文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米结构材料的模板合成方法

纳米结构材料的模板合成方法

纳米结构材料的模板合成方法
纳米结构材料的模板合成方法

纳米结构材料的模板合成方法

苏育志龚克成

【摘要】本文综述了以径迹蚀刻聚合物膜或多孔Al2O3膜为模板,结合电化学沉积、化学沉积、现场聚合、溶胶-凝胶法和化学气相沉积技术合成导电聚合物、金属、碳、无机半导体等纳米管状或线型材料的方法。同时还介绍了模板合成材料的应用前景。

【关键词】纳米材料;模板合成

中图分类号:TB383 文献标识码:A

Template Synthesis of Nanomaterials

SU Yu-zhi,GONG Ke-cheng

(Polymer Structure & Modification https://www.docsj.com/doc/985642994.html,b.,South China

Univ.of Technol.Guangzhou 510400,China)

【Abstract】 This article reviews a template synthesis me thod that the tubular and fibrillar nanostructure materials,such as conductive

polymer,metals,carbon,semiconductors and other materials,have been prepared withi n the pores of track-etch polymeric membranes and porous alumina membranes inte grated with electrochemical deposition,electroless deposition,in situ polymeriza tion,sol-gel deposition and chemical vapour deposition.In addition,this paperd escribes the application prospects of nanomaterials fabricated by template appro ach.

【Key words】nanomaterialo;template synthesis

1 引言

纳米结构材料因其具有独特的性能而应用于电子学、光学、机械装置、药物释放和生物化学等方面,近年来掀起了对纳米材料研究的热潮[1,2],合成纳米结构材料的许多新方法也相继产生。早在1985年C.R.Martin等人在采用含有纳米微孔的聚碳酸酯过滤膜作为模板通过电化学聚合合成导电聚吡咯的基础上提出了纳米结构材料的模板合成方法[3 ],并利用此方法合成了一系列的纳米结构材料[4-6],随后有不少研究者在这方面做了许多研究工作[7-12]。

模板合成法制备纳米结构材料具有下列特点:①所用膜容易制备、合成方法简单,②能合成直径很小的管状或纤维材料,如Wu和Bein[7]利用此方法制备出直径只有3nm的导电聚合物纳米纤维,③由于模孔孔径大小一致,制备的材料同样具有孔径相同、单分散的纳米结构材料,④在模孔中形成的纳米管和纳米纤维容易从模中分离出来,⑤模板法不仅用来合成纳米管状或线状结构材料,而且还用来合成形状类似于毛刷的结构材料。

2 模板合成方法

2.1 模板合成方法中所采用的多孔膜

用作模板的材料主要有两种:一种是径迹蚀刻(track-etch)聚合物膜;另一种是多孔Al2O3膜。前者膜孔孔径大小分布较广,且分布不均匀;后者孔率较高,且膜孔孔径大小分布均匀,如图1。当然还有其它不少的膜可用作模板。

图1 聚碳酸酯膜(A:孔径1μm,B:孔径30nm)和A1203(C:孔径70nm,D:孔径10nm)的电镜照片

2.1.1 径迹蚀刻高分子膜

具有多孔的高分子过滤隔膜是通过径迹蚀刻方法制备而成的[13],其孔径可以达到微米级,甚至可以达到纳米级。膜中含有直径一致的柱状微孔,孔的分布是不均匀无规律性,孔的直径可以小到10nm,孔率可达到109个/cm2,所用膜材料一般是聚碳酸酯、聚脂及其它聚合物材料。

2.1.2 多孔氧化铝膜

多孔氧化铝膜是在酸性溶液中由金属铝经过电化学阳极氧化制备而成[14]。这种膜含有孔径大小一致,排列有序、分布均匀的柱状孔,且不同于由径迹蚀刻制得的聚合物膜,氧化铝多孔膜中孔径小且柱状孔并不倾斜,因而孔与孔之间独立,不会因孔的倾斜而发生孔与孔交错现象。实验室可制备一定孔径的氧化铝膜[15],孔径大小分布在200-5 nm的范围内,甚至可以更小,孔率高达1011/cm2[16],所用氧化铝膜的厚度在10-100nm。孔率越高,合成的纳米材料的量就越多。

2.1.3 其它多孔膜材料

Tonucci[17]等近来介绍了一种纳米槽排列的玻璃膜,其孔径小到33nm,孔密度可达3×1010个/cm2;Beck[18]等已制备了一种新的微孔离子交换树脂,利用此材料作模板可以合成纳米尺寸的纤维状聚苯胺和石墨[7,19];Douglas[20]等已表征出由细菌衍生的蛋白质中存在纳米大小的孔、这种蛋白质可以用作生物模板;Clark和Ghadiri[21]已制备出纳米管状多肽;Ozin[1]和Schollhorn [ 22]论述了可以作模板的纳米孔固体材料。

2.2 其它化学方法在模板合成的应用

利用模板法可以合成具有管状结构和纤维状结构的纳米材料,模板在合成中仅起一种模具作用,材料的形成仍然要利用常用的化学反应来合成,如电化学沉积,电化学聚合,化学聚合,熔胶-凝胶沉积和化学气相沉积等。

