采用光栅叠栅条纹原理测量位移的传感器。光栅是由大量等宽等间距的平行狭缝构成的光学器件。

一般常用的光栅是在玻璃片上刻出大量平行刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分可以透光,相当于一狭缝。精制的光栅,在1cm宽度内刻有几千条乃至上万条刻痕。

这种利用透射光衍射的光栅称为透射光栅,还有利用两刻痕间的反射光衍射的光栅,如在镀有金属层的表面上刻出许多平行刻痕,两刻痕间的光滑金属面可以反射光,这种光栅成为反射光栅。由光栅形成的叠栅条纹具有光学放大作用和误差平均效应,因而能提高测量精度。

光栅传感器由标尺光栅、指示光栅、光路系统和测量系统四部分组成。标尺光栅相对于指示光栅移动时,便形成大致按正弦规律分布的明暗相间的叠栅条纹。

这些条纹以光栅的相对运动速度移动,并直接照射到光电元件上,在它们的输出端得到一串电脉冲,通过放大、整形、辨向和计数系统产生数字信号输出,直接显示被测的位移量。光栅传感器的结构及工作原理

光栅传感器的结构均由光源、主光栅、指示光栅、通光孔、光电元件这几个主要部分构成。

1、光源:钨丝灯泡,它有较小的功率,与光电元件组合使用时,转换效率低,使用寿命短。半导体发光器件,如砷化镓发光二极管,可以在范围内工作,所发光的峰值波长为,与硅光敏三极管的峰值波长接近,因此,有很高的转换效率,也有较快的响应速度。

2、光栅付:由栅距相等的主光栅和指示光栅组成。主光栅和指示光栅相互重叠,但又不完全重合。两者栅线间会错开一个很小的夹角,以便于得到莫尔条纹。一般主光栅是活动的,它可以单独地移动,也可以随被测物体而移动,其长度取决于测量范围。指示光栅相对于光电器件而固定。

光栅传感器工作原理

光栅传感器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、光栅传感器的基本原理 光栅传感器是根据莫尔条纹原理制成的一种计量光栅,多用于位移测量及与位移相关的物理量,如速度、加速度、振动、质量、表面轮廓等方面的测量。光栅传感器的基本结构如图1所示: 图1 光栅传感器的基本结构 光栅传感器由光源、透镜、光栅副(主光栅和指示光栅)和光电接收元件组成如图1所示,当标尺光栅相对于指示光栅移动时,形成亮暗交替变化的莫尔条纹。利用光电接收元件将莫尔条纹亮暗变化的光信号,转换成电脉冲信号,并用数字显示,便可测量出标尺光栅的移动距离。 光栅传感器光源:钨丝灯泡的输出功率较大,工作范围较宽为-40℃到 +130℃,但是它与光电元件相组合的转换效率低。在机械振动和冲击条件下工作时,使用寿命将降低。因此必须定期更换照明灯泡以防止由于灯泡失效而造成的失误。半导体发光器件转换效率高,响应快速。如砷化镓发光二极管,与硅光敏三极管相结合,转换效率最高可达30%左右。砷化镓发光二极管的脉冲响应速度约为几十ns,可以使光源工作在触发状态,从而减小功耗和热耗散。 光栅副:如图2所示为透射光栅,它是一个长光栅,在一块长方形的光学玻璃上均匀地刻上许多条纹,形成规则的明暗线条。图中a为刻线宽度,b为可惜案件的缝隙宽度,a+b=W称为光栅的栅距或光栅常数。通常情况下, a=b=W/2,也可以做成a:b=1.1:0.9,刻线密度一般为每毫米10,25,50,100线。

图2 透射光栅 指示光栅一般比主光栅短得多,通常刻有与主光栅同样密度的线纹。 光电元件包括有光电池和光敏三极管等部分。在采用固态光源时,需要选用敏感波长与光源相接近的光敏元件,以获得高的转换效率。在光敏元件的输出端,常接有放大器,通过放大器得到足够的信号输出以防干扰的影响。二、莫尔条纹形成的原理 把光栅常数相等的主光栅和指示光栅相对叠合在一起(片间留有很小的间隙),并使两者栅线之间保持很小的夹角θ,于是在近于垂直栅线的方向上出现明暗相间的条纹,如图3所示。在a-a’线上,两光栅的栅线彼此重合,光线从缝隙中通过,形成亮带;在b-b’线上,两光栅的栅线彼此错开,形成暗带。这种明暗相见的条纹称为莫尔条纹。莫尔条纹方向与刻线方向垂直,故又称做横向莫尔条纹。

