文档视界 最新最全的文档下载
当前位置:文档视界 › 2016先进复合材料在航空航天领域的应用_汤旭

2016先进复合材料在航空航天领域的应用_汤旭

2016先进复合材料在航空航天领域的应用_汤旭
2016先进复合材料在航空航天领域的应用_汤旭

- 39 -

2016年第13期(总第364期)

NO.13.2016

( Cumulativety

NO.364 )

串口,与通信网关机进行IEC101规约通讯,通信网关机

通过B接入网与调度主站进行IEC104规约通讯。

图12

其方案描述如下:(1)综自系统通过原与地调通信的串口以IEC101规约向通信网关机发送地调点表数据,综自系统通过新增串口以IEC101规约向通信网关机发送省调点表数据;(2)通信网关机首先与综自A机尝试串口IEC101规约通讯,若与综自A机通讯失败,则尝试与综自B机通讯,但同一时间只与一台综自主机进行串口IEC101规约通讯;(3)通信网关机通过B接入网与调度主站系统进行IEC104规约通讯;(4)综自系统通过A接入网与调度主站系统进行IEC104规约通讯,即保持原来的通讯方式不变。

改造后网络拓扑图如图11所示。其逻辑连接关系如图12所示。

该方式的优点:主站通过A接入网与综自系统直接通讯,通过B接入网与通信网关机通讯,两路通讯互备,真正达到“双主模式”的要求。

该方式的缺点:需在综自系统上增加一路串口传输设置,不过几乎所有综自系统通信机上都具备至少2路以上串口传输能力,因此仅需软件设置,不需要做硬件扩充。

4 结语

本文结合工程实际和现实技术手段,探讨网络双平面传输改造技术,并在实际改造经验基础上对各种改造技术方案加以比较和总结,从安全经济的角度出发,研究比较了5种基于规约转换方式的实现变电站自动化系统通信机双机“双主模式”,通过调度数据网双平面同时与调度主站系统进行IEC104规约通讯。综合比较5种方式的优劣,方式五是一个最简单易行且比较经济的技术方法。本文为有类似双平面传输改造者以及不久后即将开始的低电压等级(35kV)变电站自动化系统网络双平面传输改造提供技术借鉴。

作者简介:高夏生(1963-),男,安徽省电力公司高级工程师,研究方向:电网调度自动化。

(责任编辑:蒋建华)

1 概述

现阶段,我国航空航天事业得到前所未有的发展,航空航天领域对材料的要求不断提升,为了满足航空航天领域对材料性能的要求,应该研发新型、高性能的材料,先进复合材料应运而生,其具有多功能性、经济效益最大化、结构整体性以及可设计性等众多特点。将先进复合材料应用在航空航天领域,能够有效地提高现代航空航天器的性能,减轻其质量。和传统钢、铝材料相比,先进复合材料的应用,能够减轻航天航空器结构重量的30%左右,在提高航空航天器性能的同时,还能降低制造和发射成本。现阶段,先进复合材料已经成为飞船、卫星、火箭、飞机等现代航空航天器的理想材料,同时,先进复合材料已经和高分子材料、无机非金属材料及金属材料并列为四大材料。因此,文章针对先进复合材料在航空航天领域应用的研究具有重要的现实意义。

2 我国先进复合材料发展现状

自20世纪70年代开始,我国就开始了对复合材料的研究工作,经过40多年的研究与发展,我国先进复合材料的技术水平不断提高,并且取得了可喜的进步。现阶段,我国先进复合材料在航空航天领域中的应用,逐渐实现了从次承力构件向主承力构件的转变,被广泛地推广和应用在军机、民机、航空发动机、新型验证机和无先进复合材料在航空航天领域的应用

汤 旭 李 征 孙程阳

(哈尔滨工程大学,黑龙江 哈尔滨 150001)

摘要:先进复合材料由于具有多功能性、经济效益最大化、结构整体性、可设计性等众多特点,在各个领域被广泛推广和利用,特别是在航空航天领域。文章分析了我国先进复合材料的发展现状,对先进复合材料进行了简介,分别针对先进复合材料在航空领域、航天领域的应用进行了综述,最后探析了复合材料在航空航天领域的发展前景。

关键词:先进复合材料;航空航天领域;飞船;卫星;火箭;飞机 文献标识码:A

中图分类号:V257 文章编号:1009-2374(2016)13-0039-04 DOI:10.13535/https://www.docsj.com/doc/968310398.html,ki.11-4406/n.2016.13.019

人机、卫星和宇航器、导弹以及火箭等领域,即先进复合材料已经进入到实践应用阶段。但是,我国先进复合材料技术的发展和研究成果与国外发达国家的水平还具有一定的差距,现阶段我国先进复合材料的设计理念、制备方法、加工设备、生产工艺以及应用规模等都相对落后。例如,我国军用战斗机中复合材料的用量低于国外先进战斗机的复合材料用量,仅有少数的军用战斗机超过20%,例如J-20其复合材料的用量约为27%。我国成功研制的C919大型民用飞机,单架飞机的先进复合材料的用量超过16吨,标志着我国先进复合材料在航空航天领域的应用水平在不断提高。

3 先进复合材料简介

3.1 先进复合材料的组成

复合材料是由金属、无机非金属、有机高分子等若干种材料采用复合工艺组成的新兴材料,先进复合材料不仅能够保留原有组成材料的特点,还能够对各种组成材料的优良性能进行综合,各种材料性能的相互补充和关联,能够赋予新兴复合材料无法比拟的优越性能。先进复合材料简称ACM,指的是碳纤维等高性能增强相增强的复合材料。先进复合材料的多种性能都优于普通钢、铝金属材料,在航空航天领域的应用,能够有效地减轻航空航天设备的重量,同时赋予航空航天设备特殊的性能,例如吸波、防热等。