2.2.1 电化学沉积

通过离子喷射或热蒸发使高分子或Al2O2膜表面及膜孔孔壁上涂上一层金属薄膜,用此膜作阴极,经电化学还原使要制备的材料沉积在金属膜上[23-25]。利用径迹蚀刻聚合物膜或Al2O3膜合成铜、金、银和镍等多种纳米线状金属材料,材料的长度可以通过金属的量来控制,金属电沉积的量增多时,则其纵横比(即长度与直径比)增加,反之则减少。由于纳米金属的光学性能主要取决于其纵横比,因此能够控制纳米金属的纵横比就显得特别的重要[26]。通过此方法也可以制备空心金属纳米管[27],如在制备金纳米管时,在金沉积之前先用硅烷类化合物处理模板的孔壁,使金在膜孔中的孔壁优先沉积[28]。

利用电化学技术在模板合成法中还可以制备导电聚合物纳米线状或管状结构材料,如聚吡

咯,聚苯胺,聚3-甲基噻吩等[3,29]。当这些聚合物在径迹蚀刻的聚碳酸酯膜孔中沉积时,聚合物在膜孔的孔壁上优先成核并生长,其结果是可通过控制聚合时间制得不同内径的管状或实心线状纳米聚合物材料。至于聚合物优先在孔壁上成核和生长的原因已有人提出[20]。

2.2.2 化学沉积

利用化学还原方法在膜表面与膜孔孔壁上涂上一层金属,这种方法不同于电化学还原沉积在金属沉积之前需要使膜表面导电。以塑料或氧化铝为模板利用化学沉积方法已制备金及其它金属纳米材料[31]。化学沉积方法的主要特征是金属首先在膜的孔壁上形成镀层,沉积反应时间短则形成空心管状结构,沉积时间长则形成实心线状结构。

2.2.3 化合聚合

只要将模板插入到含有要聚合的单体和引发剂的溶液中,在膜孔中就能形成所需要的纳米聚合物材料,这种方法已用来合成导电聚合物[32,33]。正象电聚合沉积一样,单体在孔壁上优先成核并生长其结果是通过控制聚合时间来合成不同结构的纳米材料。

电绝缘的塑料也能由模板法来合成,如将氧化铝膜插入到含丙烯腈单体和引发剂的溶液中即可制备聚丙烯腈的纳米管,其内径是随膜在溶液中沉浸时间的变化而变化[34]。而且,若在氩气气氛或真空中将聚丙烯腈-Al2O3复合膜加热到700℃则可得到管或线型的石墨导电纳米材料。

2.2.4 溶胶-凝胶沉积方法

通过物理粉碎或化学凝聚方法可制得纳米级粒子的胶体溶液,将胶体浓缩形成凝胶,然后将凝胶加热到所需要材料,这种方法是制备纳米结构材料最普通的方法之一[35]。在氧化铝的膜孔中利用溶胶-凝胶沉积方法可以合成大量的管状或线型无机半导体纳米结构材料,如TiO2,ZnO 和WO3[36],正如其它模板合成技术一样,管状或线型结构的得到取决于模板插入胶体溶液的时间。模板在胶体溶液中沉浸的时间短生成管状结构这一事实表明胶体粒子在Al2O3膜孔孔壁优先吸附,这时由于通常用来制备纳米材料的胶体粒子是带正电荷而孔壁是带负电荷;同时,还发现在膜孔壁上的凝聚速度比本体溶液要快,这很可能是因胶粒在孔壁上的吸附而造成胶体溶液中局部增浓的缘故[36]。

2.2.5 化学气相沉积

化学气相沉积技术应用到模板合成中的主要问题是在膜孔中的孔壁上沉积之前,因气相沉积速度太快就有可能将膜表面的孔堵塞,尽管如此,T.Kyotani等[37]将Al2O3多孔膜插入700℃的熔炉中并通以乙烯或丙烯气体,经气体受热分解使孔壁上沉积一层碳膜,由此而合成出纳米碳管,管的厚度同样依赖于反应时间与所通气体的压力。其次,V.M.Cepak等[38]利用化学气相沉积方法与模板合成技术结合制备了形如毛刷的TiS2-Au纳米材料。

2.3 模板合成路线

下面仅举两例来说明模板合成路线:一是TiO2纳米管的合成,如图2[39]。二是模板合成固化酶微胶囊,如图3[4]。

纳米管膜板合成过程示意图

图2 TiO

2

图3 膜板合成固化微胶囊组的示意图

(1)镀金的模板膜;(2)电聚合聚吡咯膜;(3)化学聚合聚吡咯纳米管;(4)填装酶;(5)加封;(6)

将模板膜溶解掉

3 模板合成法的具体应用

3.1 模板合成导电聚合物

自1978年美国宾夕法尼亚大学的化学家A.G.Macdiarmid和物理学家A.J.Heeger[40]发现导电聚合物以来,对其导电机理也有较详细的研究[41,42]。从导电聚合物的结构来看,要得到导电性良好的聚合物,其结构应该是排列有序的共轭结构,模板合成法为制备这样结构的聚合物提供了一种有利的办法。另外,对模板合成的聚合物的电化学、电子和光学特性的研究也有不少的报道[5,7,11,12]。

在0℃和-20℃利用模板方法合成聚吡咯的导电性与其纳米纤维直径的关系如图4[32],由模板合成的聚苯胺的导电性与其纳米管的直径关系见表1[43],由实验数据可见,材料的导电率与其直径的大小成反比。根据Wu和Bein[7]近来的研究结果可知,利用模板法可以合成直径只有

30nm的纤维状聚合物,可以推测这种材料的导电性将有大量的提高。其次,还可以利用这种方法制备应用于药物释放和微电子器件的导电聚合物[44]。

图4 聚吡咯纤维导电率与其直径的关系图,上面曲线的合成温度为-20℃,

下面曲线的合成温度为0℃.

