文档视界 最新最全的文档下载
当前位置:文档视界 › 压力管道焊接质量控制l论文

压力管道焊接质量控制l论文

压力管道焊接质量控制l论文
压力管道焊接质量控制l论文

2007年高级职务工程系列专业论文

论钢质压力管道焊接质量控制

张平科

2007年8月

目录

1 管道焊缝质量缺陷的分类: (1)

2 几类重要焊缝质量缺陷产生的原因: (2)

2.1 未焊透: (2)

2.2 气孔: (2)

2.3 裂纹: (2)

3 管道材料和焊接材料进场检验措施: (2)

3.1 对材料质量证明文件进行检查: (3)

3.2 材料外观质量检验: (3)

3.2.1 实测实量检验: (3)

3.2.2 对管材、管件的材料性能和化学成分抽样复检: (3)

4 管道焊接过程控制措施: (3)

4.1 焊接施工工艺控制: (3)

4.1.1 制定焊接施工工艺: (3)

4.1.2 对焊接工艺进行评定: (4)

4.1.3 焊接工艺卡管理: (5)

4.2 焊工的资格和能力核查: (5)

4.2.1 焊工合格证书的考试合格项目: (5)

4.2.2 焊工合格证检验、审批的有效期限: (5)

4.3 管道焊接操作过程控制: (5)

4.3.1 管道切割下料检查: (5)

4.3.2 坡口加工的控制: (5)

4.3.3 管道组对控制: (6)

4.3.4 焊接设备和工器具检查: (6)

4.3.5 焊接施工环境检查: (6)

4.3.6 对焊接操作进行巡检: (6)

4.3.7 惰性气体保护措施检查: (7)

4.3.8 焊前预热和焊后热处理控制: (7)

4.3.9 对某些特殊介质的管道焊接应有针对性的控制措施: (7)

4.3.10 焊缝标识检查: (7)

4.3.11 焊接技术资料核查: (7)

5 焊接质量检验控制措施: (8)

5.1 焊接质量检验结果的认定: (8)

5.2 焊缝表面质量检验控制措施: (8)

5.2.1 采用目测和焊接检测尺实测的方式检验外观质量: (8)

5.2.2 渗透检验: (8)

5.2.3 磁粉检验: (8)

5.3 焊缝内部质量无损探伤检验控制措施: (8)

5.3.1 无损探伤检验方法: (8)

5.3.2 射线透照检测控制要点: (9)

5.3.3 超声检测控制要点: (9)

5.3.4 无损检测其他方面的要求: (10)

论钢质压力管道焊接质量控制

张平科

江苏中核华纬工程设计研究有限公司

[摘要]:

本文主要通过对钢质压力管道焊缝质量缺陷产生原因进行分析,论述了如何针对焊接过程、焊接质量检验两方面采取控制措施,从而实现管道焊接施工质量控制的目标。[关键词]:

钢质压力管道焊接质量控制焊缝质量缺陷焊接过程控制焊接质量检验

[引言]:

工业建设项目钢质压力管道(以下均简称为管道)通常采用焊接方式连接,因此,焊接是管道安装中最关键、最重要的一道工序。影响管道焊接质量的因素较多,主要有管材和焊材的质量、焊工的资格和操作能力、焊接施工工艺和操作过程等。

管道焊接质量控制有几个重要环节:材料质量控制、焊接过程控制、焊接质量检验。材料质量控制是首要前提,焊接过程控制、焊接质量检验是必要条件。如果忽略了过程控制,仅靠最终检验的手段来控制,管道焊接质量容易产生隐患。因为大多数管道焊缝质量检验不是进行100%检验,而是按规范规定抽取一定比例检验,未抽检到的焊缝的质量存在不合格的可能性。管道焊接质量必须重点针对这三个环节采取控制措施。

1管道焊缝质量缺陷的分类:

?焊缝质量缺陷分表面质量缺陷和内部质量缺陷两类。

?焊缝表面质量缺陷主要有裂纹、气孔、夹渣、咬边、未熔合、焊瘤、未焊透、根部

收缩、余高过大、外观成形凹凸不平、角焊缝厚度不足或焊脚不对称情况等。

?焊缝内部质量缺陷主要有裂纹、气孔、夹渣、未熔合、未焊透等。

?几种焊缝表面和内部质量缺陷示意见图1:

图1 焊缝表面和内部质量缺陷

咬边

2几类重要焊缝质量缺陷产生的原因:

2.1 未焊透:

?电流强度不够,运条速度太快;

?管道组对时,坡口的钝边太厚或间隙太小;

?焊条角度不对以及电弧偏吹;

?焊件散热速度太快使焊融金属迅速冷却。

2.2 气孔:

?熔化金属冷却太快,气体来不及从焊缝中逸出:如风速过大、温度较低,或者焊工

操作技术不良,运条速度太快,使焊肉很薄,冷却过快,气体来不及从焊缝中逸出;

?电弧太长或太短。电弧太长使空气浸入熔池,太短则阻碍气体外逸;

?焊条受潮;

?焊件及焊条上沾有油漆、油污等,受热后放出气体浸入熔池;

?基本金属及焊条化学成分不当,含碳气过多,所含的合金成分使铁水发粘,使熔渣

粘度太大,阻碍气体外逸;

2.3 裂纹:

?焊接材料化学成分不当。碳及合金成分(铬、钼、锰)含量多,以及含磷、硫,促

使产生裂纹;