3.2 先进复合材料的特性

先进复合材料的特性主要表现为:

3.2.1 多功能性。先进复合材料经过多年的发展,结合了众多优异的物理性能、力学性能、生物性能以及化学性能,例如防热性能、阻燃性能、屏蔽性能、吸波性能、半导性能、超导性能等,并且不同的先进复合材料的组成不同,其功能性存在一定的差别,综合性、多功能性复合材料已经成为先进复合材料发展的必然趋势之一。

3.2.2 经济效益最大化。先进复合材料在航空航天领域的应用,能够减少产品部件数量。由于复杂部件的连接不需要进行铆接、焊接,因此对连接部件的需求量降低,有效地减少了装配材料成本、装配和连接时间,进一步降低了成本。

3.2.3 结构整体性。先进复合材料可以加工成整体部件,即采用先进复合材料部件能够替代若干金属部件。某些特殊轮廓和表面复杂的部件,用金属制造的可行性较低,采用先进复合材料能够很好地满足实际需求。

3.2.4 可设计性。采用树脂、纤维、复合结构方式,能够获得不同形状、不同性能的复合材料,例如选择合适的材料、铺层程序,能够加工出膨胀系数为零的复合材料,并且复合材料的尺寸稳定性优于传统金属材料。

4 先进复合材料在航空领域的应用

传统的飞机制造以钢、铝、钛合金为主要材料,而传统飞机上应用比例最大、构成轻质结构主体的铝合金正在被越来越流行的复合材料所替代。我们所指的复合材料主要是以高性能纤维作为增强体,用树脂作为基体将纤维粘结在内部并固化成型的高性能塑料。随着复合材料的迅速发展和广泛应用,当前先进的复合材料在飞机上的关键应用部位和用量的多少,已成为衡量飞机结构先进性的重要指标之一。由于碳纤维材料具有耐高温、密度低、强度大等特点,目前在航空航天领域运用最为广泛。与密度达到2.8g/cm3左右的铝合金相比,先进的碳纤维复合材料密度一般在1.45~1.6g/cm3左右;而拉伸强度可以达到1.5GMPa以上,超过铝合金部件的3倍,接近超高强度合金钢制部件的水平。这种密度低、强度刚度高的优势,使飞机的复合材料结构部件在获得与先进铝合金部件在强度刚度等综合性能方面相当的水平时,重量可以大幅减少20%~30%。复合材料在飞机结构中的应用情况大致可以分为三个阶段:第一阶段是应用于受载不大的简单零部件,可减重20%;第二阶段是应用于承力大的部件,可减重25%~30%;第三阶段是应用于复杂受力部位,如中机身段、中央翼盒等,可减重30%。复合材料主要用于制造航空器的外饰和内饰部件,如飞机的一次构造材料:主翼、尾翼、机体,二次构造材料,副翼、方向舵、升降舵、内装材料、地板材、桁梁、刹车片等及直升飞机的叶片。根据统计,小型商务机和直升飞机的碳纤维复合材料用量已占55%左右,军用飞机占25%左右,大型客机占20%左右。

4.1 军机上的应用

为满足新一代战斗机对高机动性、超音速巡航及隐身的需求,20世纪90年代后,西方战斗机全部大量采用复合材料结构。先进的复合材料也大大增加了军用运输机的有效载重,增大了军用飞机的载油量,克服常规材料在高超声速飞行器研制中存在的瓶颈问题。因此,先进复合材料被广泛地应用在军机上,例如,碳纤维增强树脂基复合材料,在军机主结构、次结构以及特殊部位等方面的应用,有效地提高了军机的耐腐蚀性、抗疲劳性,同时还具有明显的减重效果;再如,F22由于存在超声速巡航需求,飞机外表面会长时间与空气高速剧烈摩擦,因此在机翼复合材料上放弃了环氧基树脂,而使用双马来酰亚胺树脂基体以获得260℃的最大工作温度。4.2 民机上的应用

民机和军用飞机不同,民用飞机作为以载客飞行和运营为目的的交通工具,对安全可靠性和经济性要求更加严格。复合材料在飞机上大量应用的时间还比较短,在对材料工艺稳定性和有关试验数据尚不十分充分的情况下,应用较多含量的复合材料需要大量时间和实践的积累。民航上的复合材料应用受限,使用分为两类:结构件用复合材料、舱内材料。

以波音787为例,每架飞机的结构比例中有50%是重约35吨的复合材料,这意味着它从材料密度上就减轻了15吨左右的重量。而空客也不甘示弱,新的A350客机改名为A-350 XWB,XWB意为超宽机身,复合材料的比例达到了52%,是现在所有大型商用飞机中最高的。A-350XWB的机体比B-787还宽13cm。作为世界上仅有的两个大型商用飞机研制巨头,波音、空客先后推出复合材料占结构比例50%的主力型号,这意味着大型客机结

- 40 -

构设计以复合材料为主要材料的时代已经拉开序幕。波音787等新一代复合材料飞机上实现的性能提升,并不仅仅是依靠低密度材料减重得来。实际上复合材料在工艺、结构力学设计上,都有着传统金属材料所完全无法比拟的优势,比如复合材料可以做出超大尺寸的整体结构部件,而且尺寸大小不会随着温度高低而产生变化。

国产大飞机在复合材料的应用上还比较保守,公开的报道显示,复合材料的使用量约占C919飞机结构重量的20%。飞机上使用的复合材料主要是碳纤维增强树脂基复合材料,它们具有高耐腐蚀、质量轻等特点,在这些性能上的确要超过一般的金属材料。通常复合材料的价格大约是常规铝合金材料的几十倍,即便是我们看起来已经很金贵的铝锂合金材料,其价格也比复合材料低得多,所以C919仅为波音737价格的1/2左右。