表1 由模板合成聚苯胺纳米管的导电率与管径的关系

3.2模板合成纳米金属材料

纳米金属具有特定的电子、光学和磁性性能,早在1970年Possin[45]首次提出了利用多孔膜作模板制备纳米纤维材料。目前,采用模板法制备的纳米金属希望能应用于下列三个方面。

光学材料:已有研究表明纳米微粒金的形状不同决定此材料对光吸收性能[26]。在Al2O2的多孔膜及膜孔中电沉积得到Au-Al2O3复合材料时,随着金纳米微粒大小的变化这种材料的颜色可以是红色、紫色或深蓝色,因为Al2O3膜是光学透明且在合成中不会发生什么变化,复合材料的颜色变化完全取决于膜中沉积金对光的吸收性能,而Au对光的吸收性能又依赖于沉积在膜中金的形状和大小。如图5[26]是Au-Al2O3复合材料的吸收光谱图。

对光具有最大吸收曲线的长度/直径比的曲线是7.7,

其次分别7.7,1.3,0.77,0.54,0.46和0.38.

图5 Au纳米微粒的吸收光谱

纳米电极:以径迹蚀刻聚碳酸酯膜为模板通过化学沉积技术使Au在膜孔和膜的表面上沉积,将膜其中一面上的Au处理掉,则可以制得类似于园盘电极的纳米电极,其结构如图6[46]。这种电极为研究非均相电子转移反应动力学提供了有利的手段,由于非均相电子转移反应速度太快,利用传统的微电极研究其动力学几乎是不可能的。除此之外,这种电极还应用于超痕量电活性物质的检测,其检测极限比一般的方法要高出三个数量级以上[31]。

离子选择性透过膜:由模板合成的金纳米管,其管的内径可以控制在

34-1.4nm[47]范围以内,通过控制纳米管的内径及在膜上的带电极性来决定只选择阳离子、阴离子或两性离子透过,因此可把这种膜称为离子选择性透过膜,此膜主要应用于分子的分离。

图6 在模板膜制成的纳米电极示意图

3.3 模板合成无机半导体纳米材料

将电化学方法[48]或溶胶-凝胶方法[36]与模板合成技术结合可以制备半导体纳米管和纳米纤维材料。如利用sol-gel方法以多孔膜为模板可以合成出TiO2、ZnO和WO3[36]等纳米材料。TiO2的主要用作有机物分解反应的催化剂,利用模板合成法合成的纳米纤维和纳米管,其表面积很大,因而催化效率特别高。另外,这种材料还可应用于电化学、电池、光电化学和生物化学等领域。

3.4 模板合成纳米复合材料

模板方法不仅可以合成单一物质的纳米材料,还可以制备纳米管状或线型复合材料,如碳 /聚丙烯腈/金、二硫化钛/聚吡咯、二氧化钛/聚吡咯。金/二硫化钛等复合材料。

4 结论

模板合成方法是近十年来发展为合成新型纳米结构材料较为简单的方法,此方法已用来合成导电聚合物、金属、半导体和其它材料,希望制备的材料能应用于电池、电光装置、药物释放、光催化、化学分析、分子分离和生物工程等许多方面。目前,对合成材料的大小与结构控制、膜孔孔壁与合成材料的界面结构以及对利用模板合成法成批生产具有实际应用价值的材料还有待于进一步研究。

作者简介:苏育志(1963-),男,湖南攸县人,广州师范学院化学系讲师.

作者单位:华南理工大学高聚物结构与改性研究室,广东广州510400

参考文献

[1]G.A.Ozin,Adv.Mater[J].1992,4:612.

[2]“Engineering a Small World:From Atomic Manipulation to Micr ofabrication”.special section of Science,1991,254,1300.

[3]R.M.Penner,C.R.Martin.J.Electrochem.Soc[J].1986,133:2206.

[4] C.R.Martin.Science[J].1994,266:1961.

[5] C.R.Martin.Acc.Chem.Res[J].1995,28:61

[6]J.C.Hulteen,C.R.Martin.J.Mater.Chem[J].1997,7:1075.

[7] C.-G.Wu,T.Bein.Science[J].1994,264:1757.

[8]W.Cahalance,https://www.docsj.com/doc/985642994.html,bes.Chem.Mater[J].1989,1:519.

[9] C.G.J.Koopal,R.J.M.Notle et al,J.Chem.Soc.,https://www.docsj.com/doc/985642994.html,mnun[J ].1991,1691. [10] C.G.J.Koopal,M.C.Feiters et al.Biosens.Bioelectron[J].1992,7:461. [11]R.P.Burford,T.Tongtam.J.Mater.Sci[J].1993,26:3264.

[12]Granstorm,O.Inganas.Synth.Met[J].1993,55-57:460.

[13]R.L.Fleischer,P.B.Price et al,Nuclear tracks in Solids(Univ.of Califor niaPress,Berkeley,CA.1975).

