文档视界 最新最全的文档下载
当前位置:文档视界 › 生物医学工程新进展

生物医学工程新进展

生物医学工程新进展
生物医学工程新进展

生物医学工程新进展

张禄鹏梁志远

(首都医科大学生物医学工程学院,北京,100069)

摘要:综述了生物医学工程的当前主要进展,包括康复工程、生物信息学、生物电子学和医学影像分析等传统研究。根据各领域的新进展,简述了生物机械、脑电、医疗信息系统和计算机辅助诊断等热点。最后总结了生物医学工程领域面临的主要挑战和未来发展方向。

关键词:生物医学工程;康复工程;生物信息学;生物电子学;医学影像分析

Abstract : The research fields and advances of biomedical engineering have been reviewed in aspects including rehabilitation engineering, bioinformatics, bioelectronics, medical image. Topics of biomechanics, EEG, medical information system and computer aided diagnosis are briefly introduced. In the end, some challenges faced by biomedical engineering some directions for future research are summarized.

Keyword: biomedical engineering; rehabilitation engineering; bioinformatics; bioelectronics; medical image

1.引言

生物医学工程学是现代生命科学和医学、工程学相结合而发展起来的边缘学科。由于生物医学工程学是新兴的交叉学科,与其他学科,如材料、信息、电子技术、计算机科学关系密切,因而涉及的领域十分广泛,并在不断发展之中。目前,生物医学工程学的主要分支领域有:生物力学和生物流变学,生物材料和人工器官,生物系统的建模和控制,生物医学信息的检测和处理,医学成像及图像处理等[1]。

生物医学工程学涉及面广,结构复杂,需多学科交叉与相互支持,发展相当迅速。生物医学工程学的发展对促进医疗水平的提高,加快医学现代化的步伐有重大作用。其研究成果一般具有较大的社会效益和经济效益。虽然生物医学工程学涉及面广,信息量大,发展迅速,但是,按其最终研究目标,可将其分为生物医学康复工程等几个方面。

2.生物机械学在康复工程中的应用

生物机械学是机械学发展的一个新领域,它综合应用现代机械学和生物力学、生理学的基础理论和方法,研究生物功能的原理、功能的工程再现,以及生物体与机械环境的相互影响。在生物机械学中。对人—机一体化系统的研究有两个方面的意义[2-4]:首先是在所研究的系统中,人是系统的主体,机械不仅代替了人的体力或者脑力劳动,而且密切为人服务。研究目标是致力于保护人体健康、充分发挥人的潜能、辅助和增强人体功能。其次,对人体功能的研究和理解,也会对机械科学与技术等的研究与发展提供有益的启示。

康复工程是一个正在发展的、与许多学科有关的领域。生物机械学的研究与康复工程的关系可以归结为:一方面康复工程的需求和发展促进了生物机械学的发展;另一方面生物机械学的研究又为康复工程的发展提供了支撑。康复工程中的生物机械学研究,特别是运动功能康复装置的核心问题是对人机一体化系统的研究[6]。人与机械装置的完美结合甚至可取得预想不到的效果。2008年北京残疾人奥运会期间,令人瞩目的南非运动员“无腿飞人”奥斯卡·皮斯托留斯跑出了正常人都难以达到的成绩,其原因除了个人意志和能力以外,他所使用的用碳素纤维制成储能式运动假肢起到了很关键的作用。在假肢与人体构成一个人机一体化系统,假肢的形状和参数设计,以及与人体的适配,使个人体能和假肢的性能都得到了

充分发挥[5]。在进行康复训练的人—机系统中,可以通过人机之间的相互作用恢复和提高人体的功能。

近些年来,国外的一些偏瘫康复研究机构另辟蹊径,尝试将机电设备引入偏瘫康复训练中,相继研制出一些偏瘫康复训练设备——治疗机器人(therapy robot),也称脑神经康复机器人(neuro-rehabitlitation robot),辅助患者进行肢体康复训练[7]。

尽管目前的脑神经康复机器人都能够在定程度上向患者提供简单的训练方案,但是迄今为止,所有研究结果除了能够证实机器人辅助治疗确有一定疗效外,并不能提供更多的有价值的结沈。其根源在于,现有机器人所能提供的训练动作只是简单的曲线或者直线轨迹,首先它与临床训练的要求不符,不能在康复早期给患者以更多的正确运动感觉的刺激;其次遗此动作与日常功能性动作相差甚远.对于患者恢复日常生活能力帮助不大。不仅如此,由于机器人不能根据患者的康复情况做出实时的婀整(辅助或阻尼、支撑或小支撑),容易让患者完全依赖于机器人完成动作,从而响可能导致瘫肢产生异常运动模式。此外,相同的训练内容用于所有患者,缺乏针对件的话疗方案,因而秘难获得不同于治疗师辅助治疗的康复效果[7]。

机器人辅助偏瘫治疗的研究仍然处于起步阶段,临床应用任重而道远。但是机器人具备许多人所无法比拟的优点,例如:长期、稳定地重复训练,精确、客观地测定圳练与匡动参数,提供寅时反馈,远程训练[9]等。随着社会老龄化加剧,中风偏摊患者逐渐增多,机器人所具有的这些优点具有越来越大的使用价值。同时,通过临床上使用积累的大量数据,将有助于认识训练参数与康复效果之间的关系,从而能够在机器人辅助脑神经康复治疗上取得更大的突破。

脑神经康复机器人给临床康复医学带来了一条新的思路。随着科技的快速发展,机器人在控制、检测、分析和反馈等方面会有更大的提高,其“智能”将与人类接近,而精确性则远远超过人类。临床研究表明,多种刺激可以获得更好的康复效果[10]。因此,通过虚拟现实、脑电、肌电技术与机器人技术的集成,有望向患者提供全力值的刺激,全面促进中枢神经的重组和代偿。这些结果将不仅对临床研究神经康复自巨大的指导意义,而月为研究正常人的神经控制与运动机理提供了一个契机。

3.生物信息学和医疗信息系统

随着医院数字化建设的蓬勃发展,“数字化医院”的理念已经被广大医院所接受,目前面临的主要问题是如何去建设“数字化医院”。数字化医院在不同历史时期下有着不同的含义,按照国内外的医院数字化发展经历,可以把数字化医院的发展划分为3个阶段[11]。

第1阶段为管理数字化阶段。我国自20世纪70年代计算机在医疗行业中开始应用以来,医院的数字化建设一直是以提高管理工作效率、辅助财务核算为主要目的,“管理数字化”是这个阶段数字化医院建设的主要特色。到目前为止,我国90%以上的大型医院已经实现了科室的数字化管理,近40%的大中型医院正在建设全院的数字化管理信息系统[12]。

第2阶段为医疗数字化阶段。随着近几年影像归档和通讯系统PACS(Picture Archiving and Communication System)的发展,以及麻醉监护系统、检验信息系统、电子病历系统等的兴起,“医疗数字化”逐渐成为数字化医院的发展重心。数字化医院建设不仅仅局限于对管理工作的数字化,还包括对医院所有医疗活动中所涉及的垒部信息进行“以病人为中心”的数字化管理并综合利用[13]。在目前已经应用信息系统的医院中,约有10%的医院正在尝试各类医疗数字化的信息系统构建。

第3阶段将是以“区域医疗”为特色的数字化医院。随着各类区域性医疗网络、远程医疗以及社区医疗的发展,数字化医院将超越实际的地域限制,通过各种医疗机构的网络互连以及信息交换,实现垒社会范围的医疗数字化[14]。这是数字化医院发展的中长期目标。

医疗信息系统有两种含义。从广义上来说,它是指所有与医学有关联的信息系统的统称,各类面向医院管理的信息系统都属于医疗信息系统的范晦从狭义上来说,它仅涉及纯粹的医疗活动,是对相关的临床数据和知识进行综合管理和应用的信息系统。