?对于可淬性高的钢,焊接措施不当,如未进行预热或退火等;

?管道组对不正确,如焊低碳钢时坡口小,间隙小,导致填充金属少,强度低,焊缝

冷却快,应力较大,以致产生裂纹;

?点焊处尺寸较小,受外力或焊接应力作用而破裂;

?其他具有尖角的缺陷(如针状气孔、咬边、未焊透等)未检查并及时修复,由于应

力作用而发展成裂纹。

3管道材料和焊接材料进场检验措施:

管材和焊材直接决定了管道焊接质量,各生产厂家的生产技术水平、产品质量参差不齐,材料进场前的运输、保管等环节也会使材料的质量受到影响。做好管材和焊材进场检验是管道焊接过程质量控制的首要环节。材料检验的内容主要有以下几方面:

3.1 对材料质量证明文件进行检查:

?检查生产厂家名称、出厂合格证、生产技术标准、质量证明书、产品标识。

?管材质量证明书件主要应有名称、规格、型号、数量、钢号、炉号或生产批号、化

学成分,以及抗拉强度、屈服点、延长率、压扁、弯曲、水压试验结果等机械和力学性能、工艺性能、晶间腐蚀、金相试验、热处理和探伤结果等内容。

?焊材质量证明书主要应有名称、类别、牌号、规格、批号、熔敷金属的化学成分和

力学性能、外观检验和抽样焊接检验结果等。

3.2 材料外观质量检验:

主要检验管材、管件的表面锈蚀情况和焊缝,焊条药皮有无脱落、受潮、开裂等情况,焊条或焊丝表面洁净度。

实测实量检验:

主要检测管材和管件的壁厚、外径的尺寸是否与设计选定的材料标准系列相符,管口椭圆度等偏差值是否满足材料规范要求。

对管材、管件的材料性能和化学成分抽样复检:

一般出现以下情况时,需要对管材、管件的材料性能和化学成分进行抽样复检:?到货的管材、管件实物标识不清或与质量证明文件不符,或对产品质量证明文件中

的特性数据或检验结果有异议,供货方应按相应标准作验证性检验或追溯到产品制造单位。

?国家规范有明确规定的,如合金钢管道组成件应采用光谱分析或其他方法对材质进

行复查,并应做标记。

4管道焊接过程控制措施:

焊接过程控制主要从焊接施工工艺、焊工资格和能力、焊接操作过程三方面入手。

4.1 焊接施工工艺控制:

制定焊接施工工艺:

?焊条、焊丝及焊剂的选用,应根据焊接接头两侧母材的化学成分、力学性能、焊接

接头的抗裂性、焊前预热、焊后热处理使用条件及施工条件等因素确定;

焊接工艺应明确管道母材的类别号和组别号、焊接接头形式及简图、适用此焊接工艺的管道直径和壁厚范围、焊接位置和焊接方向、焊接方法和机械化程度、焊接材料的类别、焊接电流和电压、焊接速度、保护气体、预热或焊后热处理方法、环境温度和湿度、风速的要求等方面。

对焊接工艺进行评定:

每种管道焊接施工前,必须有相适应的焊接工艺评定,经评定合格的焊接工艺才可作为工程焊接施工的依据。焊接工艺评定必须符合GB50236-98《现场设备、工业管道焊接工程施工及验收规范》及其他有关焊接规范、标准的规定,应根据管材的化学成分、力学性能、焊接性能、母材的厚度等进行分类,然后确定相应的焊接施工工艺,再选择相应的母材、焊材进行焊接,并对焊接接头进行外观检查、射线照相检验、力学性能试验,以及金相组织、抗腐蚀、硬度等方面的检验、试验和评定。

例如:某化工项目的高压蒸汽管线分为两段,厂内管段的材质为1.25Cr0.5Mo,规格为ф325*47,厂外的管段的材质为10CrMo910,规格为ф273*28。厂内、厂外管段分别由两家单位施工,厂外管段先施工完,厂内管段再与其对接。

对这两类异种钢的焊接,厂内管段的施工单位未施工过,因此要进行焊接工艺评定。但由于厂内管段的管材价格较高,图纸设计共17米,采购时未留余量,现场没有多余管材用于焊接工艺评定。根据《石油化工异种钢焊接规程》SH/T3526-2004表1和附录表A.1中查得, 1.25Cr0.5Mo和10CrMo910分别属于Ⅳ类钢的第1组和第2组,焊接规程第4.2.1.1条规定:“当重要因素不变时,同类不同组的异种母材接头中高组别材料已评定合格时,可不重新评定”。因此,可采用10CrMo910管材作为母材,进行同种钢材焊接工艺评定,替代这两类异种钢材的焊接工艺评定。另外, GB50236-98规范第4.2.9条规定:“评定合格的焊接工艺其厚度的认可范围最大为母材厚度的1.5倍”,第4.2.11条的规定:“评定合格的焊接工艺可用于不等厚对接焊件,但焊件两侧母材的厚度都应在评定厚度的认可范围内”。由于该工程所用的10CrMo910管材壁厚为28mm,若将其作为母材,其焊接工艺所认可的最大厚度仅为42mm,而厂内管段的管材壁厚为47 mm,因此,必须选用厚度更大的管材作为焊接工艺评定的母材。经与生产厂家联系,确定采用规格为ф323.9*32的10CrMo910管材进行焊接工艺评定。评定合格后,采用了该焊接工艺进行施工。

焊接工艺卡管理:

对于工程中各类焊接管道,均应根据焊接工艺评定编制焊接工艺卡,作为焊工、管工实际焊接作业的指导和依据。

4.2 焊工的资格和能力核查:

焊工属于特殊工种,必须对焊工合格证书进行审查,以确认焊工是否具有焊接操作

的资格和能力,主要应核查两个方面:

焊工合格证书的考试合格项目:

焊工具有了合格证书,并不代表可以焊接所有的管道,只有“考试合格项目”适用范围以内的管道,该焊工才能进行焊接操作。

例如:某焊工的资格证书中考试合格项目代号为:GTAW-Ⅰ-5G-4/90-02,表示该焊工考试合格的项目为:壁厚为4mm、外径为90 mm的20#钢管对接焊缝水平固定试件,背面不加衬垫,焊接方法为手工钨极氩弧焊。根据《锅炉压力窗口压力管道焊工考试与管理规则》第十八条第(二)款的规定,该焊工可以进行焊接操作的项目为:壁厚≤8mm,且外径≥76 mm的20#钢管对接焊缝,手工钨极氩弧焊。在此范围以外的管道及不同的焊接方法,必须另行考试合格后才能进行焊接操作。

焊工合格证检验、审批的有效期限:

焊接施工属于实际操作工种,若焊工长期未进行实际操作,焊接能力则会下降,影响焊接产品的质量。焊工合格证必须经定期检验有效,才允许焊工继续作业。

4.3 管道焊接操作过程控制:

主要是对管道切割下料、管口和坡口加工、管口清理、组对、点焊和正式焊接的电流、电压、焊接环境等方面进行检查。检查手段基本以巡检为主。

管道切割下料检查:

主要控制管口平面与管道轴线的垂直度,另外注意不锈钢、合金钢管道的切割工器具不得与碳钢类材料混用,防止造成渗碳锈蚀。

坡口加工的控制:

主要应控制坡口角度、坡口的形式和细部尺寸等。管道对焊接头的坡口形式主要有

Ⅰ型、V 型、U 型、X 型、双V 型等,见图2:

管道组对控制:

主要根据焊接工艺卡的要求检查管口组对的间隙、平直度、错边量等,防止焊缝出现未焊透、焊瘤过大、焊缝宽度不合格等质量问题。

焊接设备和工器具检查:

主要检查焊接设备的焊接性能和安全运行状况。焊接设备主要应满足以下条件: 有合适的引弧电压、良好的调节电流的功能和足够的功率;电压能迅速适应电弧长度的变动、从短路到开路的变化时间短,以保证焊接过程稳定;短路电流不应太大。

图2 管道对焊接头的坡口形式

焊接施工环境检查:

主要是针对预制场地及施工现场的湿度、风速、清洁状况等焊接环境进行检查,如相对湿度应≤90%。,风速应<8m/s (气体保护焊应<2m/s ),若不符合焊接工艺的要求时,应停止焊接施工或采取保证措施再施焊。

对焊接操作进行巡检:

主要检查焊工焊接时各项技术参数是否严格按焊接工艺卡执行。主要核查实际焊接操作的电压、电流、焊接速度、焊条摆动、点固焊和打底焊方法、焊道层数及各层的焊接方法、清根、层间清理等,并对使用的焊条或焊丝的型号、规格和烘干、保温、防潮、防污染等情况进行巡查。

Ⅰ型坡口

型坡口

型坡口

双型坡口

惰性气体保护措施检查:

?惰性气体保护焊主要检查焊缝是否按焊接工艺要求采取了充气保护措施,并检查惰

性气体的纯度是否满足焊接工艺的要求。

?对于设计或规范未要求进行射线无损探伤的不锈钢、合金钢管道,更要重视打底焊

防氧化的保护措施(内壁充氩气或使用药芯焊丝),保证焊缝根部的焊接质量。

焊前预热和焊后热处理控制:

焊前预热和焊后热处理必须制定相应的热处理技术措施,主要应根据钢材的化学成分、厚度、焊接形式、焊接方法、焊接材料及环境温度等因素,明确加热的方式(如感应加热,火焰、电阻炉、红外线辐射加热等)、温度、范围和加热速度,以及焊后维持恒温的时间和冷却降温的速度。在热处理过程中对其进行检查并记录。

对某些特殊介质的管道焊接应有针对性的控制措施:

不同项目的工艺介质各不相同,有的管道介质比较特殊,焊接质量对介质的产品质量会产生影响。因此,焊接过程控制还应根据管道介质的特性制定相应的措施。

例如:某化工项目的PTA是粉状固态物质,切片是颗粒状固体,两者均采用脉冲气相输送方式,输送时容易出现堵塞,切片容易因磨损出现过多的粉尘,影响产品的质量等级,脉冲式气相输送使管道有较大的振动等。因此,管道焊接质量控制首先要保证焊缝的强度,咬边、未焊透、未融合、裂纹等缺陷必须严格控制。如管道对焊时,应控制内壁的光滑度、焊瘤和错边量;套环焊或翻边法兰连接时,还应控制管口加工组对间隙、错边量等。

焊缝标识检查:

管道焊缝施焊完成并检查后,应及时在焊缝附近做焊缝标识并记录。焊缝标识的主要内容有焊口编号、焊接日期、焊工代号、固定焊口标记、表面质量检验结果、内部质量无损检测结果及标记、焊缝返修标识,以及管段编号和管材标识等。各项标识应与焊

接技术资料相符,不能有错漏。

焊接技术资料核查:

?焊接技术资料主要有焊接施工记录、焊缝隙表面质量检验记录、焊缝无损探伤检测

记录、焊缝位置单线图;

?主要核查资料的真实性、准确性、完整性、可追溯性,以及相互之间有无矛盾和错

漏,必要时应与现场的管道焊缝及其标识进行核对;

?统计有关数据是否符合设计和规范要求:应对每名焊工施焊的每种管道的施焊结果

分别统计,其主要内容有:管段焊缝总数、焊缝检测等级、数量及比例(活动焊口和固定焊口应分别统计)、返修数量和次数及加倍抽查的数量等。

5焊接质量检验控制措施:

管道焊接质量检验通常分三步进行:首先是焊缝表面质量检验,然后是焊缝内部质量无损探伤检验,最后是管道系统压力试验。本文只对前两步检验手段进行论述。

5.1 焊接质量检验结果的认定:

?焊接表面质量和内部质量检验结果,必须达到设计和施工验收规范要求的等级,才

能认定为合格。

?焊缝缺陷判定及质量等级评定应符合GB50236-98及JB/T4730的有关规定。

5.2 焊缝表面质量检验控制措施:

采用目测和焊接检测尺实测的方式检验外观质量:

主要检查焊缝表面的裂纹、气孔、夹渣、咬边、未焊透、焊瘤、根部收缩、余高、焊缝外观成形、角焊缝厚度、角焊缝焊脚对称情况等。

渗透检验:

主要是在焊缝表面喷涂渗透检测剂,通过显示的迹痕,判定焊缝的缺陷,主要有着色法和荧光法两种。

磁粉检验:

主要是在焊缝表面施加磁粉,对焊件进行磁化,通过显示的磁痕,判定焊缝的缺陷。主要有干磁粉法、湿磁粉法、荧光和非荧光磁粉法。

5.3 焊缝内部质量无损探伤检验控制措施:

无损探伤检验方法:

焊缝内部质量无损探伤检验方法主要有射线透照检测和超声检测。射线透照检测比较直观并能保留检验记录,是最常用的检测方法。

射线透照检测控制要点:

?射线透照检测主要是采用γ射线或χ射线对焊缝进行透照,通过底片上的影像所反

应的缺陷性质、尺寸、数量和密集程度,判定焊缝的质量等级。缺陷性质通常分为裂纹、未熔合、未焊透、圆形缺陷和条形缺陷五类。

?焊缝的质量等级可划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四级。若焊缝中各类缺陷评定的质量级别

不同时,以质量最差的级别作为焊缝综合评定级别。

?射线透照检测前焊缝表面质量应经外观检查合格,表面的不规则状态在底片上的图

像应不掩盖焊缝中的缺陷或与之混淆,否则应做适当处理。

?根据射线检测技术的灵敏度,分为A级(低)、AB级(中)、B级(高)三级,一般

应采用AB级检测技术。对特殊材料、焊接工艺制作的对焊接头,可采用B级。

?根据透照的管材厚度、检测需达到的灵敏度,检查所选胶片的象质计灵敏度、黑度

等质量是否符合JB/T4730规定的要求,以确保检测技术的灵敏度符合要求。

?应根据需要检测的材料厚度和透照质量等级,按JB/T4730中的规定选择合适的射线

能量(即射线源)及其与管道焊缝表面的距离和位置。

?管道焊缝透照常采用外透法,应根据管道外径(周长)、射线源与管道的距离及发出

的射线角度,计算底片应使用的张数。

?管道焊缝透照部位应有透照标记,主要包括底片中心标记、搭接标记及识别标记(包

括管段编号、焊缝编号、透照部位编号和日期等)和返修标记。

?检查胶片冲洗处理、评片室的环境状况是否整洁、安静、有合适的亮度,以保证胶

片冲洗质量和评片的准确性。

超声检测控制要点:

?超声检测主要是通过探伤仪的探头在扫描焊缝区域时发出超声波,观察探伤仪显示

的最大反射波的波高,并与对比试块的“距离—─波幅”曲线图进行对照,根据波幅所在的区域,判断焊缝缺陷所在位置、指示长度,再根据波幅所在区域和缺陷指示长度评定焊缝的质量等级,焊缝的质量等级可分为Ⅰ、Ⅱ、Ⅲ三级。

?探头移动速度不应超过150mm/s,当采用自动报警装置扫查时,可不受此限。

?探头每次扫查检测复盖率应大于探头直径的15%,尽量扫查到整个被检区域。

?焊缝缺陷指示长度应根据以下两种情况测定:

? 第一:当缺陷反射波信号只有一个高点且缺陷处声束宽度小于缺陷长度时,用降低

6dB 相对灵敏度法测量缺陷的指示长度见图3;

? 第二:在探头移动过程中,当缺陷反射波信号起伏变化有多个高点,缺陷端部反射

波幅位于SL 线或Ⅱ区时,用端点峰值法测量缺陷指示长度(即探头移动过程中,以缺陷两端反射波信号最大值之间的距离为缺陷指示长度。)见图4。

图3

相对灵敏度测长法 图4 端点峰值测长法

? 用于对照的“距离—─波幅”曲线图,应以检测时所用探伤仪和探头在对比试块上

实测所得的数据绘制,并划分区域(波幅在评定线与定量线之间为Ⅰ区;波幅在定量线与判废线之间为Ⅱ区;波幅在判废线以上为Ⅲ区),曲线图可绘制在坐标纸上或仪器面板上,见图5。