位移传感器原理及应用课程设计[1]

题目:位移传感器的设计设计人员: 学号: 班级: 指导老师:许晓平、高宏才、陈焰日期:

位移传感器—光栅的原理和应用 一、概述 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用(1)。 二、原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b 为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、 50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π(2)。由图1可得光电信号为 u0=U平均+Umsin(π/2+2πX/W) 式中u0—光电元件输出的电压信号;

传感器及其工作原理 说课稿 教案

传感器及其工作原理 【三维目标】 1.知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 2.过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践 能力和创新思维能力。 3.情感、态度与价值观 (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【教学过程】 一、引入新课 准备知识:从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。

光栅传感器

六、实验的原理及预期结果 (一)实验原理6.1.1 概述 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。 6.1.2 原理[8] 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”源出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线 即栅线,a为刻线宽,b为两刻线之间缝宽,b =称为光栅 a W+ 栅距。如图6.1所示

图6.1 光栅栅距 目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1.2,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移X 的函数。每当X 变化一个光栅栅距W ,信号就变化一个周期,信号由b 点变化到b '点。由于W bb '=,故b '点的状态与b 点状态完全一样,只是在相位上增加了π2。由图6.2可得光电信号为: ()022u U X W ππ=+m 平均+U sin

光栅尺工作原理

光栅尺位移传感器原理简介及维护注意事项 一、光栅尺是什么? 轨道旁边的黄色金属条,与其对 应部位,在移载台底部装有光读 头 定义: 光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。 光栅尺位移传感器经常应用于机床与现在加工中心以及测量仪器等方面,可用作 直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大, 检测精度高,响应速度快的特点。 二、光栅尺的分类、构造 1)分类: 光栅尺位移传感器按照制造方法和光学原理的不同,分为透射光栅和反射光栅。 ●透射光栅指的玻璃光栅. ●反射光栅指的钢带光栅 2)结构: 光栅尺位移传感器是由标尺光栅和光栅读数头两部分组成。标尺光栅一般固定在机 床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。下图所示的 就是光栅尺位移传感器的结构。

三、光栅尺的工作原理? 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。(关于莫尔条纹的原理,可参考相关文献) 简单的说:光读头通过检测莫尔条纹个数,来“读取”光栅刻度,然后再根据驱动电路的作用,计算出光栅尺的位移和速度。 莫尔条纹 四、光栅尺的维护 1)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 2)定期检查各安装联接螺钉是否松动、定期使用干燥的洁净布擦拭表。 3)光栅尺位移传感器严禁剧烈震动及摔打、踩踏,以免破坏光栅尺,如光栅尺断裂,光

栅尺传感器即失效了。 4)不要自行拆开光栅尺位移传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 5)应注意防止油污及水污染、硬物划伤光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 6)光栅尺位移传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