各类医疗信息系统中,有的已经在国内发展多年,如影像信息系统;有的才刚刚起步,如麻醉监护信息系统[15]和重症监护信息系统等。随着国家和国内各医疗机构对数字化医院建设的重视,医疗信息系统在今后一段时间内将会出现一个飞速发展的时期。

整个数字医疗神经网络的核心是称之为“可视化医疗(Visualized healthcare)”的医疗信息系统,它是电子病历系统的终极形态。可视化医疗描画出了数字化医院的发展蓝图,同时也为医疗信息系统的研究指明了方向。以此为目标,在现有医疗信息系统的基础上,进行数字医疗神经网络结构的建设,以及开展虚拟医院场景、多源数据接入、医疗对象管理、虚拟环境融入等方面的研究,将是夸后医疗信息系统研究的主要任务。

4.生物电子学和脑电

电子学自问世以来就逐步渗透、深入到各个学科,成为学科发展的主要支柱。50 年代起,电子学广泛应用于医学和生物学领域,使生物医学电子学这样一个交叉学科应运而生。它使医学、生物学获得了定量研究的手段产生了深远的影响。在生物医学电子学发展的早期阶段主要是利用电子学理论和技术研制适合生物学和医学应用的电子仪器、仪表。随着信息科学和电子技术的迅速发展,随着人们对生物学研究的不断深入,电子学和生物学、医学之间的交叉和渗透不断向更高的层次发展,展开了对生物体本身信息系统和电磁现象的研究,开拓了崭新的领域[16]。

神经生理学和信息科学的交叉产生了智能科学,人机功能学、信息仿生学等。人工智能就是研究特定的生物系统的信息处理过程,进而人为地实现这一过程的科学。通过对机器人视觉的研究得出结论,离开对脑组织的研究就不可能根本解决人工视觉的自动辩识问题。脑电(EEG)反映了脑神经系统的电生理活动,EEG测试的安全无创已使其成为脑功能检测的一种重要辅助手段,广泛应用于神经内外科领域[17]。

用LabVIEW设计的虚拟仪器弥补了传统的生物医学仪器在功能扩展、价格、升级换代及通用性等方面的不足,所以它具有强大的生命力,在生物医学中具有极其广泛的应用前景[18]。LabVIEW系统可用于测试、过程处理和控制,应用的范围极其广泛。由LabVIEW开发的虚拟仪器系统在生物医学工程中主要的用途有数据的采集和分析,以及系统控制。用LabVIEW开发的数据采集系统可采集多种生理信号。可应用于临床听力学、心血管病学、神经生理学和神经外科、手术监护中的研究和临床应用中;LabVIEW的控制系统则可应用于细胞培养、仪器控制和生物过程控制中。

5.医学影像和计算机辅助诊断技术

医学图像分析是综合医学影像、数学建模、数字图像处理与分析、人工智能和数值算法等学科的交叉领域。20世纪70年代,X线图像在临床广泛应用,医生借助学习得到的知识和实践积累的经验,解读病人的X线照片所反映的解剖结构和病生理信息。但是,这种人工解读方式,往往依赖于医生个人的经验、知识和情绪,且效率较低,在大规模筛查和某些特定病种(如乳腺癌)诊断时,尤其显得力不从心。随着计算机的发展和数字化仪器的出现,人们开始把X线胶片的模拟图像转变为数字图像存储和传输;另外,人们从当时太空计划和遥感图像的数字化处理中积累了一定的数字图像处理和分析的知识,计算机技术的初步成熟也提供了相当的计算能力。研究者开始尝试把医学模拟图像转化为数字图像,开展了计算机辅助诊断(computer aided diagnosis,CAD)的初步研究,试图在一定程度上辅助医生判读医学图像,排除人为主观因素,提高诊断准确性和效率[18]。研究的图像主要是X线图像,局限

于一些具有特殊诊断特征的病种如乳腺癌、肺部结节病灶等。医学临床需求也推动着医学图像分析的发展,如20世纪70年代核医学心脏成像使人类第一次观察到左心室收缩末期和舒张末期的血容量的变化,得到的图像是以数字图像方式存储的序列图像;采用计算机辅助人机交互式分割算法帮助医生勾画左心室的内壁,提高医生的工作效率,并自动计算出射血分数等重要的临床参数[19]。医学图像分析在计算机引导介入手术、放疗手术计划以及计算杌辅助诊断等重大临床需求的推动下,不断发展完善。

磁共振成像具有较高的软组织对比度与空间分辨率,并能根据需要灵活选择成像参数与成像层面,已经广泛应用于临床。然而,由于数据采集时间较长而导致成像速度较慢,是磁共振成像的主要不足。多通道采集技术与并行成像算法的出现,使得可以不再依赖梯度性能的提高就可以大大加快数据的采集。多线圈并行成像技术主要是利用相控阵线圈中单个接收线圈的空间敏感度(Spatial sensitivity)差异来编码空间信息,降低成像所必需的梯度编码步数(主要为相位编码步数),获得更快的扫描速度[20]。

关于多线圈并行成像的研究开始于1987年。起初,敏感度编码被提出来替代所有的梯度相位编码[21],由于可以获得的有效的敏感度编码数是有限的,这个方法的应用受到一定限制;于是后来有人提出更加实际有效的混合编码方案,即同时利用敏感度编码与梯度相位编码[22]。在经历了初始的基本理论研究阶段后,研究者提出了并行成像的实际应用方案,主要为Sodickson在1997年提出的SMASH[23]和Pmessmann在1999年提出的SENSE[24]两种方法。

计算机辅助诊断技术是指通过影像学、医学图像处理技术以及其它可能的生理、生化手段,结合计算机的分析计算,辅助放射科医师发现病灶,提高诊断的准确率。现在常说的CAD技术主要是指基于医学影像学的计算机辅助技术。CAD系统应当始终定位在“第二阅片人(secondreader)”,而由医生做出最终的诊断结果心[25]。总的说来,采用CAD系统有助于提高医生诊断的敏感性和特异性。CAD技术发展至今已接近40年,随着数字化影像设备市场比例增高,CAD系统越来越多地与设备配套设计出售。

乳腺癌作为一种恶性肿瘤,是现代妇女的主要死亡原因之一。美国癌症学会(American cancer society)的报告以及大量的实验数据都证实早期诊断乳腺癌能挽救生命和增加治疗方案选择。钼靶软X线乳腺摄影术(mammography)在早期诊断方面尤其具有价值,这是因为乳腺癌病变在发生浸润之前,就已经在X线图像上有比较明显的特征[26。据估计,钼靶软X线乳腺摄影术的应用,使得乳腺癌病人的死亡率下降18%~40%[27]。

隐匿性冠心病(SMI)又称无症状性心肌缺血或无痛性心肌缺血,以往对SMI主要结合高危因及发作时的心电图(ECG)改变并且经放射性核素心肌显像进一步证实[28]。常规ECG 对SMI的诊断价值有限,影像学技术对SMI的诊断能够做到相对无创、简单易行、费用低,在SMI筛查中具有巨大的应用价值。

超声成像以其安全、实时、低价等优势,在临床诊断中被广泛使用。由于超声波在人体组织中的反射、散射、衰减等作用,以及仪器本身分辨率限制和环境噪声的叠加,使回波信号受到很大的影响,导致最终得到的组织图像产生较多的噪声、伪影。与CT、MRI等大型医疗仪器相比较,其分辨率低,特别是在组织纹理和边缘等细节方面有着明显的不足。针对医用低频B超信号(<10MHz),先使用双频倒谱方法估计出超声系统函数,然后再用傅里叶小波正则反卷积(Fourier-Wavelet Regularized Deconvolution)算法对射频超声信号进行反卷积,求得最终的组织图像信号。该算法可处理病态反卷积问题,同时具有高抗噪性能,可显著提高超声图像的分辨率和信噪比[30]。