[14]Despic,V.P.Parkhutik,in Modern Aspects of Electrochemistry,J.O. Bockris,R.E.White,B.E.Conway,Eds(Plenum,New York,1989),vol.20,chap.6.

[15] C.A.Foss Jr.,G.L.Hornyak et al.J.Phys.Chem[J].1994,98:2963.

[16] D.AlMawiawi,N.Coombs et al.J.Appl.Phys[J].1991,70:4421.

[17]R.J.Tonucci,B.L.Justus et al.Science[J].1992,258:783.

[18]J.S.Beck,J.C.Vartuli et al.J.Am.Chem.Soc[J].1992,114:10834.

[19] C.-G.Wu,T.Bein.Science[J].1994,266:1013.

[20]K.Douglas,G.Devaud et al.Science[J].1992,257:642.

[21]T.D.Clark,M.R.Ghadiri.J.Am.Chem.Soc[J].1995,117:12364.

[22]R.Schollhorn.Chem.Mater[J].1996,8:1747.

[23] C.J.Brumlik,C.R.Martin et al.Anal.Chem[J].1992,64:1201.

[24]S.K.Chakarvarti J.Vettr.J.Micromech.Microeng[J].1993,3:57.

[25]M.J.Tierney,C.R.Martin.J.Phys.Chem[J].1998,93:2878.

[26]G.L.Hornyak,C.R.Martin.J.Phys.Chem[J].1997,101:1548.

[27] C.J.Brumlik,V.P.Menon et al.J.Mater.Res[J].1994,9:1174.

[28] https://www.docsj.com/doc/985642994.html,ler,C.A.Widrig et al.J.Phys.Chem[J].1988,92:1928.

[29]L.S.Van Dyke,https://www.docsj.com/doc/985642994.html,ngmuir[J].1990,6:1123.

[30] C.R.Martin.Adv.Mater[J].1991,3:457.

[31]V.P.Menon,C.R.Martin.Anal.Chem[J].1995,67:1920.

[32]J.Lei,Z.Cai et al.Synth.Met[J].1992,46:53.

[33]Cai,J.Lei et al.Chem.Mater[J].1991,3:960.

[34]R.V.Parthasarathy,K.L.Phani et al.Adv.Mater[J].1995,7:896.

[35]J.H.Fendler,F.C.Meldrum.Adv.Mater[J].1995,7:607.

[36] https://www.docsj.com/doc/985642994.html,kshmi,P.K.Dorhout et al.Chem.Mater[J].1997,9:857.

[37]T.Kyotani,L.Tsai et al.Chem.Mater[J].1996,8:2109.

[38]V.M.Cepak,J.C.Hulteen et al.Chem.Mater[J].1997,9:1065.

[39]Patrick https://www.docsj.com/doc/985642994.html,ngmuir[J].1996,12,1411.

[40]P.J.Nigrey,A.G.MacDiarmid et al.J.Chem.Soc.,https://www.docsj.com/doc/985642994.html,mun[J].1979,594 .

[41]J.L.Bredas,G.B.Street.Acc.Chem.Res[J].1995,18:309.

[42]S.Kivelson,A.J.Heeger.Synth.Met[J].1988,22:371.

[43]R.V.Parthasarathy,C.R.Martin.Chem.Mater[J].1994,6:1627.

[44]R.Pool.Science[J].1990,247:1410.

[45]G.E.Possin.Rev.Sci.Instrum[J].1970,41:772.

[46]J.C.Hulteen,V.P.Menon et al.J.Chem.Soc[J].Faraday Trans.,1996,92:40 29. [47]M.Nishizawa,V.P.Menon et al.Science[J].1995,268:700.

[48]J.D.Klein,R.D.Herrick et al.Chem.Mater[J].1993,5:902.

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

一纳米氧化镁为模板一步法制备多级孔炭材料

第一部分文献综述 1.1 多孔炭的研究背景与意义 伴随着全球经济的快速发展和科技水平的进步,煤、石油和天然气等化石燃料消耗逐年增加,日渐枯竭,并且化石燃料的利用造成严重的环境污染,如温室效应、酸雨、大气颗粒物污染、臭氧层破坏和生态环境破坏等。人类正面临着资源短缺、环境污染、生态破坏等迫切需要解决的问题,全球经济和会的可持续发展也面临着严峻的考验。人们迫切需要开发利用新能源和可再生清洁能源来解决日趋短缺的能源问题和日益严重的环境污染。 化学储能装置具有使用方便,性能可靠,便于携带,容量、电流和电压可在相当大的范围内任意组合和对环境无污染等许多优点,在新能源技术的开发和利用中占有重要地位。储氢、储锂和超级电容器等储能装置的电极材料的研究成为材料研究中的热点。在所有的储能材料中,多孔碳材料由于具有大的比表面积,均一的孔径分布,孔结构可调等优点,是迄今为止最理想的储能材料。除此之外,多孔碳材料由于具有均匀的孔径分布,吸收储存气体和液体性能也非常优秀,常被应用于环境保护,制药和化工等领域,作为有毒气体和液体的净化吸收剂。 在近十几年间,有关多孔碳材料方面的报告和论文大批量在国际会议和国际学术刊物上发表,表明多孔碳材料已经成为当今科学界的研究热点。经过科研人员多年不断的试验研究,大批量孔径尺寸分布均匀且可以调控、结构组成可以变化、排列样式和孔道形态多种多样的多孔碳材料可以通过各种各样的合成方法被制备出来。尽管人们已经取得了许多成果,但是多孔碳材料仍然存在许多不足,需要我们去探索和解决,多孔碳材料的性能与实际应用有一定的差距,也有待进一步提高。未来仍然需要我们不断努力去开发成本低,制备过程