图5 距离----波幅曲线示意图

无损检测其他方面的要求:

? 施工单位或建设单位委托的检测机构和检测人员要有相应的等级资格证书,且只能

从事与该等级相应的无损检测工作;

? 由于超声检测对检验人员的判断缺陷技术要求较高,且有的超声检测技术不能留下

书面的检验记录备查。因此,应优先选用射线透照检测,在现场实际情况无法进行射线透照检测时,必须经设计和建设单位同意,才能用超声检测代替。

? γ射线或χ射线对人体有不良影响,必须确保操作人员及周边人员的安全,射线辐

评定线(

定量线()

判废线()距离波幅

射防护应符合GB18871、GB16357、GB18465的有关规定。作业前必须办理审批手续,提前通告,根据射线的影响范围,做好警戒、隔离、辐射监测等措施。

压力管道焊接质量控制

压力管道论文 压力管道焊接质量控制 [摘要]: 本文主要通过对钢质压力管道焊缝质量缺陷产生原因进行分析,论述了如何针对焊接过程、焊接质量检验两方面采取控制措施,从而实现管道焊接施工质量控制的目标。 [关键词]: 钢质压力管道焊接质量控制焊缝质量缺陷焊接过程控制焊接质量检验[引言]:

工业建设项目钢质压力管道(以下均简称为管道)通常采用焊接方式连接,因此,焊接是管道安装中最关键、最重要的一道工序。影响管道焊接质量的因素较多,主要有管材和焊材的质量、焊工的资格和操作能力、焊接施工工艺和操作过程等。 管道焊接质量控制有几个重要环节:材料质量控制、焊接过程控制、焊接质量检验。材料质量控制是首要前提,焊接过程控制、焊接质量检验是必要条件。如果忽略了过程控制,仅靠最终检验的手段来控制,管道焊接质量容易产生隐患。因为大多数管道焊缝质量检验不是进行100%检验,而是按规范规定抽取一定比例检验,未抽检到的焊缝的质量存在不合格的可能性。管道焊接质量必须重点针对这三个环节采取控制措施。 管道焊缝质量缺陷的分类: 焊缝质量缺陷分表面质量缺陷和内部质量缺陷两类。 焊缝表面质量缺陷主要有裂纹、气孔、夹渣、咬边、未熔合、焊瘤、未焊透、根部收缩、余高过大、外观成形凹凸不平、角焊缝厚度不足或焊脚不对称情况等。 焊缝内部质量缺陷主要有裂纹、气孔、夹渣、未熔合、未焊透等。 1.1. 几种焊缝表面和内部质量缺陷示意见图1: 图1 焊缝表面和内部质量缺陷 几类重要焊缝质量缺陷产生的原因: 未焊透: 电流强度不够,运条速度太快; 管道组对时,坡口的钝边太厚或间隙太小; 焊条角度不对以及电弧偏吹; 焊件散热速度太快使焊融金属迅速冷却。 气孔: 熔化金属冷却太快,气体来不及从焊缝中逸出:如风速过大、温度较低,或咬边

船舶焊接质量控制要点

高等教育自学考试毕业设计(论文) 题目船舶焊接质量控制 专业班级船舶与海洋工程专业 姓名 指导教师姓名 所属助学单位

2012年03月24日 目录 引言 (03) 第一章:焊接检验 (04) 1.1 焊缝的焊前检验.. (04) 1.2 检验前的准备工作 (05) 1.3 检验内容、精度标准与检验方法 (07) 1.4 检验注意事项 (08) 第二章:焊缝的焊接规格和表面质量检验 (10) 2.1 检验前的准备工作 (10) 2.2检验内容、精度标准与检验方法 (14) 2.3 注意事项 (18) 2.4 焊缝内部质量检验 (20) 第三者:无损探伤检验 3.1 检验钱的准备工作 (21)

3.2 检验内容与评级标准 (22) 3.3 检验主要事项 (23) 第四章:总结与感谢 (25) 第五章:参考文献 (26) 引言 在现代造船工业中,焊接已经成为一种不可替代的连接形式,相对于铆接等传统连接方法,焊接体现了其成本低,现场操作性强,有效减轻结构重量,而且也能很好的满足船舶水密连接的要求。焊接在因为它的巨大

优点而成为造船工业最主要连接方法的同时,其本身存在的缺点也应引起足够重视。焊接是一种通过加热(或不加热),添加(或不添加)填充材料,同时在加压(或不加压)的情况下达到原子间结合,形成永久性接头的连接方法。针对目前船厂的焊接方法,主要属于焊接方法分类中的熔化焊,通过热输入的方式使得母材和填充材料熔化,从而形成焊接接头,这样的焊接方法将导致母材及焊接接头的组织、成分发生变化,并且在焊接过程中,焊接环境(油污、水、锈等)、焊接设备、焊接工艺参数等都会对焊后组织产生影响,从而最终影响焊接接头的强度、韧性等各种力学性能。在整个造船成本中焊接成本约占20%,焊接的施工量大,并且焊接质量好坏直接关系到船舶建造及运行安全,所以对焊接质量的控制就尤为关键。 就焊接质量而言可以主要从焊接工艺制定和焊接检验两个方面进行控制。本论文主要讨论的是焊接检验方面的问题。