6.结论与展望

生物医学工程学科必须和临床科研和实践紧密结合,和临床病理过程相结合。目前,生

物医学工程专业发展迅速,新的研究方法层出不穷,基于生物医学工程开展的研究和临床实践也不断增多。许多研究者在进行生物医学工程研究时时对应用不关注,导致研究成果得不到临床医生的认可,不能帮助改善医生的诊断和治疗效率。

生物医学工程学科的建立,对医学分析研究的推动具有重要的意义,目前虽然已经取得一定成果,但只是在特定的领域和范围上,需要进一步发展。另外,生物医学工程是为临床诊疗和医学科研服务的交叉学科,研究者需要密切关注其他研究领域的进展,从中寻找新的研究思路和领域。虽然生物医学工程学涉及面广,信息量大,发展迅速,但是,按其最终研究目标,生物医学材料、生物医学工程器械和远程诊疗系统等几个方面在未来仍将有重要发展。

参考文献:

[1] 姚军,樊春海,李根喜.生物医学工程学的重要领域及研究进展[J].生物医学工程学杂志,1998,15(4):433~436.

[2] 路甬祥,陈鹰.人机一体化系统与技术——21世纪机械科学的重要发展方向[J].机械工程学报,1994,30(5):1-8.

[3] 金德闻,张济)ll,郝智秀.康复工程中的生物机械学研究[J]中国康复医学杂志,2010,25(1):61-64.

[4] 姜召友,石力君.生物电技术在人机一体化系统中的应用[J].磨床与磨削,2000,(4):22—23.

[5] 杨建坤,金德闻,季林红,等.膝上截肢患者行走过程中的滑倒危险性分析[J].清华大学学报(自然科学版),2006,46(11):1854-1856.

[6] 金德闻,季林红,杨建坤,张济川. 生物机械学研究在康复工程中的应用[J]. 中国医疗设,2011,26(4):1-4.

[7] 王广志,任宇鹏,季林红,高小榕. 机器人辅助运动神经康复的研究现状[J]. 机器人技术与应用,2004(4):9-14

[8] 王耀兵,季林红,王广志,黄靖远. 脑神经康复机器人研究的进展与前景[J]. 中国医学康复杂志,2003,18(4):230-231.

[9] Burgar CG,Lum PS,Shor PC,et al. Development of robot for rehabilitation therapy:The PAL0 Alto VA/Stanford experience[J]. Journal of Rehabilitation Research and development,2000,37(6):663-673.

[10] 王茂斌. 脑率中康复研究的进展[J]中国康复医学杂志,2001,16(5):264—265.

[11] 段会龙,吕旭东. 医疗信息系统发展现状及趋势[J],中国医疗器械信,2004,10(2):1-41.

[12] 黄晓东,建设有自己特色的数字化医院之路[J],医学信息,2011(2):566-567.

[13] 汪涛,医院数据仓库数据模型设计[J],计算机技术与发展,2010(5):191-194.

[14] 赵宁,金新政.区域卫生信息系统集成化探讨[J],中国卫生质量管理,2009(4):53-55.

[15] 张丹,沈小平.基于医疗卫生信息技术的模拟数字化医院的研究与实现[J],微型电脑应用2010(6):14-16.

[16] 韦枉,万遂人,汪宏. 生物电子学进展[J],大自然探索.1987,(1):103-111.

[17] 宋莹,田心. 脑电的非线性动力学高维特性及研究现状与展望[J],国外医学生物医学工程分册.2000(4):198-202.

[18] 朱志强,田心. LabVIEW及其在生物医学工程中的应用[J],国外生物医学工程分册。2001,24(2):59-64.

[19] 李兵,徐有福,乐昵. 计算机图像处理技术在医学影像中的进展与应用[J],生物医学工程学杂志.1993,10(3):360-363.

[20] 陈武凡,秦安,江少峰,等. 医学图像分析的现状与展望[J],中国生物医学工程学报.2008,27(2):175-181.

[21] 陈武凡. 并行磁共振成像的回顾、现状与发展前景[J],中国生物医学工程学报.2005,24(6):649-654.

[22] Carlson JW. An algorithm for NMR imaging reconstruction based on multiple RF receiver coils[J].J Mag Reson,1987,74:376-380.

[23] Ra JB,Rim CY. Fast imaging using subencoding data sets from multiple detector[J].Magn Reson Med,1993,30(1):142-145.

[24] Sodickson DK,Manning WJ.Simultaneous acquisition of spatial harmonics(SMASH):fast imaging with radiofrequency coil arrays[J].Magn Reson Med,1997,38(4):591-603.

[25] Pruessmann KP,Wei M,Scheidegger MB,et al,Sensitivity encoding for fast MRI[J].Magn Recon Med,1999,42(5):952-962.

[26] 康维,王广志,丁辉. 乳腺X线成像的计算机辅助诊断技术研究进展[J].北京生物医学工程,2006,25(2):213-221.

[27] American Cancer Society:Cancer Facts and Figures - 2004.New York,NY:American Cancer Society,2004.

[28] Giger M.Overview of Computer-Aided Diagnosis in Breast Imaging.Proceedings of the First International Workshop on Computer-Aided Diagnosis,Chicago USA:1998.167—176. [29] 王广志,崔艳玲,周茂义. 隐匿性冠心病的影像诊断现状及进展[J].国际医学放射学杂志,2009,32(6):542-545.

[30] 王婷,陈功,万遂人. 傅里叶-小波正则反卷积医学超声成像方法[J],2011,30(6):501-504.

生物医学工程专业培养计划

生物医学工程专业培养计划 2009版 一、培养目标 本专业旨在培养具备坚实的材料科学与工程、医学与生命科学、计算机与信息科学等基础理论知识,具有工程技术与医学相结合的科学研究能力,能在医疗器械与生物材料等生物医学工程领域从事相关科学研究、产品开发、专业教学、质量控制与生产管理等方面工作的高级人才。 二、基本要求 本专业学生主要通过对数、理、化、力学、计算机和外语等公共基础、以及医学、生物学、材料学、电子信息学与机械制造等学科的基本理论和基础知识的学习,接受科学实验研究能力、工程设计能力、新产品开发能力和生产过程组织管理能力的基本训练,了解生物医学工程及相关学科的最新发展动态,熟悉生物医学工程中各方向的科学研究、技术开发、过程设计及生产管理的基本内容,在毕业时应获得以下几个方面的知识和能力: 1、具备良好的道德素养和身心素质 2、具有扎实的数、理、化、生物、力学基础知识以及较强的外语运用能力。 3、具有本专业必需的医学、材料学、电子信息技术、机械和计算机应用的基础知 识和实践技能。 4、掌握生物医学工程的基础理论和基本知识,了解生物医学工程的新技术、新工 艺、新产品和新方法的发展动态。 5、掌握生物材料、医疗器械的设计基础,具有计算机辅助设计、辅助绘图及辅助 制造的能力,了解生物材料与医疗器械产品开发、生产管理的相关政策法规。 在生物材料、医疗器械等领域具备较高的工程实践技能和初步的科学研究素质。 6、掌握技术经济管理基础知识,具有获取生物医学工程领域最新信息的基本技能。 三、学制与学位 学制:四年 学位:工学学士 四、专业特色 本专业以医疗器械(侧重人工器官)及生物材料为主要专业方向,与国内同专业相比,具有如下特点: 1、注重生物材料及人工器官等医疗器械的设计、制造、质量控制以及应用方面的 专业知识与技能的培养。 2、通过多层次实践教学、工程实践及科研实训等培养环节,提高学生的工程实践 技能和科学研究素质。