光栅尺的工作原理

光栅尺工作原理 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。图4-9是其工作原理图。当使指示光栅上的线纹与标尺光栅上的线纹成一角度 来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。莫尔条纹具有以下性质: (1) 当用平行光束照射光栅时,透过莫尔条纹的光强度分布近似于余弦函数。 (2) 若用W表示莫尔条纹的宽度,d表示光栅的栅距,θ表示两光栅尺线纹的夹角,则它们之间的几何关系为W=d/sin当 角很小时,上式可近似写W=d/θ 若取d=0.01mm,θ=0.01rad,则由上式可得W=1mm。这说明,无需复杂的光学系统和电子系统,利用光的干涉现象,就能把光栅的栅距转换成放大100倍的莫尔条纹的宽度。这种放大作用是光栅的一个重要特点。 (3) 由于莫尔条纹是由若干条光栅线纹共同干涉形成的,所以莫尔条纹对光栅个别线纹之间的栅距误差具有平均效应,能消除光栅栅距不均匀所造成的影响。 (4) 莫尔条纹的移动与两光栅尺之间的相对移动相对应。两光栅尺相对移动一个栅距d,莫尔条纹便相应移动一个莫尔条纹宽度W,其方向与两光栅尺相对移动的方向垂直,且当两光栅尺相对移动的方向改变时,莫尔条纹移动的方向也随之改变。 根据上述莫尔条纹的特性,假如我们在莫尔条纹移动的方向上开4个观察窗口A,B,C,D,且使这4个窗口两两相距1/4莫尔条纹宽度,即W/4。由上述讨论可知,当两光栅尺相对移动时,莫尔条纹随之移动,从4个观察窗口A,B,C,D可以得到4个在相位上依次超前或滞后(取决于两光栅尺相对移动的方向)1/4周期(即π/2)的近似于余弦函数的光强度变化过程,用表示,见图4-9(c)。若采用光敏元件来检测,光敏元件把透过观察窗口的光强度变化 转换成相应的电压信号,设为 。根据这4个电压信号,可以检测出光栅尺的相对移动。 1.位移大小的检测 由于莫尔条纹的移动与两光栅尺之间的相对移动是相对应的,故通过检测 这4个电压信号的变化情况,便可相应地检测出两光栅尺之间的相对移动。 每变化一个周期,即莫尔条纹每变化一个周期,表明两光栅尺相对移动了一个栅距的距离;若两光栅尺之间的相对移动不到一个栅距,因 是余弦函数,故根据 之值也可以计算出其相对移动的距离。 2. 位移方向的检测 在图4-9(a)中,若标尺光栅固定不动,指示光栅沿正方向移动,这时,莫尔条纹相应地沿向下的方向移动,透过观察窗口A和B,光敏元件检测到的光强度变化过程 和及输出的相应的电压信号和如图4-10(a)所示,在这种情况下,滞后的相位为/2;反之,若标尺光栅固定不动,指示光栅沿负方向移动,这时,莫尔条纹则相应地沿向上的方向移动,透过观察窗口A和B,光敏元件检测到的光强度变化过程和 及输出的相应的电压信号和如图4-10(b)所示,在这种情况下,超前的相位为/2。因此,根据和两信号相互间的超前和滞后关系,便可确定出两光栅尺之间的相对移动方向。 工作原理: 直线光栅尺和旋转编码器均依据相对运动的原理来产生光信号,这些信号经过光电器件的转换处理后,用来检测机械装置的位移。FAGOR公司反馈产品采用两种不同的材料来产生反馈信

传感器及其工作原理教案

江苏省淮阴中学06-07年度优秀教学案例 《传感器及其工作原理》的创新教学设计 王刚 教学依据 ①物理(新人教版)选修3-2第六章第1节《传感器及其工作原理》(P56-P60); ②新物理课程标准(实验). 教学流程图

教学目标1.知识与技能:①知道非电学量转换成电学量的技术意义;②通过实验,知道常见传感器的工作原理;③初步探究利用和设计简单的传感器. 2.过程与方法:①通过对实验的观察、思考和探究,让学生了解传感器、熟悉传感器工作原理;②让学生自己设计简单的传感器,经历科学探究过程,学习科学研究方法,培养学生的实践能力和创新思维能力. 3.情感态度与价值观:在理解传感器工作原理的基础上,通过自己设计简单的传感器,体验科技创新的乐趣,激发学习物理的兴趣. 重、难点 1.几种常见传感器的工作原理(演示实验);2.学生自己设计简单的传感器. 教学策略 用几个有趣的传感器实验引入课题,激发学生探究传感器原理的兴趣.给出“传感器就是把非电学量转换为电学量”的概念之后,重点介绍光敏电阻、金属热电阻、热敏电阻.安排音乐茶杯和火警装置两个设计性问题让学生体会传感器的简单应用.结合电容、霍尔效应、电阻定律等知识让学生设计传感器,进一步深化传感器的工作原理.最后在对本节课总结的基础上,结合《思考与讨论》进行教学反馈. 教学程序 教学环节教学内容及师生互动设计情感与方法 一.课题的引入 二.什么是传感器?【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外没有开 关,但是把磁铁B放到盒子上面,灯泡就会发光,把磁铁移 走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的控制? 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内的电路 图,了解元件“干簧管”的结构。探明原因:玻璃管内封入 两个软磁性材料制成的簧片。当磁铁靠近干簧管时,两个簧 片被磁化而接通,电路导通。所以,干簧管能起到开关的作 用。 师点拨:这个装置反过来还可以让我们通过灯泡的发 光情况,感知干簧管周围是否存在着磁场。 【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元件能够 感受某些信息,通过它能实现电路的自动控制,这种元件有 一个专门的名称:传感器。什么是传感器呢?它能够感受诸 如力、温度、光、声、化学成分等非电学量,并能把它们按 照一定的规律转换为电压、电流等电学量,或转换为电路的 通断。我们把这种元件叫做传感器。它的优点是:把非电学 量转换为电学量以后,就可以很方便地进行测量、传输、处 理和控制了。 其实,传感器并不神秘。你家里可能就有很多的传感 器。请大家相互说说看,你家里,或者在你的生活当中,都 (演示实验1: 干簧管传感器) (干簧管的实 物及原理图) 学生对干簧 管并不熟悉,因 此才有了好奇。 声光控开关在 生活中很普及, 所以又有亲切 感