4.3 航空发动机上的应用

对于航空领域,特别是发动机的结构设计制造而言,高性能系统所需的轻质和耐高温等特性越来越重要。航空发动机产业是指涡扇/涡喷发动机、涡轴/涡桨发动机和传统传动系统以及航空活塞发动机的集研发、生产、维修保障服务于一体化产业集群。新的材料和工艺不断研发以应对新一代航空发动机的发展趋势,尤其是先进复合材料的应用,GE-AEBG公司、惠普公司在制造飞机发动机零部件时都采用了先进复合材料,主要包括风扇出风道导流片、风扇罩、推力反向器等部位。先进复合材料在航空发动机上的应用具体表现在以下两个方面:

4.3.1 陶瓷基复合材料的应用。陶瓷基复合材料是将碳化硅陶瓷纤维与碳化硅基底材料复合后,再涂覆一层专用涂层提升其性能,密度仅为金属材料的三分之一。由于陶瓷基复合材料具有的耐高温属性,因此在发动机流道中使用空气代替,在发动机高温区只需要较少甚至不需要冷却气体,涡轮扇发动机大幅减重,意味着发动机运转效率更高,提高了发动机的性能、耐久性、燃油经济性和高推重比。F-35战斗机使用的F135发动机是有史以来战斗机上安装过的推力最大的喷气式发动机,F135使用了陶瓷基复合材料(CMC),主要用在F135-PW-600喷管的外侧部分。

以GE航空集团为例,陶瓷基复合材料在GE航空集团的技术路线图上是一条关键路径。通用电气航空集团将于2016年新建两个复合材料制造厂,用于碳化硅和陶瓷基复合材料的批量制造,这两种复合材料都是制造喷气式发动机零部件的必备材料。GE公司是所有厂商中第一个决定使用CMC制造旋转叶片的,通过把陶瓷基复合材料叶片安装在发动机上试车,它们已经证明了旋转CMC 叶片的性能,这是一个重要的里程碑。

4.3.2 树脂基复合材料的应用。树脂基复合材料具有降噪能力强、耐腐蚀性强、耐疲劳能力好、比模量高、强度高等众多优点。通过将树脂基复合材料应用在航空发动机的冷端结构、反推力装置以及发动机短舱等结构上,不仅能够降低发动机的重量,还能够提高发动机的耐腐蚀性、抗疲劳性以及强度等。例如,JTAGG验证机的进气机匣利用PMR15树脂基复合材料,该种先进复合材料的应用比传统铝合金进气机匣的重量降低了25%。4.4 新型验证机及无人机上的应用

现代战争理念的改变,使无人机倍受青睐,无人战斗机是未来航空武器的一个重点发展方向。无人机除在情报、监视、侦察等信息化作战中的特殊作用外,还能在突防、核战、化学和生物武器战争中发挥有人军机无法替代的作用。无人机的发展方向是飞行更高、更远、更长,隐身性能更好,制造更加简便快捷,成本更低等,其中关键技术之一就是大量采用复合材料,超轻超大复合材料结构技术是提高其续航能力、生存能力、可靠性和有效载荷能力的关键。和传统的铝合金混合结构相比,以复合材料为结构的无人机,例如“全球鹰”“捕食者”等无人机都采用先进复合材料。以“全球鹰”为例,该种无人机的机翼、尾翼都采用石墨/环氧复合材料,采用该种复合材料制造的无人机,和传统铝合金混合结构的重量相比降低了65%。再如,诺斯罗普?格鲁门公司研发的X-47无人战斗机,为了满足生存力、机动性、隐身性能等特殊要求,该无人机除了接头部位采用了少量的铝合金外,几乎整个机体都采用先进复合材料。依靠复合材料,设计师还可以做出传统金属材料所无法达成的气动力学设计,比如超声速飞行的前掠翼飞机。

5 先进复合材料在航天领域的应用

5.1 卫星和宇航器结构材料

卫星结构的质量会影响对运载火箭的要求以及卫星功能,卫星结构的轻型化设计已经成为卫星结构发展的趋势之一。国际通讯卫星中心的推力桶采用先进复合材料,该种推力桶质量比传统铝结构的质量降低了30%左右,降低的重量可以增加460条电话线路,同时还能够有效地降低卫星的发射费用。欧美国家卫星结构的质量为总质量的1/10,其原因就是大量的应用了先进复合材料。现阶段,我国神州系列飞船、风云二号气象卫星等都采用碳纤维/环氧复合材料,有效地降低了总体重量,同时发射成本也显著降低。

5.2 导弹用结构材料

现阶段,美国已经将先进复合材料作为导弹弹头结构壳体、级间段、仪器舱等部件的主要材料,洛克希德导弹与宇航公司指出,采用碳纤维/环氧复合材料制造的导弹比传统铝结构导弹的重量减轻40%。现阶段,采用先进复合材料的导弹发射筒也被国外发达国家应用在战术、战略型号上,例如,俄罗斯的“白杨M”导弹、美国的“MX”导弹都采用复合材料发射筒。因为先进复合材料导弹发射筒和传统金属结构相比,其结构质量显著降低,能有效地提高战略、战术导弹的灵活性。在战术导弹领域,先进复合材料结构的导弹发射筒更加灵活、应用范围更加广泛。现阶段,我国也研发了先进复合材料结构的战略导弹和导弹发射筒,还研发了先进复合材料仪器舱,有效地提高了战略导弹的灵活性和机动性,应用效果良好。