压力容器焊接质量控制技术探讨

压力容器焊接质量控制技术探讨 摘要:在工业领域,压力容器属于特种作业设备,一般是在高温、高压、腐蚀 性的工作环境进行生产作业,因此,压力容器在制造环节的焊接质量直接影响这 设备整体性能质量,而且焊接直接也能够对压力容器的使用寿命产生较大的影响。压力容器一旦在生产作业过程中发生事故,破坏性比较强,会对压力容器的周边 环境以及操作人员的人身安全造成极大伤害,给企业也会造成重大的经济损失。 为了能有效避免压力容器在使用过程中出现安全事故,需要针对压力容器的制造 环节建立起完善的质量控制体系,能保证压力容器的质量。针对在压力容器的制 造过程中出现的焊接质量问题以及影响焊接质量的因素进行全面分析,并在此基 础上制定了相应的质量控制措施,控制了压力容器在制造环节的质量,保证压力 容器在生产作业过程中的安全性和可靠性。 关键词:压力容器;焊接质量;控制技术 引言 压力容器在工业生产中的应用表现出了较高的质量和安全性能要求,如果其 质量得不到有效保障,必然会导致压力容器的应用可靠性降低,容易出现安全隐患。基于此,在压力容器制造的焊接过程中,同样也需要严格把关,力求选择更 为适用的焊接工艺、焊接方法和焊接手段,保证和提高焊接质量,从而降低或避 免压力容器在焊接区域安全隐患的存在。 1 压力容器焊接质量控制的意义 压力容器在生产制造的过程中的焊接质量直接影响着压力容器使用的安全、 稳定运行,而在压力容器生产制造的环节中能够影响压力容器焊接质量的因素有 很多,在压力容器的生产制造过程中,如果能够严格的按照压力容器生产制造的 相关规范以及标准来实施压力容器的设计、施工、监督、检验过程,那么压力容 器的焊接质量就会得到极大提升,同时也能保障其在使用过程中的安全和性能。 对压力容器在焊接过程中出现的各种缺陷的形式进行深入分析,可以对其焊接质 量问题有一个深入的了解,同时也能有针对性地对压力容器的各个环节进行焊接 质量的控制,让压力容器制造企业对压力容器质量控制的重要性有一个清晰的认识。分析压力容器焊接过程中出现的焊接质量缺陷,能从中总结出提升压力容器 焊接质量的经验,同时也能让压力容器制造企业更多地关注压力容器母材以及焊 接材料的选择,高度重视焊接工艺的安排、焊接过程的管理以及检验工作,从而 提高整个压力容器的质量,有效提升压力容器的安全性和可靠性。 2压力容器焊接质量控制技术 2.1焊接技术准备工作 油田企业在具体实施压力容器焊接施工过程中,首先必须要做好焊接施工准 备工作。相关施工人员必须要充分结合压力容器焊接施工实际状况,来合理的编 制压力容器焊接施工作业指导书,并针对不同施工情况制定出完善的焊接工艺, 这样才能够为油田企业压力容器焊接施工的顺利进行打下坚实的基础。在此基础上,要充分结合油田施工实际情况,及相关焊接人员综合素质水平,来制定出合理、可行的焊接施工方案,针对不同的焊接母材、焊接材料以及施工工艺进行合 理选择,要充分保证焊接工艺能够达到相关标准要求,这样才能充分保证压力容 器的焊接质量以及焊接效率。在实际中对压力容器焊接工艺进行评定的过程中, 可以充分利用钢材焊接性能试验作为主要依据,而且在具体实施焊接施工前,要 充分结合焊接工艺评定结果来进一步明确施工作业指导书,能做好施工现场记录

第一章--焊接质量控制

第一章焊接质量控制 教学目标: 一、了解焊前和焊接过程中的常规质量控制项目及其要求; 二、熟悉并掌握各种焊接方法中的焊缝外观质量检验项目及相关标准; 三、了解致密性试验方法的种类和适用条件。 一、任务导入: 随着现代焊接技术的迅猛发展、焊接生产水平的不断提高和国际焊接制品贸易的日益扩大,为了保证焊接产品的质量,有效地利用资源,保护用户的利益,焊接产品的质量管理逐步走上了规范化、标准化的道路。1987年3 月,国际标准化组织(ISO)正式发布了IS09000?9004关于质量管理和质量保证的标准系列。1994年和2000年,国际标准化组织两次修订IS09000族标准,使之更为简化、重点更加突出,更加科学、普适,并将质量保证体系提高到质量管理体系的水平。我国相应于2000年发布了等效采用该国际标准系列的GB/T19000:2000《质量管理体系》标准系列。 众所周知,焊接结构(件)在现代科学技术和生产中得到了广泛应用。随着 锅炉、压力容器、化工机械、海洋构造物、航空钪天器和原子能工程等向髙参数及大型化-方向发展,工作条件日益苛刻、复杂。显然,这些焊椟结构(件)必须是髙质量的,否则,运行中出现事故必将八成惨重的损失。诚然,迅速发展的现代焊接技术,已能在很大程度上保证其产品质量,但由于焊接接头为一性能不均匀体,应力分布又复杂,制造过程中亦作不到绝对的不产生焊接缺陷,更 不能排除产品在役运行中出现新的缺陷。因而为获得可靠的焊接结构(件)还必须走第二条途径,即采用和发展合理而先进的焊接检验技术。 现代质量管理认为,为使产品达到所要求的各项质量指标,应从生产的每一道工序抓起,通过控制和调整影响工序质量的因素来保证。而工序质量又要 通过工作质量,采取各种管理手段来实现。因此,在质量管理工作中,要以工 作质量来保证工序质量,用工序质量来保证产品质量。 可见为实现质量目标,就必须在管理体制上建立一套有效的、便于操作的质量管理体系。并且将这套体系应用于产品的整个制造过程中。