光栅传感器的工作原理

光栅传感器的工作原理 光栅数字传感器,通常由光源5(聚光镜4)、计量光栅、光电器件3及测量电路等部分组成,如图12.1.2所示。计量光栅由标尺光栅1(主光栅)和指示光栅2组成,因此计量光栅又称光栅副,它决定了整个系统的测量精度。一般主光栅和指示光栅的刻线密度相同,但主光栅要比指示光栅长得多。测量时主光栅与被测对象连在一起,并随其运动,指示光栅固定不动,因此主光栅的有效长度决定了传感器的测量范围。 1.莫尔条纹 将主光栅与标尺光栅重叠放置,两者之间保持很小的间隙,并使两块光栅的刻线之间有一个微小的夹角θ,如图12.1.3所示。当有光源照射时,由于挡光效应(对刻线密度≤50条/mm的光栅)或光的衍射作用(对刻线密度≥100条/mm的光栅),与光栅刻线大致垂直的方向上形成明暗相间的条纹。在两光栅的刻线重合处,光从缝隙透过,形成亮带;在两光栅刻线的错开的地方,形成暗带;这些明暗相间的条纹称为莫尔条纹。 莫尔条纹有如下几个重要特性: (1)莫尔条纹的运动与光栅的运动一一对应 当指示光栅不动,主光栅的刻线与指示光栅刻线之间始终保持夹角θ,而使主光栅沿刻线的垂直方向作相对移动时,莫尔条纹将沿光栅刻线方向移动;光栅反向移动,莫尔条纹也反向移动。主光栅每移动一个栅距W,莫尔条纹也相应移动一个间距S。因此通过测量莫尔条纹的移动,就能测量光栅移动的大小和方向,这要比直接对光栅进行测量容易得多。 (2)莫尔条纹具有位移放大作用 当主光栅沿与刻线垂直方向移动一个栅距W时,莫尔条纹移动一个条纹间距。当两个光栅刻线夹角θ较小时,由式(12.1.1)可知,W一定时,θ愈小,则B愈大,相当于把栅距W放大了1/ θ倍。例如,对50条/mm的光栅,W=0.02mm,若取,则莫尔条纹间距,K=573,相当于将栅距放大了573倍。因此,莫尔条纹的放大倍数相当大,可以实现高灵敏度的位移测量。(3)莫尔条纹具有误差平均效应 莫尔条纹是由光栅的许多刻线共同形成的,对刻线误差具有平均效应,能在很大程度上消除由于刻线误差所引起的局部和短周期误差影响,可以达到比光栅本身刻线精度更高的测量精度。因此,计量光栅特别适合于小位移、高精度位移测量。 (4)莫尔条纹的间距S随光栅刻线夹角θ变化 由于光栅刻线夹角θ可以调节,因此可以根据需要改变θ的大小来调节莫尔条纹的间距,这给实际应用带来了方便。 当两光栅的相对移动方向不变时,改变θ的方向,则莫尔条纹的移动方向改变。 2.光电转换 主光栅和指示光栅的相对位移产生了莫尔条纹,为了测量莫尔条纹的位移,必须通过光电器件(如硅光电池等)将光信号转换成电信号。 在光栅的适当位置放置光电器件,当两光栅作相对移动时,光电器件上的光强随莫尔条纹移动,光强变化为正弦曲线,如图12.1.4所示。在a位置,两个光栅刻线重叠,透过的光强最大,光电器件输出的电信号也最大;在c位置由于光被遮去一半,光强减小;位置d的光被完全遮去而成全黑,光强最小;若光栅继续移动,透射到光电器件上的光强又逐渐增大。光电器件上的光强变化近似于正弦曲线,光栅移动一个栅距W,光强变化一个周期。光电器件的输出电压 通过整形电路,将正弦信号转变成方波脉冲信号,则每经过一个周期输出一个方波脉冲,这样脉冲总数N就与光栅移动的栅距数相对应,因此光栅的位移为