- 41 -

5.3 运载火箭结构材料

国外发达国家于20世纪50年代开始应用纤维缠绕成型的玻璃钢壳体代替传统的钢壳,例如,美国的“北极星A-3”潜地导弹,采用纤维缠绕成型的玻璃钢壳体,其重量比采用传统钢壳的“A-1”轻了55%左右,随后研发的“MX”“三叉戟1”的三级发动机壳体,全部都采用芳纶/环氧复合材料,该种结构形式的壳体质量比纤维缠绕成型玻璃体壳体的重量减轻了50%左右。随着先进复合材料的发展,其在运载火箭发动机壳体中的应用优势越来越明显,并且先进复合材料被应用在三叉戟Ⅱ、德尔塔Ⅱ-7925运载火箭等型号中。现阶段,我国运载火箭发动机壳体制造业逐渐的开始应用先进复合材料,虽然起步较晚,但是经过40多年的发展获得了巨大的进步,经过多年的研发,已经成功地将芳纶/环氧复合材料、玻璃纤维/环氧复合材料应用在运载火箭发动机壳体中。先进复合材料在运载火箭结构设计中的应用,有效地降低了运载火箭发动机的重量,同时提高了运载火箭发动机的性能。

6 复合材料在航空航天领域的发展前景先进复合材料的应用已经成为评价航空航天器水平的重要标准,同时也是提高航空航天器结构先进性的重要物质基础和先导技术。由于我国先进复合材料的应用水平和国外发达国家还存在一定的差距,但是我国已经进行大量投入来强化先进复合材料方面的研究,其发展前景良好。未来先进复合材料的发展主要表现在以下四个方面:

6.1 智能化

智能型先进复合材料和结构的研究,能够创造巨大的经济效益和社会效益,智能型先进复合材料在航空航天器外表的应用:在未来航空器表面增加各种传感器,能够对周围环境进行实时、全面、智能的检测,同时为通讯系统、电子战以及雷达系统提供瞬时模态,以此保证航空器能够安全、稳定地飞行。

6.2 多功能化

在减小航空航天器体积的基础上,为了提高航空航天器的突防能力,许多结构部件需要具备多种功能,多功能先进复合材料的应用能够赋予航空航天器新的功能,现阶段,多功能先进复合材料的研究已经从双功能型向三功能型方向转变。

6.3 质量轻、性能高

目前,我国先进复合材料能够减轻航空航天器的质量占总重的20%左右,和国外25%以上的减重效率还存在一定的差距。导致该种现状的原因是我国先进复合材料的整体性能较低,并且结构的整体性相对较差。因此,在未来的发展过程中,应该加强对复合材料强度、韧性以及整体性等方面的研究,研发整体性好、强度高和韧性高的先进复合材料,同时使复合材料的减重率超过25%。

6.4 低成本

成本较高是限制先进复合材料在航空航天领域应用和发展的主要原因之一,为了解决该问题,应该对先进复合材料的制造工艺进行研究,采用科学的制造工艺进行先进复合材料结构、尺寸以及形状的加工和制造,同时采用先进的质量控制技术、自动化技术、机械化技术等,提高先进复合材料的生产效率,提高其成品率,以此降低先进复合材料的成本。

7 结语

综上所述,经过40多年的发展,我国先进复合材料工业逐渐形成了一个完整的体系,并且部分先进复合材料已经成功地应用在航空航天器生产实践中,获得了良好的效果。但是,从整体上来说我国先进复合材料技术水平和发达国家还存在一定的差距。因此,我国先进复合材料研究、研发人员和生产企业应该加快先进复合材料结构、制造技术、生产工艺等方面的研究,同时借鉴国外的先进技术和经验,解决我国先进复合材料在航空航天领域应用的各种难题,以此提高我国航空航天器的各种性能,进一步促进我国航空航天领域的全面、高速发展。

参考文献

[1] 王衡.先进复合材料在军用固定翼飞机上的发展历程

及前景展望[J].纤维复合材料,2014,(4).

[2] 朱晋生,王卓,欧峰.先进复合材料在航空航天领域

的应用[J].新技术新工艺,2012,(9).

[3] 吴良义.先进复合材料的应用扩展:航空、航天和民

用航空先进复合材料应用技术和市场预测[J].化工新型材料,2012,40(1).

[4] 何东晓.先进复合材料在航空航天的应用综述[J].高

科技纤维与应用,2006,31(2).

[5] 刘强.碳纤维复合材料在航空航天领域的应用[J].科

技与企业,2015,(22).

[6] 高琳.智能复合材料在航空、航天领域的研究应用

[J].纤维复合材料,2014,(1).

[7] 徐倩.航空碳纤维复合材料切削研究[D].北方工业大

学,2010.

[8] 施晶晶.航空复合材料可重入制造过程建模与调度方

法研究[D].南京航空航天大学,2014.

[9] 沈军,谢怀勤.先进复合材料在航空航天领域的研发

与应用[J].材料科学与工艺,2008,16(5).[10] 王春净,代云霏.碳纤维复合材料在航空领域的应

用[J].机电产品开发与创新,2010,23(2).[11] Y in-hsuan Lee,Chuei-Tin Chang,David Shan-

Hill Wong,Shi-Shang Jang.Petri-net based

scheduling strategy for semiconductor manufacturing

processes[J].Chemical Engineering Research and Design,2011,89(3).

[12] E l-Khouly I.A.,El-Kilany,K.S.El-Sayed,

A.E.Modeling and simulation of re-entrant flow

shop scheduling:an application in semiconductor

manufacturing[A].2009 International Conference on Computers&Industrial Engineering(CIE39)[C].2009.