模板合成法制备纳米材料的研究进展

收稿日期:2006-11-28 江苏陶瓷 JiangsuCeramics 第40卷第3期2007年6月 Vol.40,No.3June,2007 0 前言 纳米微粒因其特有的表面效应、量子尺寸效应、 小尺寸效应以及宏观量子隧道效应等导致其产生了许多独特的光、 电、磁、热及催化等特性,在许多高新科技领域如陶瓷、化工、电子、光学、生物、医药等方面有广阔的应用前景和重要价值。作为纳米材料研究的一个重要方向,探索条件温和、形态和粒径及其分布可控、产率高的制备方法是这方面研究的首要任务。 目前已经发展了很多制备方法[1],如:蒸发冷凝法、物理粉碎法、机械球磨法等物理方法和气相沉积法、溶胶-凝胶法、沉淀法、水(溶剂)热法和模板法等化学方法,其中模板法因具有实验装置简单、操作容易、形态可控、适用面广等优点,近年来引起了人们的极大兴趣。 模板法的类型大致可分为硬模板和软模板两大类。硬模板包括多孔氧化铝、二氧化硅、碳纳米管、分子筛、以及经过特殊处理的多孔高分子薄膜等。软模板则包括表面活性剂、聚合物、生物分子及其它有机物质等。利用模板合成技术人们已经制得了各种物质包括金属、 氧化物、硫化合物、无机盐以及复合材料的球形粒子、一维纳米棒、纳米线、纳米管以及二维有序阵列等各种形状的纳米结构材料。本文将简要介绍近年来国内外利用模板法制备纳米结构材料的一些进展[2]。 1 硬模板法制备纳米材料 这种方法主要是采用预制的刚性模板,如:多孔 阳极氧化铝膜、二氧化硅模板法、微孔、中孔分子筛(如MCM-41、SBA-15等)、 碳纳米管以及其它模板。1.1多孔阳极氧化铝法 多孔氧化铝膜是近年来人们通过金属铝的阳极 电解氧化得到的一种人造多孔材料,这种膜含有孔径大小一致、 排列有序、分布均匀的柱状孔,孔与孔之间相互独立,而且孔的直径在几纳米至几百纳米之间,并可以通过调节电解条件来控制[3]。利用多孔氧化铝膜作模板可制备多种化合物的纳米结构材料,如通过溶胶-凝胶涂层技术可以合成二氧化硅纳米管,通过电沉积法可以制备Bi2Te3纳米线[4]。这些多孔的氧化铝膜还可以被用作模板来制备各种材料的纳米管或纳米棒的有序阵列,如:TiO2、In2O3、Ga2O3纳米管阵列,BaTiO3、PbTiO3纳米管阵列,ZnO、MnO2、 WO3、Co3O4、V2O5纳米棒阵列以及Bi1-xSbx纳米线有 序阵列等[1]。 1.2二氧化硅模板法 分子筛MCM-41二氧化硅和通过溶胶-凝胶过 程形成的二氧化硅都可用作纳米结构材料形成的模板,其中MCM-41为介孔氧化硅模板,它具有纳米尺寸的均匀孔,孔内可形成有序排布的纳米材料,属于外模板,而溶胶-凝胶法形成的二氧化硅胶粒则属于内模板,在其上形成纳米结构材料,最后二氧化硅用氢氟酸溶解除去。 2002年Froba等报道了在中孔的分子筛MCM-41二氧化硅内部形成有序排布的Ⅱ/Ⅵ磁性半导体 量化线Cd1-xMnxS。2003年Zhao等报道以In(NO3)3为原料,以高度有序中孔结构的表面活性剂SiO2为模板剂和还原剂,采用一步纳米浇铸法合成了高度有序的单晶氧化铟纳米线阵列。2002年Dahne等以三聚氰胺甲醛为第一层模板,利用逐层(LbL)方法制备了PAH/PSS交替多层膜覆盖的三聚氰胺甲醛粒子,在PAH/PSS交替的多层膜上进一步通过溶胶-凝胶方法覆盖上二氧化硅作为第二层模板,再利用LbL方法制备PAH/PSS交替的多层膜,然后用盐酸溶解 模板合成法制备纳米材料的研究进展 黄 艳 (陕西科技大学材料科学与工程学院,咸阳710021) 摘 要 介绍了近年来国内外利用氧化铝、二氧化硅、碳纳米管、表面活性剂、聚合物、生物分子等作模板制备多种物质的纳米结构材料的一些进展。关键词 模板法;纳米材料;合成 1

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

纳米材料的制备及合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (2) 1.1纳米粉体的湿化学法制备 (2) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (3) 1.2.2溅射法 (3) 1.2.3真空蒸镀法 (4) 1.2.4等离子体方法 (4) 1.2.5激光诱导化学气相沉积法(LICVD) (4) 1.2.6爆炸丝方法 (5) 1.2.7燃烧合成法 (5) 1.3纳米薄膜的化学法制备 (5) 1.4纳米单相及复相材料的制备 (6) 2纳米材料的物理法制备 (7) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (7) 2.2纳米粉体的高能机械球磨法制备 (7)