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

光栅传感实验原理

谈及光栅传感实验原理就先说说莫尔条纹现象 两只光栅以很小的交角相向叠合时,在相干或非相干光的照明下,在叠合面上将出现明暗相间的条纹,称为莫尔条纹。莫尔条纹现象是光栅传感器的理论基础,它可以用粗光栅或细光栅形成。栅距远大于波长的光栅叫粗光栅,栅距接近波长的光栅叫细光栅。 1.1 直线光栅 两只光栅常数相同的光栅,其刻划面相向叠合并且使两者栅线有很小的交角θ,则由于挡光效应(刻线密度<=50/mm )或光的衍射作用(刻 线密度>=100/mm ),在与光栅刻线大致垂直的方向上 形成明暗相间的条纹,如图1。 若主光栅与指示光栅之间的夹角为θ,光栅栅 距为w ,则相邻莫尔条纹之间的距离B 为 22sin w w B θ θ=≈ 由上式可知,当改变光栅夹角θ,莫尔条纹宽 度B 也将随之改变。 若主光栅沿与刻线垂直方向移动一个栅距w ,莫 尔条纹移动一个条纹间距B 。因此,莫尔条纹可以将 很小的光栅位移同步放大为莫尔条纹的位移。当得 到莫尔条纹相对移动的个数N 就可以得到光栅相对移动的位移x 为:Nw x = 莫尔条纹有如下主要特性: (1) 条纹的移动与光栅的相对运动方向相对应 在保持两光栅交角一定的情况下,使一个光栅固定,另一个光栅沿栅线的垂直方向运动,则莫尔条纹将沿栅线方向移动。若光栅反向运动,则莫尔条纹的移动方向也相应反向。 (2) 位移放大作用 当两光栅交角θ很小时,相当于把栅距w 放大了1/θ倍。当0=θ时∞→B ,称为光闸莫尔条纹。 (3) 同步性 光栅运动一个栅距w ,莫尔条纹相应移动一个条纹间距。 1.2 径向圆光栅 径向圆光栅是指大量在空间均匀分布都指向圆心的刻线形成的光栅。图2是两只节距角相同(即ααα==21)的径向光栅相向叠合产生的莫尔条纹。 图1 直线光栅莫尔条纹

(完整版)传感器原理试题及答案

一、是非题 1.动态特性好的传感器应具有很短的瞬态响应时间和很窄的频率响应特性。(×) 2.幅频特性是指响应与激励信号的振幅比与频率的关系。(√) 3.一阶系统的时间常数越小越好。(√) 4.二阶系统固有频率ωn越小越好。(×) 5.二阶系数的固有频率ωn越大,可测量的信号频率范围就越宽。(√) 6.信号通过一阶系统后的幅值减小,相位滞后。(√) 7.传感器的相频特性φ(jω)表示了信号各频率分量的初相位和频率间的函数关系。(×)8.能完成参量感受和转换的装置称之为传感器。(√) 9.传感器的灵敏度与量程呈反比。(√) 10.为提高测试精度,传感器的灵敏度越高越好。(×) 11.传感器的线性范围越宽,表明其工作量程越大。(√) 12.测量小应变时,应选用灵敏度高的金属丝应变片,测量大应变时,应选用灵敏度低的半导体应变片。(×) 13.根据压电效应,在压电材料的任何一个表面施加力,均会在相应的表面产生电荷。(×)14.压电式加速度传感器由于产生的是静电荷,且本身内阻很大,故不能用普通电表测量。 (√) 15.用差动变压器式电感传感器作位移测量时,根据其输出就能辨别被测位移的方向的正负极性。(√) 16.变间隙式电容或电感传感器,只要满足△d<