钢结构工程焊接质量控制要点【最新】

钢结构工程焊接质量控制要点 摘要:钢结构工程在工业以及公共建筑领域的应用非常广泛,而焊接工序又是钢结构加工制造中的关键工序,加强焊接工序的质量控制,不仅可以提高钢结构产品的质量,对整个钢结构工程质量的提高也有很重要的作用。 关键词: 钢结构焊接质量控制中图分类号:TU291 文献标识码:A焊接工序是钢结构加工制作中一种特殊而且非常重要的工序。在焊接过程中会出现一些不可避免的焊接缺陷或残余应力,如果不加以控制,就会使某些局部缺陷,由于难以抵抗外部荷载和内部应力的共同作用而产生破坏,并影响到整体结构安全,以致这些钢结构建筑发生局部变形、脆性断裂、甚至倒塌等严重事故,所以,必须建立材料供应、焊前准备、组装、焊接、焊后处理和成品检验等全过程的焊接生产质量控制体系,来保证钢结构工程的焊接质量。1.焊接质量控制的基本方法在钢结构加工制造的整个过程中,为保证产品的焊接质量,在公司的人员、设备、材料、操作规范和作业环境上都要遵循严格的要求,同时还要保证产品合理的制造流程、可靠的试验与检验以及安全的操作。1.1 焊工资质和管理焊接操作人员属于特殊工种,必须按照有关规定进行焊工技术考试,合格后持证上岗。未经培训、考核合格者,不准上岗作业。企业要编制焊工花名册,并进行严格管理,及时记录和更改相关信息。焊工停焊时间超过6个月的要重新考核上岗。

每个月要通过对焊工所焊焊缝通过检验及无损探伤检测后的合格率进行统计,来考核焊工的业绩和工作质量。统计内容包括焊工姓名、编号、构件名称、焊缝数量、不合格项目、焊接合格率和探伤合格率。 1.2 焊接工艺评定试验焊接工艺评定是保证焊接质量的重要措施。通过焊接工艺评定,来检验按照已经制订的焊接工艺指导书焊制的焊接接头的使用性能是否符合设计要求,并为正式制定焊接工艺指导书提供可靠的依据。而对于首次采用的钢材和焊接材料,必须进行焊接工艺的评定,并将焊接工艺评定报告存档保存。1.3 制定合理的焊接工艺作业指导书焊接工艺作业指导书是指导操作人员按照一定的方法进行焊接施工的操作规程,没有作业指导书,按照个人想法随意施工会导致焊接施工的质量过程不受控,造成产品质量下降。制定书面的的焊接工艺作业指导书并严格执行,质量才不会失控。1.4 保证焊接材料质量,建立严格的领用制度。焊接过程中所使用的一些焊条、焊丝、焊剂等焊接材料,很容易受潮、变质,直接影响焊接质量,所以在运输、储存工程中必须注意防潮,在使用前还要按照规定的烘焙时间和温度进行烘焙。低氢型焊条取出后应立即放入焊条保温桶。在常温下使用,一般不超过4小时,若超过时间就要重新烘焙,但不能超过2次。焊条烘焙,由工段长及时准确填写烘焙记录,记录上要对牌号、规格、批号、烘焙温度和时间等内容详细记录清楚,并由专职质量检验员进行核查签字确认。1.4.1材质因素的控制(1)母材的控制母材所选用的钢材除满足结构的强度、塑料、韧性和疲劳性能要求外,还要求有良好的可焊性,因为母材对焊接质量的影响主要体现在金属

压力容器焊接的质量控制研究参考文本

压力容器焊接的质量控制研究参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

压力容器焊接的质量控制研究参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 压力容器这种工业产品,优良的工序和加工质量是保 证产品质量的重要条件。焊接是保证压力容器致密性和强 度的关键,是压力容器制造中最重要的一个环节,是保证 压力容器质量的关键,是保证压力容器寿命和安全运行的 重要条件。焊接质量的控制从某种程度上说,锅炉、压力 容器的质量就是其焊接质量。通过焊接对压力容器质量控 制的因素分析,从操作人员控制,焊接工艺控制,焊接材 料选择控制,焊接检验控制与焊接环境控制等五个方面来 论述压力容器焊接的质量控制。 1. 焊接工作人员控制 焊条电弧焊和气体保护焊等手工操作占支配地位的焊 接,操作者的个人技能和谨慎态度对焊接质量至关重要。

即使自动化程度高的埋弧自动化,其工艺参数的调节和施焊也离不开人的操作;各种半自动焊中电弧沿焊接方向的移动也是靠人掌握。操作者质量意识差、操作时粗心大意、不遵守焊接工艺规程、操作技能低或操作技术不熟练等都会影响焊接质量。做好压力容器质量焊接控制,要在操作人员控制上做到几下几点: 1.1.定期进行岗位培训,从理论上认识执行工艺规程的重要性,从实践上提高操作者的技能。 1.2.加强质量意识教育,提高操作者的责任心和一丝不苟的工作作风,建立质量责任制。 1.3.加强焊接工序的自检及专职检查。 1.4.进行焊工上岗资格控制。凡参加压力容器施焊工作的焊工都应按照《锅炉、压力容器、压力管道焊工考试与管理规则》进行培训、考试,并取得相应资格;生产单位应按焊接工艺的要求,指定有相应资格的焊工承担焊接工