(责任编辑:蒋建华)

- 42 -

新材料的产业链、分类及应用

新材料学习资料 一、新材料分类: 按材料的属性划分有金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。 1、金属材料:包括纯金属、合金、金属材料金属间化合物和特种金属材料等。 2、无机非金属材料:陶瓷、砷化镓半导体等 3、有机高分子材料:主要是碳、氢、氧、氮等 4、先进复合材料:指可用于加工主承力结构和次承力结构、其刚度和强度性能相当于或超过铝合金的复合材料。 按材料的使用性能分,有结构材料和功能材料。 1、结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求。 2、功能材料主要是利用材料具有的电、磁、声、光热等效应,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。 二、新材料类型: 1、复合新材料:由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。 复合材料的基体材料分为金属和非金属两大类: 金属基体常用的有铝、镁、铜、钛及其合金。 非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合新材料在新能源和交通市场上的应用: (1)清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器。 (2)汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等。 (3)民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。中国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套。 (4)船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于中国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。 2、超导材料:有些材料当温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。 超导材料主要分为合金材料(如铝合金、铜合金、铁合金、镁合金和高温合金等)和化合物材料(如超导陶瓷)两种。 超导材料最诱人的应用是:(1)发电、输电和储能。(2)超导磁悬浮列车。(3)超导计算机等

树脂基复合材料在各领域的应用

树脂基复合材料在建筑工业中的应用 建筑工业在国民经济中占有很重要的地位,不论是哪一个国家,建筑工业望远是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,这就是推动建筑工业改革发展的动力。 建筑工业现代化的发展方向是:改善施工条件,加快建设进度,降低成本,提高质量,节约能源,减少运输,保护耕地,保护环境和提高技术经济效益等。为了达到此目的,必须从改善现有的建筑材料和发展新型建筑材料方向着手。 在建筑工业中发展和使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能,改革建筑设计,加速施工进度,降低工程造价,提高经济效益等都十分有利,是实现建筑工业现代化的必要条件。 1、树脂基复合材料的建筑性能 (1)材料性能的可设计性树脂基复合材料的性能可根据使用要求进行设计,如要求耐水、防腐、高强,可选用树脂基复合材料。由于树脂基复合材料的重量轻,制造方便,对于大型结构和形状复杂的建筑制品,能够一次成型制造,提高建筑结构的整体性。 (2)力学性能好树脂基复合材料的力学性能可在很大范围内进行设计,由于选

用的材料不同,增强材料的铺设方向和方向差异,可以获得性能判别很大的复合材料,如单向玻纤增强环氧复合材料的拉伸强度可达1000MPa以上,比钢(建筑钢)的拉伸强度还高,选用碳纤维作增强材料,制得的树脂基复合材料弹性模量可以达到建筑钢材水平,而其密度却比钢材小4~5倍。更为突出的是树脂基复合材料在制造过程中,可以根据构件受力状况局部加强,这样既可提高结构的承载能力,又能节约材料的减轻自重。 (3)装饰性好树脂基复合材料的表面光洁,可以配制成各种鲜艳的色彩,也可以制造出不同的花纹和图案,适宜制造各种装饰板、大型浮雕及工艺美术雕塑等。 (4)透光性透明玻璃钢的透光率达85%以上(与玻璃相似),其最大特点是不易破碎,能承受荷载。用于建筑工程时可以将结构、围护及采光三者综合设计,能够达到简化采光设计,降低工程造价之目的。 (5)隔热性建筑物的作用是能够防止由热传导、热对流引起的温度变化,给人们以良好的工作和休息环境。一般建筑材料的隔热性能较差,例如普通混凝土的导热系数为1.5~2.1W(m?K),红砖的导热系数为0.81 W(m?K),树脂基复合材料的夹层结构的导热系数为0.05~0.08 W(m?K),比普通红砖小10倍,比混凝土小20多倍。 (6)隔音性隔音效果好坏是评价建筑物质量的标准之一。但传统材料中,隔音效果好的建筑材料往往密度较大,隔热性差,运输和安装困难。树脂基复合材料

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

航空复合材料项目立项申请报告 (1)

航空复合材料项目立项申请报告 规划设计/投资方案/产业运营

航空复合材料项目立项申请报告 碳纤复合材料最大的优点是轻质、高强,航空航天高端应用是其主要发展方向,用碳纤复合材料制造飞机的结构件,同铝合金相比,减重效果可达20-40%,体现出巨大的节能效益。 该航空复合材料项目计划总投资10580.16万元,其中:固定资产投资7957.92万元,占项目总投资的75.22%;流动资金2622.24万元,占项目总投资的24.78%。 达产年营业收入22100.00万元,总成本费用17586.14万元,税金及附加196.99万元,利润总额4513.86万元,利税总额5333.45万元,税后净利润3385.39万元,达产年纳税总额1948.05万元;达产年投资利润率42.66%,投资利税率50.41%,投资回报率32.00%,全部投资回收期4.63年,提供就业职位418个。 坚持“三同时”原则,项目承办单位承办的项目,认真贯彻执行国家建设项目有关消防、安全、卫生、劳动保护和环境保护管理规定、规范,积极做到:同时设计、同时施工、同时投入运行,确保各种有害物达标排放,尽量减少环境污染,提高综合利用水平。 ......