【生物医学论文】生物医学工程学科发展思路

生物医学工程学科发展思路 摘要:生物医学工程,是综合了工程学、物理学、生物学、医学等学科,以预防和治疗疾病、保障人体健康为主要目的的新兴学科。生物医学工程致力于研发新的生物学制品和生物学材料,改进医疗技术,在现代医学领域中占有重要的地位。本文将追溯我国生物医学工程学科的发展历程,提出发展过程中存在的一些问题,为解决这些问题提供一些可行的策略。 关键词:生物医学工程;学科发展;学科建设 电子学、光电子学、计算机技术、物理学、化学、精密仪器制造等科学技术的高速发展,对现代医学产生了极大的促进作用,生物医学工程就是在这些技术背景下产生的新型医学分支学科。生物医学工程利用现代工程技术来对人体进行研究,分析疾病的机理,从而制定有效的治疗措施,极大提高了现代医学的治疗水平。但是,我国在建设和发展生物医学工程学科的过程中,也遇到了一些问题,必须对这些问题加以解决,才能够促进生物医学工程学科的发展。 1生物医学工程的发展历程

生物医学工程的历史可以追溯到20世纪50年代,起源于美国。这一学科一经产生,就迅速受到世界各国的重视。1965年,国际医学和生物工程联合会建立,后来改名为国际生物医学工程协会[1]。生物医学工程之所以受到世界各国的重视,是因为具有广阔的应用前景,能够产生极大的经济效益与社会效益。生物医学工程将现代科学的技术成果与医学联系起来,极大地提高了人体对疾病的预防水平和治疗水平。欧美等地区的先进国家,在20世纪70年代初就已经成立了针对这一学科的研究部门,负责生物医学工程学科的发展与建设。而我国的生物医学工程起步相对较晚,而且应用范围比较窄,仅限于医院设备保管和维修、医疗物资采购等方面,生物医学工程学科的建设还有很大的提升空间。 2我国生物医学工程存在的问题 我国在生物医学工程的学科建设方面起步比较晚,应用也处于初级水平。导致这种局面的原因主要来自于以下2个方面。首先,历史遗留的体制问题。我国的各级医院,负责生物医学工程的科室没有统一的名称,也没有明确的职责范围,各级医院都是根据自己的理解,设定有关部门的名称、职责范围、人员编制、归属单位等情况,具有很大的随意性。

天津大学810生物医学工程基础2019年考研专业课初试大纲

2019年天津大学考研专业课初试大纲 一、考试的总体要求 掌握生物医学工程的基础知识和基本理论,并能合理运用解决实际问题。 二、考试的内容及比例 考试内容分为A、B、C、D四个模块,考生可任选其中一个模块。A模块为医学成像基础,B模块为医用传感基础,C模块为生物医学信号处理基础,D模块为光学与光电基础。 (一)A模块:医学成像基础 1. 传统X射线成像 (1)X射线物理基础(X线产生条件及性质;韧致辐射、特征辐射与其对应射线谱;X射线管的技术参数;X线与物质的相互作用;X线强度与硬度;X线的硬化;X线透射与衰减) (2)X射线透视成像(传统X射线成像原理、系统及方式;影响X射线成像质量的主要因素;典型H-D曲线形态,其横纵坐标及各参数含义;原发/客观/主观对比度概念,定义公式,相关性推导;传统X射线成像缺点) (3)X线影像质量评价(像素、分辨率、对比度的概念) (4)经典X射线断层成像(X线断层成像的基本原理) (5)数字减影(数字剪影原理及方法;时序减影、能量减影、混和剪影原理;K吸收带及K吸收边缘法概念) (6)数字化X线摄影(CR成像原理、DR成像原理、二者区别与成像优点) 2. 计算机断层成像 (1)X-CT定义、成像参数和扫描方式(CT成像概念;像素与体元概念;衰减系数与CT值定义;CT与胶片分辨率差异及原因;窗口技术与窗宽、窗位定义;第一代到第五代CT特点) (2)CT图像重建原理和方法(投影概念与实质;正弦图概念及公式;CT图象重建方法分类及典型代表算法比较;直接反投影重建法原理、计算及“灰雾”成因) (3)CT图像显示和质量评价方法(CT图像重建显示的代表性图像处理技术;CT图像特点,与X射线透视影像的区别;CT图像质量参数、三种评价参数公式及表征)(4)CT装置结构(CT装置组成;CT机房要求) 3. 放射性核素成像 (1)放射性同位素及射线检测物理基础(放射性同位素概念、性质、衰变规律、在医学中的应用;粒子探测器各部分组成、定义、分类、特性等;放射线检测前置放大器的作用)(2)放射性同位素扫描与γ 照相机(放射性核素成像概念;放射性同位素扫描原理、结构;γ照相机结构、工作原理;) (3)ECT成像(ECT成像原理与分类;SPECT分类、原理、组成、特点;PET原理,符合湮灭测量与飞行时间差作用、探测器类型、成像过程;PET成像优缺点及主要应用) 4. 超声波成像 (1)超声波物理性质(超声波产生及各种物理参数定义、公式;超声波传播和衰减特性;超声辐射声场特性;超声对生物媒质作用) (2)医用超声换能器(超声辐射声场指向性、近场与远场特性;超声换能器的压电效应原理;超声换能器结构) 94 精都考研网(专业课精编资料、一对一辅导、视频网课)https://www.docsj.com/doc/9517005547.html,

生物医学工程专业必修课程介绍

生物医学工程专业必修课程介绍 (2014版) 2015年9月

目录 学科基础必修课 (1) 《大学物理1》 (1) 《高等数学1》 (1) 《大学物理2》 (1) 《大学物理实验》实验 (1) 《高等数学2》 (1) 《复变函数与积分变换》 (2) 《电路原理》 (2) 《电路原理实验》 (2) 《概率论与数理统计》 (2) 《模拟电路》 (3) 《模拟电路实验》 (3) 《人体解剖生理学》 (3) 《人体解剖生理学实验》 (3) 专业教育必修课 (4) 《生物医学测量与传感器》 (4) 《生物医学测量与传感器实验》 (4) 《专业英语与论文写作》 (4) 《数字电路》 (4) 《数字电路实验》 (4) 《生物医学信号处理》 (5) 《生物医学信号处理实验》 (5) 《微机原理与接口技术》 (5) 《微机原理与接口技术实验》 (5) 《临床医学仪器》 (6) 《临床医学仪器实验》 (6) 《单片机与嵌入式系统》 (6) 《单片机与嵌入式系统实验》 (6) 实践教学环节 (7) 《医院信息技术课程设计》 (7) 《电子技术课程设计》 (7) 《医学数据挖掘课程设计》 (7) 《金工实习》 (7) 《毕业设计(论文)》 (7) 《毕业实习》 (8)

学科基础必修课 《大学物理1》 课程编码:43071B01 开课学期:2 课程学时:48 课程学分:3 先修课程:无要求 课程简介:物理学是自然科学和工程技术的基础。《大学物理1》主要包括质点运动学、质点动力学、刚体的转动、气体动理论和热力学基础。通过本课程的学习,使学生掌握经典力学对质点和质点系的运动规律,以及能量转换的分析、处理方法;掌握气体动理论和热力学的基本规律和分析、处理方法。为学习《大学物理2》和其他后续课程的学习打下良好基础。 《高等数学1》 课程编码:43081B01 开课学期:2 课程学时:48 课程学分:3学分 先修课程:无要求 课程简介:通过本课程的学习,将使学生获得微积分的一些基本概念、基本理论、基本方法和基本运算技能,为学习后继课程和应用数学知识解决实际问题奠定必要的数学基础,本课程主要内容为函数与极限、导数与微分、导数的应用、不定积分、定积分及应用、微分方程。 《大学物理2》 课程编码:43071B03 开课学期:3 课程学时:48 课程学分:3 先修课程:《大学物理1》、《高等数学1》 课程简介:课程主要研究电荷和电流产生电场和磁场的规律,电场和磁场的相互联系,电磁场对电荷和电流的作用,电磁场对实物的作用及所引起的各种效应,振动分析,振动的合成,波的产生和传播等。 《大学物理实验》实验 课程编码:43071B04 开课学期3 课程学时:24 课程学分:1.5 先修课程:《大学物理1》 并修课程:《大学物理2》 内容简介:《大学物理实验》是生物医学工程本科专业学生入学后的第一门学科基础实验课程。通过实验训练,使学生熟悉力学、热学、电学等领域的基本实验方法,学会应用误差理论正确处理实验数据,并对实验结果作出正确的分析。 《高等数学2》 课程编码:43081B02 开课学期:3 课程学时:48 课程学分:3 先修课程:《高等数学1 》 课程简介:高等数学是理工科各专业学生必修的一门重要基础理论课程。通过本课程的学习,