2.3纳米晶体非晶晶化方法制备 (8) 2.4深度塑性变形法制备纳米晶体 (9) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (9) 2.6纳米薄膜物理气相沉积技术 (9) 3纳米材料的应用展望 (10) 4 总结 (11) 参考文献 (12)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

浅谈模板法制备纳米材料

日常生产工作中必须严格按照规程规定、操作流程和使用方法正确使用安全工器具,以确保安全生产。据现场调查得知安全工器具的不正确使用主要有以下几种情况: 1.衔接式绝缘棒使用节数不够,伸缩式绝缘棒拉伸不够充足。 2.雨天不使用防雨罩,或防雨罩松动、歪斜、破损,起不到防雨作用。 3.验电时手握在验电器护环以上,使用前不在有电设备上确认验电器是否良好,不同电压等级的验电器交叉使用。 4.绝缘手套使用前不检查气密性,甚至随意抓拿坚硬及有尖刺的物品。 5.接地线的接地端不按要求装设,任意搭、挂和缠绕。 6.安全带不按规定使用、系的松垮随意,起不到安全防护作用。 7.安全帽内胆大小调节不当、不系帽带或系的不够紧,工作中容易歪斜、掉落。 8.手钳等工具使用前不检查绝缘部位是否完好,使用时手握在裸露的金属部位,容易造成作业人员的触电事故。 总之,安全工器具是每个电力职工的切身保镖、忠实的安全员和生命的守护神,只要大家熟练地掌握了各种安全工器具的作用、性能和结构原理,掌握了正确的使用方法和注意事项,并严格按照规程规定操作、使用和维护,就能够确保人身、设备和电网的安全。 2010年第3期 (总第138期)China Hi-Tech Enterprises NO.3.2010(CumulativetyNO.138) 中国高新技术企业 摘要:纳米模板具有独特的纳米数量级的多孔结构,其孔洞孔径大小一致,排列有序,分布均匀。以纳米模板合成零维纳米材料、一维纳米材料(纳米线,纳米管)具有制备效率高,可靠性好等优点,已成为纳米复制技术的关键之一。文章重点综述了近年来模板制备,模板合成中常用的模板类型及应用进展。 关键词:纳米材料;模板法;制备工艺;化合聚合;溶胶-凝胶沉积;化学气相沉积 中图分类号:0614文献标识码:A文章编号:1009-2374(2010)03-0178-02 自20世纪70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。纳米材料的研究大致可划分为三个阶段:第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评价表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,这一阶段纳米复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。本文所要介绍的模板法制备纳米材料即为纳米组装体系的一种。 一、模板合成中常用的模板 (一)高分子模板 高分子模板通常是通过采用厚度为6~20μm的聚碳酸脂、聚脂和其它高分子材料经过核裂变碎片轰击使其出现损伤的痕迹,再用化学腐蚀方法使这些痕迹变成孔洞。膜中孔径可以达到微米级,甚至达到纳米级(最小达到10nm),孔率可达到109/cm2,孔分布是随机的、不均匀且无规律,并且很多孔洞与膜面倾斜和相互交叉。 由于高分子模板自身这些特征,使得用这些模板组装的纳米结构不能形成有序的阵列体系。同时由于存在很多的孔之间斜交现象,当人们理论模拟模板合成的纳米微粒的光学特性时,就会出现理论预计和现实情况不相符合的情形,例如,理论预示独立的金属微粒在某个特殊的波段吸收最强,然而,模板合成的这种金属纳米微粒间的物理接触可使这个最大吸收带移动200nm或更多。 (二)阳极氧化铝模板 阳极氧化铝模板(Anodic Aluminum Oxide,AAO)的制备,一般选用高纯铝片(99.9%以上),在硫酸、草酸、磷酸水溶液中经过阳极氧化后得到的。其纳米孔道内径统一,而且呈六方排列,管道密度可达1011/cm2,孔径可在几纳米到几百纳米之间可调。像六方液晶一样,AAO也能提供呈六方排布的孔道,因此用它可合成呈六方对称排列的纳米结构体系。 二、常用的模板合成方法 模板合成方法适用的范围很广,根据模板种类的不同,在合成时必须注意以下方面:(1)化学前驱溶液对孔壁是否浸润,亲水或疏水性质是合成组装能否成功的关键;(2)应控制在孔洞内沉积速度的快慢,沉积速度过快会造成孔洞通道口堵塞,致使组装失败;(3)控制反应条件,避免被组装介质与模板发生化学反应,在组装过程中保持模板的稳定性是十分重要的。下 浅谈模板法制备纳米材料 李宁1,刘晓峰1,孔庆平1,张文彦2 (1.中国兵器工业集团第521研究所,陕西西安710065;2.西北有色金属研究院纳米材料研究中心,陕西西安710016) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 178 --