航空复合材料项目立项申请报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

玻璃纤维复合材料的应用领域综述

玻璃纤维复合材料的应用领域综述 摘要:随着玻璃纤维复合材料被的广泛研究,另外玻璃纤维价格便宜,其高性价比受到应用领域的青睐,我国的玻璃纤维复合材料行业得到了迅猛地发展。目前,我国玻璃纤维复合材料生产总量居世界前列,玻璃纤维复合材料已被广泛地应用于建筑工程、石油化工、交通运输、能源工业、机械制造、船艇、体育器械、航空航天等领域,为国民经济和国防建设做出了重要贡献。 关键词玻璃纤维复合材料应用领域 Reviewed the application areas of glass fiber composite materials Abstract: As the glass fiber composites was widely studied,cheap price and its cost-effective, the glass fiber get the favour of application field,in China, Glass fiber composites industry has been a rapid development.At present,Glass fiber composites ranked among the top of the world total production in China, glass fiber composite materials have been widely used in construction engineering, petrochemical industry, transportation, energy industry, machinery manufacturing, boat, sports equipment, aerospace and other fields, it make an important contribution to national economy and national defense construction. Keywords Glass fiber Composite materials Application field 1、引言 玻璃纤维是由玻璃熔化而得,玻璃纤维复合材料是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料的一种复合材料。通常玻璃纤维复合材料的片材制备和制品成型过程是分开的,但从经济角度出发,将两者结合起来,即可减少设备投人,又可节约能耗[1]。玻璃纤维能够在实现较高机械强度的同时保持成本优势,达到一个均衡,玻璃纤维复合材料具有良好的回收性能[2]。与传统材料相比,具有比强度高、比模量高及可设计性、易修补,耐疲劳、耐腐蚀等优点但玻璃纤维增强的树脂基复合材料对湿热的环境比较敏感[2],而且湿热环境会使它性能下降,采用合适的化学交联剂或偶联剂对聚合物进行改性,使其变为憎水性物

先进复合材料在航空航天领域的应用

龙源期刊网 https://www.docsj.com/doc/968310398.html, 先进复合材料在航空航天领域的应用 作者:周庆庆 来源:《科技风》2017年第17期 摘要:复合材料是在随着科技发展所衍生出的一种新型材料,尤其是先进复合材料目前 已经被广泛应用到了航空航天领域,并发挥着至关重要的作用价值。本文简要介绍了先进复合材料的特性,而后重点就先进复合材料在航空发动机、无人机等航空领域,以及导弹结构、运载火箭结构、卫星和宇航器结构等航天领域中的具体应用展开了深入的探究工作。 关键词:先进复合材料;航空航天;应用 伴随着当前科技水平的不断提高,尤其是航空航天领域的快速发展,材料的应用环境愈发恶劣,对于材料本身也提出了更为严苛的要求。新型材料的研发是为了更好的满足于高新技术发展的需求,其中复合材料是目前在材料科学领域中的一个主要发展方向,同时也是新材料发展最好的一个分支,随着复合材料的快速发展,其目前已经成为了与高分子材料金属材料、无机非金属材料所并列的四大材料体系之一。 一、复合材料的特性 先进复合材料有着十分明显的优势特性,具体可概括为结构整体化、经济效益最大化、可设计性以及功能多样性,现具体分析如下: (1)结构整体化。先进复合材料能够被加工为整体部件,也就是应用先进复合材料部件来取代金属部件。在一些较为特殊的轮廓及表层比较复杂的部件当中,利用金属制造往往可行性相对较差,而应用先进复合材料往往便可有效满足于实际的工作需求。 (2)经济效益最大化。将先进复合材料应用于航空航天领域内,可实现对产品数量的大幅度精减。因对复杂部件的连接往往无需采取焊接、铆接等方式,因而对于连接部件的需求量也便可以大大减少,进而使得材料的装配成本与时间也能够有效降低,从而实现经济效益的最大化。 (3)可设计性。应用纤维、树脂、复合结构等方式可得到多种性能、形状存在明显差异化的复合材料,选取出适当的材料及铺层次序便可加工出没有膨胀系数的复合材料,同时其尺寸稳定性也要明显优于一般的金属材料。 (4)功能多样性。随着先进复合材料材料的不断发展,其不断融合了许多优异的物理性能、化学性能、生物性能、力学性能等。如先进复合材料所具备的阻燃性能、吸波性能、防热性能、屏蔽性能、半导性能及超导性能,而且各类先进复合材料其本身的构成也不尽相同,在功能方面也会产生出一定的差异性,目前综合性及多功能性现已成为先进复合材料发展的一项主流趋势。

先进复合材料在航空航天的应用综述 (1)

第31卷第2 期高科技纤维与应用Vol.31 No.2 2006 年 4 月Hi-Tech Fiber & Application Apr. 2006 先进复合材料在航空航天的应用综述 何东晓 (哈尔滨玻璃钢研究院,哈尔滨150036) 摘要:讨论了先进复合材料在航天飞机、航空发动机、机用雷达天线罩、航天隔热材料、航天卫星和宇航器、固体火箭发动机壳体、战略导弹等方面的应用情况。结合航空航天应用阐明了先进复合材料未来的发展趋势,重点是提高耐热性,抗冲击韧性和发展低成本制造技术。 关键词:先进复合材料;航空;航天;应用;发展趋势 中图分类号:V258文献标识码:A文章编号:1007-9815(2006)02-0009-03 Review of the Application of Advanced Composite in Aviation and Aerospace HE Dong-xiao (Harbin FRP Institute,Harbin150036China) Abstract: In this paper, the application of advanced composite in space shuttle, aviation engine, radar antenna mask, aviation hot insulation material, space satellite solid rocket engine and strategic missile are discussed. The development trends of advanced composite in aviation and aerospace are introduced, the key point is improving the thermal stability, impact resistance and developing low-cost manufacturing technique. Key words: advanced composite;aviation;aerospace;application;development trends 前言到航空航天等军事领域中,是制造飞机、火箭、 航天飞行器等军事武器的理想材料。 近年来,随着科学技术的不断进步,材料技 术得到飞速发展,其中尤以先进复合材料的发展 1 国内外应用概况 最为突出。 先进复合材料(Advanced Composites ACM) 1.1 在航空飞机上的应用 专指可用于加工主承力结构和次承力结构、其刚飞机用ACM经过近40 a的发展,已经从最度和强度性能相当于或超过铝合金的复合材料。初的非承力构件发展到应用于次承力和主承力构目前主要指有较高强度和模量的硼纤维、碳纤件,可获得减轻质量20 %~30 %的显著效果。目 维、芳纶等增强的复合材料。ACM在航空航天前已进入成熟应用期,对提高飞机战术技术水平的 等军事上的应用价值特别大。比如,军用飞机和贡献、可靠性、耐久性和维护性已无可置疑,其设 卫星,要又轻又结实;军用舰船,要又耐高压又计、制造和使用经验已日趋丰富。 耐腐蚀。这些苛刻的要求,只有借助新材料技术迄今为止,战斗机使用的ACM占所用材料 才能解决。ACM具有质量轻,较高的比强度、总量的30 %左右,新一代战斗机将达到40 %; 比模量、较好的延展性、抗腐蚀、导热、隔热、直升机和小型飞机ACM用量将达到70 %~隔音、减振、耐高(低)温,独特的耐烧蚀性、80 % 左右,甚至出现全 ACM 飞机。“科曼奇”透电磁波,吸波隐蔽性、材料性能的可设计性、直升机的机身有70 %是由ACM制成的,但仍计制备的灵活性和易加工性等特点,被大量地应用划通过减轻机身前下部质量,以及将ACM扩大