对生物医学工程发展现状与未来发展趋势分析-模板

对生物医学工程发展现状与未来发展趋势分析 论文关键词:生物工程生物医学工程发展趋势 论文摘要:生物医学工程(biomedical engineering,bme)是一门生物、医学和工程多学科交叉的边缘科学,它是用现代科学技术的理论和方法,研究新材料、新技术、新仪器设备 ,用于防病、治病、保护人民健康,提高医学水平的一门新兴学科。 本文就其目前发展情况进行分析讨论。 生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。在我国,生物医学工程做为一个专门学科起步于20世纪70年代,中国医学科学院、中国协和医科大学原院校长、我国着名的医学家黄家驷院士是我国生物医学工程学科最早的倡导者。1977年中国协和医科大学生物医学工程专业的创建、1980年中国生物医学工程学会的成立,有力地推进了我国生物医学工程的发展。目前,我国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研教学工作,在我国生物医学工程科学事业的发展中发挥着重要作用。 一、显微镜的发明 “解剖”一词由希腊语“anatomia”转译而来,其意思是用刀剖割,肉眼观察研究人体结构。17世纪lee wenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。 普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、dna等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm)级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。 二、影像学诊断飞跃进步 影像学诊断是20世纪医学诊断最重要发展最快的领域之一。 50年代x光透视和摄片是临床最常用的影像学诊断方法,而今天由于x 线ct技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床

生物医学工程基础(四川大学2007年考研试题)

四川大学 2007年攻读硕士学位研究生入学考试试题 考试科目:生物医学工程基础 科目代码:851# 适用专业:生物医学工程 (答案必须写在答题纸上,写在试卷上不给分)1、现代医学的主要任务是什么?生物医学工程的基本任务是什么?举例说明生 物医学工程在现代医学中的作用。(15分) 2、分析生物材料表面对血浆蛋白的吸附程度及选择性对其血液相容性的重要影 响。(10分) 3、简述复合生物医学材料的定义及其符合体系与复合方式的种类;试举一典型 复合生物医学材料,分析其复合的目的及意义。(15分) 4、人工心瓣的概念、分类、基本组成和存在的基本问题。(15分) 5、简述人工肝的分类及改进。(15分)

6、请根据口腔的结构和临床治疗,简述2-3个口腔医学中的力学问题及其研究 方法、手段和研究现状等。(20分) 7、是列举出3个生物医学测量的特点,并对其中一个举实例加以说明。(15分) 8、描述无创测量的定义,说明其特点。举一无创测量实例说明。(15分) 9、什么是辐射?什么是电离辐射?什么是射频辐射?射频辐射是否对机体有不 良影响,影响大小与哪些因素有关,有哪些表现?MRI的辐射属于店里辐射还是射频辐射?降低MRI中被检测者所受电磁损伤的核心是什么?(10分) 10、什么是反投影重建?反投影重建的缺点 是什么?CT重建中为什么采用滤波反投影 法?已知一个四像素图像(2*2),分别获 得六个投影数据,包括两个水平方向,两 个垂直方向和两个对角线方向,分别是11、 9、7、13、12和8,如图所示, 解出这四个像素各像素值。(10分) 11、医学图像的研究包括哪三个方面的内容?试分别予以说明。(10分)

华南理工大学生物医学工程本科培养方案资料

生物医学工程 (本培养方案从2013级开始实施) Biomedical Engineering 专业代码:080607学制:4年年级2013级 Speciality Code:080607Schooling Years:4year s 培养目标: 以培养优秀专业人才为目标,重点从“宽深厚”专业知识和多学科交叉理论体系、综合分析与解决问题的能力、实践及创新能力等三个方面进行培养。使学生具备在生物医学材料、组织工程、生物医学电子仪器、生物医学信号与信息等方面的研究开发能力,成为能够解决生物医学工程领域重要工程技术问题的高级专业人才。 目标1:(扎实的基础知识)培养掌握扎实的专业基本原理、方法和手段等方面的基础知识,包括生物医学、电子技术、信息科学、计算机技术、生物材料、生物信息等相关学科基本知识、基本理论和基本技能的复合型高级科技人才。 目标2:(解决问题能力)培养学生能够创造性地利用生物医学与工程技术相结合的研究开发能力,特别是培养生物医学材料、生物医学电子与仪器方向的科学研究与工程技术开发和应用能力,以服务于生物医学工程科学研究与产业快速发展的需求。 目标3:(团队合作与领导能力)培养学生的团队合作精神与沟通能力,使其具备生物医学工程科学技术领域的领导能力。 目标4:(工程系统认知能力)让学生充分认识生物医学工程是人类生命与健康工程的重要组成部分,具有显著的多学科交叉特性,并使学生能够熟练运用工程技术手段解决实际问题。 目标5:(专业的社会影响评价能力)培养学生正确看待生物医学工程对人们的健康水平、生命质量、工商业的经济结构所产生的潜在影响。 目标6:(全球意识能力)培养学生能够在全球化的环境里保持清晰意识,为提升我国在生物医学工程科学技术领域的竞争力发挥自己的作用。 目标7:(终身学习能力)生物医学工程毕业生能够及时跟踪国际生物医学工程科学技术前沿,不断完善和更新自己的知识结构,具有很强的学习能力。 Educational Objectives: Educational objective is to cultivate professional talents.It emphasizes on three key points including wide and deep expertise and multidisciplinary theoretical system,skills on comprehensively analyzing and solving problem,practice and innovation ability.Students will posses capabilities on research and development in biomedical materials,tissue engineering,biomedical electronic equipment,biomedical signal and information,and so on.They will become senior professionals who can solve important problems in engineering and technology in the field of biomedical engineering.