光栅尺原理

光栅尺有"S"和"M"两种规格,两者区别是两端固定处不一样,而且有长短之分. 光栅尺有50;100;150;200;300及400(MM) 光栅尺主要功能是靠尺子上的读头读出数据给予数显器或软件里 LE 光栅尺是精密的光栅测量系统,适用于大量程的精密测量. 尤其适用于测量, 医疗设备,精密现代化加工设备. 数控加工中心,机床,磨床,铣床,自动卸货机,金属板压制和焊接机,机器人和自动化科技,生产过程测量机器,线性产品, 直线马达, 直线导轨定位等。 LE 光栅尺将直线的位移变化转换为脉冲信号. 脉冲信号的数量对应移动的距离,脉冲频率则反应了运动速度。LE 本体部分由5只精密轴承,玻璃光栅,LED 光照系统,铝合金外壳组成。 LE输出信号为矩形方波。A,B相相差90°的两路波形,能够指示出移动距离以及方向。零位信号间距50mm 。可选购RS422长线输出。 光栅尺原理: 光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的 幻变效果。 光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来 决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别 按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察, 将看到不同的图像。 光栅尺其实起到的作用是对刀具和工件的坐标起一个检测的作用,在数控 机床中常用来观察其是否走刀有误差,以起到一个补偿刀具的运动的误差的补 偿作用.其实就象人眼睛看到我切割偏没偏的作用.然后可以给手起到一个是否 要调整我是否要改变用力的标准. 相当于眼睛. 一、引言 目前在精密机加工和数控机库中采用的精密位称数控系统框图如图1所示。 随着电子技术和单片机技术的发展,光栅传感器在位移测量系统得到广泛应用,并逐步向智能化方向转化。 图2是利用光栅传感器构成的位移量自动测量系统原理示意图。该系统采用光栅移动产生的莫尔条纹与电子电路以及单片机相结合来完成对位移量的自 动测量,它具有判别光栅移动方向、预置初值、实现自动定位控制及过限报警、自检和掉电保护以及温度误差修正等功能。下面对该系统的工作原理及设计思 想作以介绍。

传感器及其工作原理 说课稿 教案 教学设计

传感器 【教材分析】: 《6.1 传感器及其工作》是新人教版高中物理选修3-2第六章第一节的教学内容,主要学习一些简单传感器,以介绍为主,课程内容比较简单。 【教学目标】 一、知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 二、过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践能力和创新思维能力。 三、情感、态度与价值观: (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。 【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 学情分析: 从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。学生对传感器了解较少,教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【课时安排】1课时 【教学过程】 预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性 一、引入新课: 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放

光栅数字传感器的工作原理

光栅数字传感器的工作原理 光栅数字传感器,通常由光源5(聚光镜4)、计量光栅、光电器件3 及测量电路等部分组成,如图12.1.2 所示。计量光栅由标尺光栅1(主光栅)和指示光栅2 组成,因此计量光栅又称光栅副,它决定了整个系统的测量精度。一般主光栅和指示光栅的刻线密度相同,但主光栅要比指示光栅长得多。测量时主 光栅与被测对象连在一起,并随其运动,指示光栅固定不动,因此主光栅的有 效长度决定了传感器的测量范围。图12.1.2 光栅数字传感器 1.莫尔条纹将主光栅与标尺光栅重叠放置,两者之间保持很小的间隙, 并使两块光栅的刻线之间有一个微小的夹角θ,如图12.1.3 所示。当有光源照射时,由于挡光效应(对刻线密度≤50条/mm 的光栅)或光的衍射作用(对刻线密度≥100条/mm 的光栅),与光栅刻线大致垂直的方向上形成明暗相间的条纹。在两光栅的刻线重合处,光从缝隙透过,形成亮带;在两光栅刻线的错开 的地方,形成暗带;这些明暗相间的条纹称为莫尔条纹。莫尔条纹的间距与栅 距W 和两光栅刻线的夹角θ(单位为rad)之间的关系为 (12.1.1)(12.1.2) K­称为放大倍数。莫尔条纹有如下几个重要特性:(1)莫尔条纹的运 动与光栅的运动一一对应当指示光栅不动,主光栅的刻线与指示光栅刻线之间始终保持夹角θ,而使主光栅沿刻线的垂直方向作相对移动时,莫尔条纹 将沿光栅刻线方向移动;光栅反向移动,莫尔条纹也反向移动。主光栅每移动 一个栅距W,莫尔条纹也相应移动一个间距S。因此通过测量莫尔条纹的移动,就能测量光栅移动的大小和方向,这要比直接对光栅进行测量容易得多。(2)莫尔条纹具有位移放大作用当主光栅沿与刻线垂直方向移动一个栅距W