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

航空航天复合材料设计要求比较

航空航天复合材料结构设计要求的比较 复合材料是指由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料,它既能保留原有组分材料的主要特色,又通过材料设计使各组分的性能互相补充并彼此关联与协同,从而获得原组分材料无法比拟的优越性能, 复合化是当代材料技术发展的重要趋势之一,而大量采用高性能复合材料是航空航天飞行器发展的重要方向。航空航天追求性能第一的特点,使其成为先进复合材料技术的率先实验和转化的战场,航空航天工业的发展和需求推动了先进复合材料的发展,而先进复合材料的发展和应用又促进了航空航天的进步。先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。将先进复合材料用于航空航天结构上可相应减重20%~30%,这是其他先进技术很难达到的效果。美国NASA的Langley 研究中心在航空航天用先进复合材料发展报告中指出,各种先进技术的应用可以使亚音速运输机获得51%的减重(相对于起飞重量)效益,其中,气动设计与优化技术减重4·6%,复合材料机翼机身和气动剪裁技术减重24·3%,发动机系统和热结构设计减重13.1%,先进导航与飞行控制系统减重9%,说明了先进复合材料的应用减重最明显。这不仅带来相当大的经济效益,而且可以增加装备的机动性,还可以提高其抗疲劳、耐腐蚀性能。 由于航天与航空的使用环境和应用范围存在区别,因而造成复合

材料在航空飞行器与航天飞行器上使用的设计要求也有很多不同之处。而且由于任务目标和使用环境差异,飞机结构的要求不能直接作为空间飞行器的结构设计要求。空间飞行器的飞行环境和承受的载荷很特殊,并且几乎没有可能再去检查和维修航天器的结构或在其任务条件下验证其结构的性能。因此,空间飞行器复合结构设计必须比飞机复合材料结构设计更加稳定可靠。虽然如此,飞机行业的复合材料结构设计方面的经验仍然可以为航天器的复合材料结构设计提供一定的参考和借鉴。 航空和航天复合材料结构设计要求具体在哪些方面存在差异呢? 第一点是两者的生成规模差别很大。航空产品通常进行大规模生产,不仅整机生产数量多,而且因为需要维修等等,这样更换损坏的零件同样数量巨大;而航天产品则大多生产较少。因此在结构设计时,航空产品对结构设计时需要对加工工艺等配套设施进行细致的考虑,以达到成本、周期。效益的均衡,而航天结构设计则大多不需要考虑。同时生产数量的差异也使后续的设计工作产生了很大不同。 第二点是初始设计要求。飞机工业需要通过测试数量庞大的样本总结设计出一套模块建立的方法。但航天器的生产数量很有限,因此用于航空专业的样本采集到模块建立的方法,要想应用于航天器,从成本和进度的角度来看,是不切实际的。 第三点是强度要求。在航空和航天器中,对于强度的要求二者是一致的,但因工作环境不同存在一定的区别。航空和航天器复合材料

先进的复合材料

先进的复合预浸纱 (5码起订) 薄膜粘合材料:BMS5-101(AF163-2K),BMS5-129等。 核心接合剂/泡沫粘合剂:BMS5-90,BMS5-139,环氧树脂和聚脂石墨:BMS8-168,BMS8-212,纤维和单向带。 纤维B:BMS8-219,BMS8-129,纤维 管/密封复合材料 粘合管:BMS5-89(EC3960,BR127) 燃料电池密封剂:PR1422B2 或PR1422B1/2(MIL-S-8802) 抗腐蚀密封剂:PS870B2 或PSB870B1/2 防腐复合材料:BMS3-27(Mastionx6856K) 真空包装/加工材料 送气/抽吸帆布:4盎司和10盎司 闪光带:硅制和非硅制 特氟纶带:压力敏感型 玻璃纤维带:宽度范围50英寸至60英寸 密封带/包装带:“胶带” 松解薄膜:FEP(打孔型和非打孔型) 松解纤维:特氟纶外包裹玻璃纤维(多孔渗水型和非多孔渗水型)真空包装带:尼龙(V字折叠型,管型,平板型) 干性材料(纤维) 石墨:BMS9-8,AH370-5H 玻璃纤维:BMS9-3 纤维B:纤维B49 复合修复设备: 热补仪:威奇技术HB1单层环带,HB2双层环带,危险环境。 电热毯:电压标准110—220伏,现货,接受订货 热(电)偶适应器:BAC5621,带测试报告证明 真空附件:泵,量规,管线,软管接头,吸气探针 预填装铝: (填充物为BAC5555和BAC5514-589) 尺寸为:48英寸*48英寸 按平方尺出售 起订量为3平方尺 可以以绝缘材料包装,也可以不以绝缘材料包装 标准厚度:0.012英寸—0.032英寸 保存期限:按保存说明可保存60个月 所有材料的运输都严格按照美国军方的加工标准 可接受定货 人造树脂补充剂/粉末 微型气球:玻璃和酚醛塑料 CAB-O-SIL:熏制硅土 磨细的玻璃纤维 蜂窝状中心[芯轴]