论生物医学工程的现状及发展前景

论生物医学工程的现状及发展前景 生物医学工程(Biomedical Engineering, BME)崛起于20世纪60年代。其内涵是: 工程科学的原理和方法与生命科学的原理和方法相结合, 认识生命运动的规律,并用以维持、促进人的健康。它的兴起有多方面的原因,其一是医学进步的需要;其二则是医疗器械发展的需要。 四十年来, 生物医学工程已经深入于医学,从临床医学到医学基础,并深刻地改变了医学本身, 而且预示着医学变革的方向。可以说,没有生物医学工程就没有医学的今天。另一方面, 生物医学工程的兴起和发展不仅推动了医疗器械产业的发展,而且使它发生了质的改变,最根本的是,将使用对象和使用者以及医疗装置看作是一个系统整体, 强调其间的相互作用, 进而用系统工程的观念研究发展所需要的医疗装置,实现预定的医疗目的。 生物医学工程学科是一门高度综合的交叉学科,这是它最大的特点。所谓交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。从学科发展的历史长河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。而且,生物医学工程所指的学科交叉,不是生物医学同哪一个工程学科分支的简单结合,而是多学科、广范围、高层次上的融合。近年来,高分子材料科学、电子学、计算机科学等自然科学的不断发展,极大地推动了生物医学工程学科的发展。 此外,生物医学工程学科所涉及的领域非常广泛。可以说,有多少理工科分支,就会产生多少生物医学工程领域,这种多学科的交叉融合涉及到所有的理、工学科和所有的生物学和医学分支。这样一来,当任何一个学科取得突破进展时都能影响到生物医学工程的发展,使其发展的速度异常迅速。 发达国家生物医学工程的现状 在美国以及欧洲等经济发达国家,早在上世纪50年代就指出生物医学工程的重要性,基于其强大的经济、科技实力,经过近半个世纪的努力均取得了各自的成果。如今,这些国家在生物医学工程方面处于世界前列。但是面对当今科技飞速发展的新形势,他们仍在想尽一切办法努力前进。在美国,许多著名大学根据自身条件和生物医学工程学科的特点以及社会需要采用各种方式积极推进“学科交叉计划”。这样一来,生物医学工程在这一有利条件下迅速发展,朝向以整合生物、医学、物理、化学及工程科学等高度交叉跨领域方向发展。这种发展方向既促进了传统性专业的提升,又为逐步形成新专业创造了条件。 另外,美国政府因认识到新的世纪生物医学工程对促进卫生保障事业发展所具有极大的重要性,急需扭转美国生物医学工程领域研发工作群龙无首的分散局面,美国第106届国会于2000年1月24日通过立法。在国立卫生研究院内设立了国家生物医学成像和生物工程研究所,规定由该所负责对美国生物医学工程领域的科研创新、开发应用、教育培训和信息传播等进行统一协调和管理,促进生物学、医学、物理学、工程学和计算机科学之间的基本了解、合作研究以及跨学科的创新。这也大大推动了美国的生物医学工程学科的发展。 国内生物医学工程的现状 我国的生物医学工程学科相对国外发达国家来说起步比较低。自上世纪70年代以来,经过40多年的发展,目前全国已有很多所高校内设有此专业,在一些理、工科实力较强的高校内均建有生物医学工程专业。由于这些学校的理、工等学科在全国都有重要的影响,且大都设有国家级重点学科,他们开展起来十分方便,这些院校均是以科研性学科设置的。此外,还有一些医学院校则是以医学作为基底学科,置入某些工程学科的

生物医学工程学概论考试重点

生物医学工程(Biomedical Engineering,BME),是用自然科学和工程技术的理论方法,研究解决医学防病治病,增进人民健康的一门理、工、医相结合的边缘科学。它综合运用工程学的理论和方法,深入研究、解释、定义和解决医学上的有关问题。 生物传感器应有以下几个条件:①高可靠;②少损伤或无损伤;③微型化; ④重复性好;⑤数字信号输出;⑥组织相容性好;⑦寿命长;⑧容易制造。 生物工程(bioengineering)亦称生物技术(biotechnology) , 它是通过工程技术手段,利用生物有机体或生物过程,生产有经济价值的产品的技术科学。它的实际应用包括对生物有机体及其亚细胞组分在制造业、服务性工业以及环境管理等方面的应用。细胞工程(cell engineering)是应用细胞生物学和分子生物学技术,按照预定的设计改变或创造细胞遗传物质,使之获得新的遗传性状,通过体外培养,提供细胞产品,或培育出新的品种,甚至新的物种。 细胞工程的三个发展阶段: 第一阶段:~70年代中期,确立了细胞培养技术、核型分析技术、细胞融合技术及其应用 第二阶段:70年代后期~80年代后期,基因工程与细胞工程结合,应用DNA 导入技术分析了人体基因的微细结构。 第三阶段:80年代后期~,基因打靶为基础,胚胎发生工程与基因工程结合作为新的研究发展趋势。即在培养细胞水平上同源基因重组的“基因打靶” “基因打靶”是指利用基因转移方法,将外源DNA序列导入靶细胞后通过外源DNA序列与靶细胞内染色体上同源DNA序列间的重组,将外源基因定点整合入靶细胞基因组上某一确定的点,或对某一预先确定的靶位点进行定点突变的技术 细胞融合(cell fusion)是指用自然或人工方法,使两个或更多个不同的细胞融合成一个细胞的过程。它包括质膜的连接与融合,胞质合并,细胞核、细胞器和酶等互成混合体系。 应用:淋巴细胞杂交瘤技术,其产物为单克隆抗体单克隆抗体(monoclonal antibody, McAb)是由单一克隆(clone)的B淋巴细胞产生的抗单一抗原的高度特异性抗体。

生物医学工程 (学科代码:0831 )

生物医学工程 (学科代码:0831 ) 一、培养目标 本学科培养德、智、体全面发展,在生物医学工程及信号处理等方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研 究工作能力的高层次人才。学位获得者应能承担高等院校、科研院所及高科技企业的教学、科研及开发管理等工作。 二、研究方向 1. 生物医学信号处理、 2. 生物医学超声工程、 3. 神经肌肉系统及控制、 4. 生物信息学、 5. 医学影像图像处理、 6. 智能医疗仪器 三、学制及学分 1. 对于按硕—博一体化课程体系培养的研究生,获得硕士学位一般需要3年。研究生在申请硕士学位前,必须取得总学分不低于35分(含开题报告2学分)。获得博 士学位一般需要5年,最长学习年限不超过7年。研究生在申请博士学位前,必须取得总学分不低于45分(含开题报告2学分、专业综合知识答辩2学分;博士层 次课程不低于8学分)。 2. 对于通过我校博士生入学考试的普通博士生,获得博士学位一般需要3年,最长学习年限不超过5年。研究生在申请博士学位前,

必须取得总学分不低于10分(含开题报告2学分;博士层次课程不低于8学分)。 四、课程设置 英语、政治等公共必修课和必修环节按研究生院统一要求。 学科基础课和专业课如下所列。 基础课: BM05101★生物医学信号处理★(4) BM05102★生物医学信息检测与系统设计★(4)ES25201 信息传输与现代通信(4) ES25203 先进电子线路(4) ES25204★图像分析与处理★(4.5) ES25205 随机过程与随机信号处理(3) ES25206 模式识别(3) BI05101 细胞分子生物学(4) 专业课: BM05110 生物医学工程若干前沿(3) BM05113 富里叶超声成像(3) ES25208 计算机网络技术及其应用(4)ES25211 工程数据库(3) ES25213 智能优化方法(2) BI74201 生物信息学(2) CS05141 机器学习与知识发现(3) PH65201 生物医学超声工程(3) PH65211 现代医疗仪器(3) BM06101生物医学信号与信息处理(2) BM06102 生物医学工程前沿专题(2) BM06103生物信息学文献阅读与分析(2)BM06104 系统生物学研究进展(2) 备注:带★号课程为博士生资格考试科目。 五、科研能力要求 按照研究生院有关规定。 六、学位论文要求 按照研究生院有关规定。