光纤光栅传感器及其发展趋势

【摘要】光纤光栅是现代光纤传感中应用最广泛的器件与技术。自1978年加拿大渥太华研究中心利用光纤的光敏效应成功制成第一根光纤光栅以来,光纤光栅传感器便因为体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等特点及其具有本征自相干能力强和能在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势而被广泛应用于各行各业。本文先对光纤光栅传感器的工作原理及其分类进行论述,接着简述光纤光栅传感器的一些重要应用,然后对光纤光栅传感器的研究方向进行简单分析,最后是小结和展望。 【关键词】传感器;光纤光栅传感器;光纤光栅传感技术 一、光纤光栅传感器的工作原理及其分类 光纤光栅是利用光致折射率改变效应,使纤芯折射率沿轴向产生周期性变化,在纤芯内形成空间相位光栅。光纤光栅传感器目前研究的主要有三种类型:一是利用光纤布喇格光栅(FBG )背向反射特征制作的传感器;二是利用长周期光纤光栅(LPG )同向透射特征制作的传感器;三是利用啁啾光纤光栅色散补偿特征制作的传感器。下面将对这三种传感器的传感机理进行简单概述。 1.1 光纤布喇格光栅传感原理 光纤布喇格光栅纤芯轴向的折射率呈现周期性变化,其作用的实质相当于是在纤芯内形成一个窄带的滤波器或反射镜。如图1-1所示,当一束宽光谱光经过光纤光栅时,满足光纤光栅布喇格条件的波长将产生反射,其余的波长将透过光纤光栅继续往前传输。 图1-1 光纤布喇格光栅原理图 光纤布喇格光栅反射谱的中心波长B λ满足 Λ=eff n 2B λ 其中,eff n 为有效折射率,Λ为光纤光栅栅距。 光纤光栅的栅距是沿光纤轴向分布的,因此在外界条件诸如温度、压力等的作用下,光

光栅尺工作原理及基础理论

光栅尺工作原理及详细介绍 光栅:光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。 光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。 光栅尺:其实起到的作用是对刀具和工件的坐标起一个检测的作用,在数控机床中常用来观察其是否走刀有误差,以起到一个补偿刀具的运动的误差的补偿作用,其实就象人眼睛看到我切割偏没偏的作用,然后可以给手起到一个是否要调整我是否要改变用力的标准。 【相当于眼睛】 一、引言 目前在精密机加工和数控机库中采用的精密位称数控系统框图。 随着电子技术和单片机技术的发展,光栅传感器在位移测量系统得到广泛应用,并逐步向智能化方向转化。 利用光栅传感器构成的位移量自动测量系统原理示意图。该系统采用光栅移动产生的莫尔条纹与电子电路以及单片机相结合来完成对位移量的自动测量,它具有判别光栅移动方向、预置初值、实现自动定位控制及过限报警、自检和掉电保护以及温度误差修正等功能。下面对该系统的工作原理及设计思想作以下介绍。 二、电子细分与判向电路 光栅测量位移的实质是以光栅栅距为一把标准尺子对位称量进行测量。目前高分辨率的光栅尺一般造价较贵,且制造困难。为了提高系统分辨率,需要对莫尔条纹进行细分,本系统采用了电子细分方法。当两块光栅以微小倾角重叠时,在与光栅刻线大致垂直的方向上就会产生莫尔条纹,随着光栅的移动,莫尔条纹也随之上下移动。这样就把对光栅栅距的测量转换为对莫尔条纹个数的测量,同量莫尔条纹又具有光学放大作用,其放大倍数为: (1) 式中:W为莫尔条纹宽度;d为光栅栅距(节距);θ为两块光栅的夹角,rad 在一个莫尔条纹宽度内,按照一定间隔放置4个光电器件就能实现电子细分与羊向功能。本系统采用的光栅尺栅线为50线对/mm,其光栅栅距为0.02mm,若采用四细分后便可得到分辨率为5μm的计数脉冲,这在一般工业测控中已达到了很高精度。由于位移是一个矢量,即要检测其大小,又要检测其方向,因此至少需要两路相位不同的光电信号。为了消除共模干扰、直流分量和偶次谐波,我们采用了由低漂移运放构成的差分放大器。由4个滏电器件获得的4路光电信号分别送到2只差分放大器输入端,从差分放大器输出的两路信号其相位差为π/2,为得到判向和计数脉冲,需对这两路信号进行整形,首先把它们整形为占空比为1:1的方波,经由两个与或非门74LS54芯片组成的四细分判向电路输入可逆计数器,最后送入由8031组成的单片机系统中进行处理。 三、单片机与接口电路 为实现可逆计数和提高测量速度,系统采用了193可逆计数器。假设工作平台运行速度