复合材料研究及其应用

郑州华信学院毕业论文 课题名称:复合材料研究及其应用 系部:机电工程学院 班级:09机电班 姓名: 指导老师: 时间:2012年3月28日

复合材料研究及其应用 摘要 复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料、可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。 一、全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继

问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

先进复合材料论文

摘要:纤维增强复合材料具有较强的结构特性,是一种多相体材料。其力学性能及损伤破坏规律不仅取决于各组分材料性能,同时也取决于细观结构特征。采用细观力学分析研究复合材料宏现力学性能与细观结构参数之间的内在联系具有重要的科学意义和工程价值。论述了细观力学实验技术的理论基础和常用实验技术及进展,介绍了复合材料的细观力学模型的发展,综述了复合材料力学行为有限元分析的研究现状,并对这一学科的研究发展进行了简要评述与展望。 1 前言 纤维增强复合材料是目前最先进的复合材料之一。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料,是其它复合材料所无法比拟的。纤维复合材料因其较高的比强度、比模量在国外先进战略、战术固体火箭发动机方面应用较多,如美国的战略导弹“侏儒”三级发动机壳体,“三叉戟”一、二、三级发动机壳体的复合材料裙,民兵系列发动机的喷管扩张段,部分固体发动机及高速战术导弹美国的11IAAD、ERINT等。除军用外,开发纤维复合材料的其它应用也大有作为,如飞机及高速列车刹车系统、民用飞机及汽车复合材料结构件、高性能碳纤维轴承、风力发电机大型叶片、体育运动器材(如滑雪板、球拍、渔杆)等。随着碳纤维生产规模的扩大和生产成本的逐步下降,在增强混凝土、新型取暖装置、新型电极材料乃至日常生活用品中的应用也必将迅速扩大。我国拟大力开发新型纤维增强复合材料建材及与环保、日用消费品档关的高科技纤维增强复合材料的新市场,因此,对于纤维增强复合材料的力学性能研究是十分必要的。 复合材料既表现出宏观特征,又具有明显的细观结构特征。复合材料力学是一种两层次的力学理论。在宏观尺度上,可以将复合材料当作各向异性的宏观均匀连续体,用连续介质力学理论研究复合材料的力学行为旧,但是无法研究对宏观行为有重要影响的细观尺度上各组份相的变形及损伤失效行为。在细观尺度上,复合材料具有包含多种组份相的非均质结构,复合材料细观力学在宏观有效性能预测以及细观应力、应变场分析方面取得了一定进展。如果将复合材料宏观结构分析与细观结构分析结合起来,在进行宏观结构分析时就能够获得细观尺度上的力学参量值,将是一种更好的分析方法。本文在分析复合材料宏观、细观特

玻璃纤维复合材料的十大应用领域

玻璃纤维复合材料的十大应用领域 玻璃纤维(英文原名为:glassfiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 一、船艇 玻璃纤维复合材料具有耐腐蚀性、重量轻、增强效果优越等特点,被广泛用于制造游艇船体、甲板等。 二、电子电气

玻璃纤维增强复合材料在电子电气方面的运用主要是利用了它的电绝缘性、防腐蚀性等特点。复合材料在电子电气领域的应用主要有以下几个部分: 1、电器罩壳:包括电器开关盒、电器配线盒、仪表盘罩等。 2、电器原件与电部件:如绝缘子、绝缘工具、电机端盖等。 3、输线电包括复合电缆支架、电缆沟支架等。 三、风能

风能是无污染、可持续的能源之一,采用风能发电是开发新能源的一种途径。玻璃纤维具有优越的增强效果、重量轻等特点,是用于制造玻璃钢叶片和机组罩的一种良好材料。 四、航空航天、军事国防 由于航空航天、军事等领域对材料的特殊要求,玻纤复合材料所具有的重量轻,强度高,耐冲击及阻燃性好等特色能为这些领域提供了广泛的解决方案。 复合材料在这些领域的应用如下: --小飞机机身 --直升机外壳和旋翼桨叶 --飞机次要结构部件(地板、门、座椅、辅助油箱) --飞机发动机零件

复合材料在航天航空领域的应用现状与展望

复合材料在航天航空领域的应用现状与展望 摘要现代飞机和卫星的制造材料应具有质量轻、强度高、耐高温、耐腐蚀等特性,先进复合材料的独有性能使它成为制造卫星和飞机的理想材料。本文重点介绍了我国航天用符合材料的研究情况,并展望了今后的发展趋势。 关键词复合材料;航空航天;应用现状;发展趋势 Prospect and Application of Composites in Aviation and Aerospace Abstract Nowadays, the material of producing planes and satellites should be light, strong and should resist high temperature, corrosion and so on. Because of the unique peculiarities, advanced composites become the ideal material of producing planes and satellites. In this paper, the present status and prospect of applied research on composite materials for aero-space application in China are given. Key words composites; aviation and aerospace ; application and development; development trends

相关文档
相关文档 最新文档