论生物医学工程的现状及发展前景

论生物医学工程的现状及发展前景 论生物医学工程的现状及发展前景 生物医学工程(Biomedical Engineering, BME)崛起于20世纪60年代。其内涵是: 工程科 学的原理和方法与生命科学的原理和方法相结合, 认识生命运动的规律,并用以维持、促 进人的健康。它的兴起有多方面的原因,其一是医学进步的需要;其二则是医疗器械发展的需要。 四十年来, 生物医学工程已经深入于医学,从临床医学到医学基础,并深刻地改变了医学 本身, 而且预示着医学变革的方向。可以说,没有生物医学工程就没有医学的今天。另一 方面, 生物医学工程的兴起和发展不仅推动了医疗器械产业的发展,而且使它发生了质的 改变,最根本的是,将使用对象和使用者以及医疗装置看作是一个系统整体, 强调其间的 相互作用, 进而用系统工程的观念研究发展所需要的医疗装置,实现预定的医疗目的。 生物医学工程学科是一门高度综合的交叉学科,这是它最大的特点。所谓交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。从学科发展的历史长 河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。而且,生物医学工程所指的学科交叉,不是生物医学同哪一个工程学科分支的简单结合,而是多学科、广范围、高层次上的融合。近年来,高分子材料科学、电子学、计算机科学等自然科学的不断发展,极大地推动了生物医学工程学科的发展。 此外,生物医学工程学科所涉及的领域非常广泛。可以说,有多少理工科分支,就会产生多少生物医学工程领域,这种多学科的交叉融合涉及到所有的理、工学科和所有的生物学和医学分支。这样一来,当任何一个学科取得突破进展时都能影响到生物医学工程的发展,使其发展的速度异常迅速。 发达国家生物医学工程的现状 在美国以及欧洲等经济发达国家,早在上世纪50年代就指出生物医学工程的重要性,基 于其强大的经济、科技实力,经过近半个世纪的努力均取得了各自的成果。如今,这些国家在生物医学工程方面处于世界前列。但是面对当今科技飞速发展的新形势,他们仍在想尽一切办法努力前进。在美国,许多著名大学根据自身条件和生物医学工程学科的特点以及社会需要采用各种方式积极推进“学科交叉计划”。这样一来,生物医学工程在这一有利 条件下迅速发展,朝向以整合生物、医学、物理、化学及工程科学等高度交叉跨领域方向发展。这种发展方向既促进了传统性专业的提升,又为逐步形成新专业创造了条件。 另外,美国政府因认识到新的世纪生物医学工程对促进卫生保障事业发展所具有极大的重要性,急需扭转美国生物医学工程领域研发工作群龙无首的分散局面,美国第106届国

生物医学工程基础历年真题及答案

生物医学工程基础 1 .简述生物力学的研究对象、容、基本方法和主要特点(20’) 定义:生物力学是解释生命及其活动的力学,是力学与医学,生物学等多种学科相互结合、相互渗透而形成的一门新兴交叉学科。 研究对象:力与生物体运动、生理、病理之间的关系。 研究目的:通过生物力学的研究,用力学分析的手段了解、学习、利用、治疗、保护并配合创造生物。另有仿生学、听诊器、血压计等都利用了生物力学的原理。 研究容:(1)生物运动学:任务是分析动物的运动。用一个有限的自由度系统的运动模拟动物的运动,在此基础上研究动物的能量,力与位移、速度与加速度之间的关系。 (2)生物流体力学:研究血液、各种体液等流体的特性及生物体的流体情况,研究生物与空气、水之间的相对运动。 (3)生物固体力学:研究生物体形状稳定部分的受力特性和变形性,以及一些医疗体育器械的强度和变形情况。 (4)综合问题:同时考虑多项介质的相关影响。 研究方法:用解析方法或数值方法求解数学模型。 用试验方法测定物理模型或实物试件。 对现场进行分析研究。 特点:另外,生物力学在研究方法上有有别于其他各种物理问题或工程问题的研究方法:①生物力学的试验有“在体”和“离体”之分。②一部分生物材料(如肌肉)能产生主动力,因此不能用常规的材料试验方法对他们进行研究。③在体实验分麻醉态和非麻醉态。 2.简述细胞力学的研究容、实验手段及其应用和发展趋势。(10’) 研究容: 实验手段: 应用:①仿生学。在对生物了解的基础上学习生物的优点,进行发明创造。 ②体育竞技等。通过对生物所做的力学分析,可以更好地发挥生物的效能。 ③对疾病的治疗:听诊器、血压计、人体器官(人工心脏、假肢)等基于生物力学。 ④从力学的角度改造生物,可以指导运动员的训练等。 发展趋势:主要集中在细胞-分子力学、骨力学、血液动力学、组织工程方面。宏-微观结合的趋势明显,如骨力学,生物流变学,组织工程等研究开始深入到细胞-分子水平。 3.试述下肢假肢接受腔与残端之间存在哪些生物力学问题。(10’) 1’ 接受腔/残肢界面应力测试。 2’ 接受腔CAD/CAM 3’ 有限元分析 4’ 假肢三维刚体动力学的模型 5’ 假肢步态分析、足底受力系统 4.简述主要医学成像(X-CT成像、超声成像、磁共振成像、核素成像)方法中任意三种方法的基本原理和所得图像的特点(图像特征适用围、不同于其他方法的特殊之处)。(18’)(1)X-CT: 基本原理:X射线被准直后成为一条很窄的射线束。当X射线管沿一个方向平移时,与之相

生物医学工程前沿讲座

深圳大学考试答题纸 (以论文、报告等形式考核专用) 二○13 ~二○14 学年度第 2 学期课程编号 01 课程名称 生物医学工程前沿讲座 主讲教师 刘维湘等 评分 学号 07 姓名 李瑜 专业年级 生物医学工程10级 教师评语: 题目: 人工心脏瓣膜的研究及发展前景

摘要:心脏瓣膜疾病是一类危及人类健康和生命的疾病,严重影响患者的工作和生活质量。外科手术予瓣膜置换是治疗心脏瓣膜疾病的有效方法。目前应用于临床的主要有生物瓣膜和机械瓣膜,各有优缺点。随着组织工程技术的发展,运用组织工程学原理构建的组织工程心脏瓣膜(tissue—en西neered heart valve,1'EHv)的研究便应运而生。 关键字:人工心脏瓣膜组织工程PPM Abstract: Valvular heart disease is a kind of disease threatening human health andlife, seriously affect the patient's work and life quality. Surgical operation tovalve replacement is an effective method for the treatment of heart valve disease. At present the main clinical application of biological valves andmechanical valves, each have advantages and disadvantages. With the development of tissue engineering, the use of tissue engineering heart valvetissue engineering construction (tissue - en West neered heart valve, 1'EHv)research will emerge as the times require. Keywords:Artificial heart valve ;Tissue engineering ;PPM 引言:随着科技的发展,人类的疾病越来越多的得到了有效的治疗,而现代医学的发展为人类提供了更长的寿命。人工心脏瓣膜的出现,是人类心脏治疗的一个历史性的进程。现在越来越多的研究人员都在着重于组织工程在人工心脏瓣膜上的应用。 心脏瓣膜疾病是一类危及人类健康和生命的疾病,严重影响患者的工作和生活质量。外科手术予瓣膜置换是治疗心脏瓣膜疾病的有效方法。目前应用于临床的主要有生物瓣膜和机械瓣膜,各有优缺点:生物瓣膜容易钙化、衰败及破损撕裂.严萤影响实际使用寿命;机械瓣膜需终生抗凝以防血栓形成,因而两种人工心脏瓣膜在实际临床应用中均受到了一定的限制。理想的人工心脏瓣膜应该是既有良好的使用寿命,又有很好的组织相容性,不会或者极少产生血栓。随着组织工程技术的发展,运用组织工程学原理构建的组织工程心脏瓣膜(tissue—en西neered heart valve,1'EHv)的研究便应运而生,理论上能克服生物瓣膜与机械瓣膜的不足之处,而且有良好的自我修复、重建能力等优点,可成为理想的瓣膜,所以具有广阔的临床应用前景,也是目前组织工程化人工心脏瓣膜的研究热点。所谓组织工程化心脏瓣膜(rI'EHv).就是利用生命科学和组织T程学的原理与技术。将受体种子细胞种植于可降解吸收的瓣膜支架上,制造无免疫原性、无需抗凝和耐久性强的人工心脏瓣膜。 人工心脏瓣膜(Heart Valve Prosthesis)是可植入心脏内代替心脏瓣膜(主动脉瓣、肺动脉瓣、三尖瓣、二尖瓣),能使血液单向流动,具有天然心脏瓣膜功能的人工器官。当心脏瓣膜病变严重而不能用瓣膜分离手术或修补手术恢复或改善瓣膜功能时,则须采用人工心脏瓣膜置换术。换瓣病例主要有风湿性心脏病、先天性心脏病、马凡氏综合征等。 人工瓣膜的类型只要包括机械瓣Mechanical Prosthesis 或Mechanical Heart Valve ,球笼型瓣Caged Ball Valve ,碟型瓣Disk Valve,单叶倾碟瓣Tilting Disk Valve,双叶瓣Bileaflet Valve,组织瓣(生物瓣)Tissue Valve 或Bioprosthetic Valve,支架生物瓣Stent Tissue Valve,无支架生物瓣Stentless Tissue Valve,人体组织瓣Human Tissue Valve (Homograft,Autograft,Ross Procedure),动物组织膜Animal Tissue Valve (Xenograft,Heterograft)以上几种。 而PPM则是指植入的人工瓣膜有效开口面积(effective orifice area,EOA)相对于患者体表面积过小,术后仍有明显的残余跨瓣压差(transvalvular pressure gradients,TPG)从而可能对手术预后产生不良影响。PPM的危害主要在于术后残留TPG而术后超声实测人工瓣膜有效开口面积指数(indexed effective orifice area,EOAi)是唯一与TPG相关性良好的参数,目前认为它是唯一可准确描述PPM的合适指标,但仅有少数研究采用。更多的研究使用了基于文献报道的EOAi体内参考值(projected indexed EOA),其优越性在于术前即可获得术