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

模板法及其在纳米材料制备中的应用

模板法及其在纳米材料制备中的应用 *** (************,******) 摘要:纳米材料的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应使其展现出许多特有的性质,在电子、环境保护、生物医药等领域具有广阔的应用前景。本文主要综述了软、硬模板法制备纳米材料的研究进展,重点介绍几种常见软模板法制备无机纳米材料的基本原理和主要特点,并在此基础上提出了模板法制备纳米材料需要解决的问题和应用前景。 关键词:模板法;软模板;硬模板;纳米材料 1 引言 纳米材料由于其本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,展现出许多特有的物理性质、化学性质,在催化、医药、滤光、水体处理、光吸收、磁介质及新材料等方面具有广阔的应用前景而备受关注[1]。在纳米材料的制备研究中,研究人员一直致力于对其组成、结构、形貌、尺寸、取向等方面进行控制,以使得制备出的材料具备各种预期的或特殊的物理化学性质。基于此,近年来模板法制备纳米材料引起了广泛的重视,该方法基于模板的空间限域作用实现对合成纳米材料的大小、形貌、结构等的控制。由于模板法合成纳米材料相比于其他方法有如下显著的优点:(1)模板法合成纳米材料具有相当的灵活性、(2)实验装置简单,操作条件温和、(3)能够精确控制纳米材料的尺寸、形貌和结构、(4)能够防止纳米材料团聚现象的发生,从而引起了广泛的关注[2]。 2 模板分类 模板法根据其模板自身的特点和限域能力的不同又可分为硬模板和软模板两种。二者的共性是都能提供一个有限大小的反应空间,区别在于前者提供的是静态的孔道,物质只能从开口处进入孔道内部;而后者提供的是处于动态平衡的空腔,物质可以透过腔壁扩散进出[3]。 3 硬模板法制备纳米材料 硬模板是指以共价键维系特异形状的模板。主要指一些由共价键维系的刚性模板。如具有不同空间结构的高分子聚合物、阳极氧化铝膜、多孔硅、金属模板天然高分子材料、分子筛、胶态晶体、碳纳米管和限域沉积位的量子阱等。通过前驱体的填充、包裹等将模板的结构、形貌复制到产物中去,然后通过酸碱溶解、高温分解等去除模板,合成零维的纳米颗粒原子团簇,一维的纳米线、纳米管,二维的纳米薄膜乃至三维的纳米复合结构等一系列纳米材料。 3.1阳极氧化铝模板法制备纳米材料 20世纪90年代以来,随着自组装纳米结构体系研究的兴起,多孔阳极氧化铝膜(AAO)这种带有高度有序的纳米级阵列孔道的纳米材料受到人们的重视。人们将AAO作为模板来制备纳米材料和纳米阵列复合结构,并在磁记录、电子学、

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

纳米材料的制备及应用.

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

纳米材料制备与应用

1 纳米材料:是指在三维空间中至少有一维处于纳米尺度范围或由他们作为基本单元构成的具有特殊性能的材料。 2 (1)零维:指在空间三维尺度均在纳米尺度,如纳米颗粒、原子团簇等。 (2)一维:指在空间三维中有两维尺度处于纳米尺度,如纳米线、纳米带、纳米棒、纳米管等。 (3)二维:指在空间中有一维处于纳米尺度,如纳米片、薄膜等。 原子团簇是指几个至几百个原子的聚集体,是介于单个原子与固态之间的原子集合体。其粒径小于或等于1 nm,如Fen, CunSm, CnHm(n和m均为整数) 和碳族(C60, C70和富勒烯等)。原子团簇既不同于具有特定大小和形状的分子,也不同于分子间以弱相互作用结合而成的聚集体以及周期性很强的晶体。原子团簇的形状可以是多种多样的,它们尚未形成规整的晶体,除了惰性气体外,都是以化学键紧密结合的聚集体。 幻数:当团簇随着所含原子数目n在某个特定值n=N,团簇特别稳定,此时的N值就是团簇的幻数。 C60是一种碳的原子团簇。60个碳原子构成像足球一样的32面体,包括20个六边形,12个五边形。 C60制备:电弧法,两个石墨棒在抽真空通氦气下靠近并放电,气化出C等离子体,再合并形成C60. 纳米颗粒是指颗粒尺寸为纳米量级的超细微粒,它的尺寸大于原子团簇,小于通常的微粉。一般粒径在1-100 nm之间。 二维纳米材料:石墨烯、过度金属二硫化物、Co(OH)2。 纳米孔材料:孔径在1-100 nm且具有显著表面效应的多孔材料。d<2 nm,微孔(microporous)、2 nm 50 nm,大孔(macroporous)