光栅传感器工作原理

一、光栅传感器的基本原理 光栅传感器是根据莫尔条纹原理制成的一种计量光栅,多用于位移测量及与位移相关的物理量,如速度、加速度、振动、质量、表面轮廓等方面的测量。光栅传感器的基本结构如图1所示: 图1 光栅传感器的基本结构 光栅传感器由光源、透镜、光栅副(主光栅和指示光栅)和光电接收元件组成如图1所示,当标尺光栅相对于指示光栅移动时,形成亮暗交替变化的莫尔条纹。利用光电接收元件将莫尔条纹亮暗变化的光信号,转换成电脉冲信号,并用数字显示,便可测量出标尺光栅的移动距离。 光栅传感器光源:钨丝灯泡的输出功率较大,工作范围较宽为-40℃到+130℃,但是它与光电元件相组合的转换效率低。在机械振动和冲击条件下工作时,使用寿命将降低。因此必须定期更换照明灯泡以防止由于灯泡失效而造成的失误。半导体发光器件转换效率高,响应快速。如砷化镓发光二极管,与硅光敏三极管相结合,转换效率最高可达30%左右。砷化镓发光二极管的脉冲响应速度约为几十ns,可以使光源工作在触发状态,从而减小功耗和热耗散。 光栅副:如图2所示为透射光栅,它是一个长光栅,在一块长方形的光学玻璃上均匀地刻上许多条纹,形成规则的明暗线条。图中a为刻线宽度,b为可惜案件的缝隙宽度,a+b=W 称为光栅的栅距或光栅常数。通常情况下,a=b=W/2,也可以做成a:b=1.1:0.9,刻线密度一般为每毫米10,25,50,100线。 图2 透射光栅 指示光栅一般比主光栅短得多,通常刻有与主光栅同样密度的线纹。

光电元件包括有光电池和光敏三极管等部分。在采用固态光源时,需要选用敏感波长与光源相接近的光敏元件,以获得高的转换效率。在光敏元件的输出端,常接有放大器,通过放大器得到足够的信号输出以防干扰的影响。 二、莫尔条纹形成的原理 把光栅常数相等的主光栅和指示光栅相对叠合在一起(片间留有很小的间隙),并使两者栅线之间保持很小的夹角θ,于是在近于垂直栅线的方向上出现明暗相间的条纹,如图3所示。在a-a’线上,两光栅的栅线彼此重合,光线从缝隙中通过,形成亮带;在b-b’线上,两光栅的栅线彼此错开,形成暗带。这种明暗相见的条纹称为莫尔条纹。莫尔条纹方向与刻线方向垂直,故又称做横向莫尔条纹。 图3 光栅和横向莫尔条纹 由图可知,横向莫尔条纹的斜率为 式中,为亮(暗)带的倾斜角,为两光栅的栅线夹角。横向莫代尔条纹(亮带与暗带)之间的距离为 式中,为横向莫尔条纹之间的距离;W为光栅常数。 由此可见,莫尔条纹的宽度由光栅常数与光栅的夹角决定。对于给定的光栅常数W 的两光栅,夹角越小,条纹宽度越大,即条纹稀。所以通过调整夹角,可以使条纹宽度具有任何所需要的值。

相关文档