生物医学工程课程介绍

课程介绍 生物医学工程(Biomedical-Engineering,BME)是一门高度综合的学科,它综合了工程学、生物学和医学的理论和方法,从工程学的角度,在多层次上研究人体的结构、功能及其相互关系,揭示其生命现象。 现代医学基本上是构建在生物医学工程的基础上。四大影像设备,各种生物电和器官压力流量监测等功能检查设备,各种自动化分析仪器,是现代临床诊断的基础。另外,生物材料,生物系统建模与模拟,生物信号的监测处理等等方面的发展,更促进了本学科及医学的进一步发展。 生物医学工程的分支包括:1)化学生物学,生物信息等,主要攻读生物、计算机信息技术和仪器分析化学等。2)微流控技术。3)系统生物技术。4)生物力学。5)医用信号检测与处理。 教学大纲(初稿) 一课程基本信息 课程名称:生物医学工程导论 学时:36 二教学目的及要求:使医检专业高年级本科生能对前沿学科-生物医学工程学的概念内容以及该学科在临床医学的各个方面的应用有所掌握和了解。 三教材:自编教材《生物医学工程导论》 三教学内容 第一章绪论

一掌握BME的概念。 二了解BME的发展历史。 三了解BME研究目标及内容。 四了解BME与生物医学的进步;现代BNE研究的重大课题及其研发趋势。(4 学时) 第二章生物医学传感技术 一掌握生物医学信息获取的意义及相关概念 二了解各种生物传感器的原理和应用 三生物芯片的原理,技术特点和应用基础(8学时) 第三章生物动力学概要(血液动力学为主)一掌握生物动力学基本概念。 二了解血液流动力学相关的基本概念和本原理及其在心血管生理机能和疾病检测中的应用。(6学时) 第四章生物医用材料 一了解生物医用材料的发展概况和发展趋势,生物医用材料的分类。二掌握生物相容性概念,了解生物医用材料的生物相容性和生物学评价。 三掌握可降解与吸收材料概念,掌握组织工程材料的概念 四了解生物医用口腔材料,控制释放材料,仿生智能材料。(6学时) 第五章人工器官 一了解人工器官定义,分类及临床应用和发展方向。 二了解人工心脏,人工肝等几个主要人工器官的研究。

生物医学工程对生活的影响和前景

作者:楼佳枫1223020057 信息与工程学院电气2班 学科导论作业:(部分参考于百度知道) -----生物医学工程对生活的影响和前景大学,我选择的专业是电气信息类:它未来将分为生物医学工程,计算机科学与技术,电子信息技术三个大类。现在,我很高兴和大家谈谈我对生物医学工程的认识及看法。 生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。就生物医学工程的发展渊源,还得追溯到显微镜的发明:17世纪Lee Wenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm )级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。

生物医学的一个重要的领域,就是大家所熟知的生物影像技术。自从琴伦射线的发现和应用于医学诊断开始,影像学就开始了她的飞速发展,当之无愧得成为了20世纪医学诊断最重要、发展最快的领域之一。50年代X光透视和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层摄影(computed tomography CT),即是利用计算机技术处理人体组织器官的切面显像。X线CT片提供给医生的信息量,远远大于普通X 线照片观察所得的信息。目前,螺旋CT(spiral CT 或helicalet CT)已经问世,能快速扫描和重建图像,在临床应用中取代了多数传统的CT,提高了诊断准确率。医学工程研究利用生物组织中氢、磷等原子的核磁共振(nu clear magnetic resonance)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为MRI 工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态MRI、MRA、FMRI、MRS发展。根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,创造的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体把PET列为十大医学生物技

生物医学工程学复习提纲(完整版)

绪论 一、本章学习目标: 1、掌握生物医学工程学(BME)概念。 2、了解生物医学工程学的近代发展史。 3、熟悉BME涵盖的学科内容及学科分支。 4、了解BME研究的重大课题及研发趋势。 二、本章纲要: 1、掌握生物医学工程的概念、特点、发展中国生物医学工程学科的战略原则。 2、了解生物医学工程的发展史、研究现状、未来的展望。 3、熟悉生物医学工程涵盖的学科内容及学科分支。 三、思考题: 1、生物医学工程的概念、内涵和特点? 答:(1)、概念:是包含多种技术并相互交叉融合的一门科学。它综合了生物学、医学与工程学的理论和方法,研究生命体的构造、功能、状态和变化,研究新材料、新技术、新仪器设备,用于防病、治病、保护人民健康和提高医学水平。 (2)、内涵:是工程科学原理和方法与生命科学的原理和方法相结合,认识并解决人类心身健康的问题,并使有限的卫生资源为全社会共享。 ①、是大跨度、多学科和多种技术的深度交叉、结合。不仅要发现规律,解释现象,还解决实际问题。 而且后者更为重要。 ②、是科学研究、技术发展、产品开发和产业发展,密切结合。这里,不仅有经济效益的追求(市场 导向),更重要的是,它必须服从全社会医疗保健系统整体目标的需要。 (3)、特点:是工程科学的原理和方法与生命科学的原理和方法相结合,从不同的层次(整体、系统、器官、组织、细胞、亚细胞结构和生物大分子等)研究人的生命运动的规律(定量)并发展相应的技术和装置,应用于医学和保健,维持和促进人类的健康。 2、生物医学工程学涵盖的主要学科? 答:人体系统工程;生物医学传感器;医学图像技术与仪器;生物材料;人工器官;组织工程学;康复工程;家庭医疗保健工程;远程医疗系统;仿生学;医用机器人。 3、生物医学工程学发展的战略原则? 答:①、“医学应该努力使其目的适应经济现实”; ②、“公正的和公平的医学”; ③、“供得起的和可持续的医学”; 4、生物医学工程学的发展趋势? 答:①、从宏观向微观深入,宏观与微观相结合。 ②、在生物医学工程科学研究的方法上,分析与综合相结合来解决实际问题。 ③、东方传统医学(非常规医学或替代医学等等) ④、生物医学工程和生物化学工程正在交汇、融合。 ⑤、几乎各个学科领域的新发现、新技术都有可能被引入生物医学工程领域,而应用于医学。 5、发展“省钱”的生物医学工程学的重点? 答:①、有限功能目标的选择和合理确定; ②、先进的总体(系统)设计思想; ③、系统可靠性保证; ④、使用操作简便; ⑤、耐受性和鲁棒性。

相关文档
相关文档 最新文档