纳米材料的合成及其应用

纳米材料的合成及其应用 摘要:本文介绍了几种纳米材料的合成制备的方法,主要是固相法、液相法和气相法,并且简单的介绍了其应用领域。 关键词:纳米材料、固相法、液相法、气相法 引言: 纳米级结构材料简称为纳米材料,是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性。纳米材料出现的重要科学意义在于它引领人们认识自然的新层次,是知识创新的亮点。在纳米领域发现新现象,提出新概念,认识新规律,建立新理论,为构建纳米材料科学体系新框架奠定基础[1]。材料的结构决定材料的性质。 纳米材料产生的特殊效应,具有常规材料所不具备的性能,使得它在各个方面的潜在应用极为广泛,并且非常普遍[2~4]。 一、纳米材料的制备方法 1. 固相法 传统的固相合成法反应温度较高,能耗太,而且难以得到高纯度、各组分完全均匀、物相单一的产物,因而不宜用来制各纳米氧化物。 传统的固相法是将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充分研磨进行煅烧,然后再研磨得到纳米粒子。此法设备和工艺简单,反应条件容易控制,产率高,成本低,环境污染少,但产品粒度分布不均,易团聚。刘长久等[5]采用固相反应法制备了粒径为30nm的NiO纳米粉体,并对其电化学性能进行了研究。Feng Li等[6]在环境温度下用固相反应成功地合成了纳米氧化物SiO2、 CeO2、SnO2,并初步探讨了环境温度下纳米材料的形成机理。贾殿赠等[7]对此法进行了改进,在固相配位化学反应的基础上,将室温固相配位化学反应引入金属氧化物纳米粒子的合成中,提出一种室温固相化学反应合成纳米材料的新方法,即用室温固相化学反应首先制得前驱物,进而前驱物经热分解得纳米金属氧化物。此法不仅是无溶剂反应,而且许多反应可在室温或低温条件下发生。因此从原料的使用、合成条件及合成工艺等方面考虑,固相配位化学反应法在合成新颖纳米材料方面具有其潜在的优点。目前采用此新方法已制得纳米CuO[8]、ZnO、NiO等。

MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用

2015年第60卷第20期:1906~1914 https://www.docsj.com/doc/985642994.html, https://www.docsj.com/doc/985642994.html, 引用格式: 姚显芳,李映伟. MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用. 科学通报, 2015, 60: 1906–1914 Yao X F, Li Y W. MOFs as sacrificial templates for preparation of nanoporous carbon materials and their applications (in Chinese). Chin Sci Bull, 2015, 60: 1906–1914, doi: 10.1360/N972015-00438 《中国科学》杂志社 SCIENCE CHINA PRESS 评述 MOFs作为牺牲模板制备纳米多孔碳材料的方法 及其应用 姚显芳, 李映伟* 华南理工大学化学与化工学院, 广州 510640 *联系人, E-mail: liyw@https://www.docsj.com/doc/985642994.html, 2015-04-22收稿, 2015-05-28接受, 2015-06-25网络版发表 国家自然科学基金(21322606)资助 摘要近年来, 多孔材料因具有较高的比表面积、较低的相对密度以及较好的吸附性能等 吸引了化学、物理以及材料等领域科研人员的研究兴趣, 已被广泛应用于气体储存、吸附 催化和电化学等方面. 金属有机骨架(MOFs)材料作为近年来迅猛发展的新兴多孔材料, 由于具有有序、规整的结构, 较高的比表面积以及结构可调等特性, 使其较传统多孔材料 具有更诱人的应用前景. 然而, 由于MOFs具有相对较差的稳定性, 其实际应用和发展受到 了很大的限制. 为了进一步推进MOFs材料的应用进程, 可利用MOFs材料受热易分解的 缺点, 将其高温煅烧碳化制备稳定的纳米多孔碳材料. 本文综述了MOFs作为牺牲模板 煅烧制备纳米多孔碳材料的方法及其应用, 并且展望了其在能源、环境以及催化方面的 应用前景. 关键词 多孔材料 金属有机骨架 煅烧 纳米碳材料 过去几十年里, 多孔材料发展成为化学、物理以 及材料科学等学科领域的研究热点之一. 这些材料 已被广泛应用于气体储存、吸附催化和电化学等方 面[1~5]. 然而, 由于传统多孔材料自身的不足和缺点, 所以越来越难满足当前工业迅速发展的需要. 例如, 应用最广泛的多孔材料——碳材料, 虽然具有较高 的比表面积和吸附能力, 但不具备有序的结构; 沸石 分子筛作为研究最多的无机多孔材料, 拥有有序的 孔道结构, 但其一般是由Al, Si和氧族元素组成, 致 使孔道尺寸和种类多样性受限. 因此, 研发更具有应 用价值的多孔材料成为重要且迫切的研究课题. 金属有机骨架(metal-organic frameworks, MOFs) 材料是一种越来越受到研究者的关注, 发展迅猛的 新型多孔材料. 这种有机-无机杂化多孔材料, 是由 含氧、氮的多齿有机配体与金属原子或金属原子簇以 配位共价键相连接, 自组装形成的具有周期性网络 结构的类沸石材料[6,7]. 图1所示为MOFs材料的组成 和结构示意图, 其结构可看成是由中心金属通过有 机配体连接组装而成.与传统的多孔材料相比, MOFs具有较明显的优势, 例如: 种类多、功能性强、 高的比表面积和孔隙率以及结构可调等特点. 目前, MOFs已被广泛应用于气体吸附、分离[8~11], 多相催 化反应[12]和光电磁性[13,14], 药物缓释[15~17]和传感 器[18~21]等方面. 然而, 由于MOFs是通过配位键与无 机金属中心杂化形成的立体网络结构晶体, 虽然与 沸石的孔结构相近, 但骨架具有柔韧性. 因此与其他 多孔材料相比, MOFs材料的稳定性普遍较差[6,7], 故 该材料的实际应用一直受到限制. 为了进一步推进 MOFs材料的应用进程, 研究者主要从2个方面进行 改进: (1) 以MOFs为牺牲模板制备稳定性更高的纳 米材料[22~31]; (2) 对MOFs进行官能团修饰从而有效 地提高材料的化学稳定性[32~35]. 本文将重点介绍以

相关文档