焊接质量控制程序图

焊接质量控制程序图 A—A类监检点 H—停止点 E—检查点 焊接质量控制系统程序图 B—B类监检点 R—审核点 W—见证点 焊接工艺评定焊接工艺编制焊接返修产品施焊产品试板管理焊工管理焊材管理焊接设备管理 R 焊材采购计划设备更新计划设计图纸生产计划培训计划 采购技术条件设备采购技术条件基础知识培训焊评任务书 E 焊接工艺编制W 焊材采购符合 E 返修通知否施焊环境设备采购招标合格否是要求基础知识否掌握母材一返工艺 E 设备采购考试 E 产品试板制备入库、待验区存放焊接性 R 否 E B 要 W 要否重审核设备验收合格否新评定验收基础知识考试情况改善环境措施焊接性试验 R 合格否 E B 一次返修审批否合格操作技能培训 R E B 复验拟定WPS W 合格否焊前准备工艺校核外观检查合格 否不合格焊接焊评试板无损检测操作技能退货考试区存放 E B R E 施焊 (安装调试合格否返修通知 W 外观检查产(产品试板作为A类监督点) 审核品B 无损检测 A 操作技能考试情况试二返工艺退货板定人定机、专管专用试板与筒节连试板与筒节分割作E R 为是否 B接作无损检测前经监检确认是否到期E E 类加工试样审核仪表周检监工艺更改督入库保管点否是 ) 维护保养可否免试 E B 二次返修 E 理化试验 E B 烘干 E 合格否外观检查工艺宣贯合格免试情况否无损检测否外观检查是是否 E 编制PQR 无损检测完好领用发放 H 免试审批合格否技术交底审核返修通知 E 故障修理是否焊材回收热处理产品试板中断超6月超次返修工艺不合格原因分析否工艺实施是 R 试样制备检验中断情况 H A 批准理化试验 E E 确定覆盖范围合格否是否

焊接过程质量控制

焊接过程质量控制 汽车车身的制造工艺是一个非常复杂的过程,通常由几百个型面复杂、厚度不一冲压或铸造零件,经过几十个功能不一的工装夹具定位后,焊接而成.... 影响白车身焊接质量的主要因素有员工工作状态、夹具设计、来件偏差、焊接参数和焊接飞溅等,针对这几个主要因素,需要分别制定有效的措施全面改进焊接过程质量控制。 当前市场环境下,产品竞争主要取决于质量和服务两个方面,因此,长安福特马自达汽车有限公司将2009年定为“质量卓越年”,各个车间、各个工艺环节都积极通过一系列的质量改进手段和措施,使产品具有更强的市场竞争力和更高的顾客满意度。 图1 焊装过程质量控制鱼骨图 对于焊装车间来说,我们的质量工作主要着眼于三个方面:质量体系控制、过程质量控制、产品质量控制。本文主要探讨焊装车间实际生产中的“过程质量控制”。 图2 超声波检测 影响焊接过程质量的主要因素 焊接作为车身制造四大工艺之一,是车身尺寸控制的基础,结构强度的保障,焊接过程质量的好坏尤为重要,各方面影响因素也颇需重点关注。比如,在我们实际生产过程中曾因焊枪焊接分流、零件搭接不良等因素导致了虚焊、弱焊等缺陷,其潜在的高风险使我们充分认识到焊接质量控制的迫切性和必要性。 通常情况下,影响白车身质量的因素有很多,利用鱼骨分析法,我们结合焊装车间的实际生产过程,分别对人、机、料、法、环各个方面的原因做了详细的统计,以科学的方法对各个环节进行分析,并采取相应的措施加以有效控制,以实现预期的产品质量,保证最终生产出合格的白车身。 图1所示为我公司焊接过程质量分析鱼骨图。 通过鱼骨图,结合工作实际进行分析,可以知道,影响白车身焊接质量的主要因素有员工工作状态、夹具设计、来件偏差、焊接参数和焊接飞溅等,针对这几个主要因素,我们分别制

(完整word版)钢结构质量控制要点

钢结构质量控制要点 1、质保体系检查: 1)施工单位的资质条件及焊工上岗证; 2)原材料(钢材、连接材料、涂料)及成品的贮运条件; 3)构件安装前的检验制度。 2、设计图纸和施工组织设计:详细查看图纸说明和施工组织设计、明确设计对钢材和连接、涂装材料的要求,钢材连接要求,焊缝无损探伤要求,涂装要求及预拼装和吊装要求。 3、质保资料: 1)钢材、焊接材料、高强螺栓连接、防腐涂料、防火涂料等的质量证明书、试验报告、焊条的烘焙记录; 2)钢构件出厂合格证和设计要求作强度的构件试验报告; 3)高强螺栓连接面滑移系数厂家试验报告和安装前复验报告; 4)螺栓连接预拉力或扭矩系数复试报告(包括制作和安装); 5)一、二级焊缝探伤报告(包括制作和安装); 6)首次采用的钢材和材料的焊接工艺评定报告; 7)高强螺栓连接检查记录(包括制作和安装); 8)焊缝检查记录(包括制作和安装); 9)构件预拼装检查记录; 10)涂装检验记录。 4、现场实物检查: (1)焊接 1)焊接外观质量及焊缝缺陷; 2)焊钉的外观质量; 3)焊钉焊接后的弯曲检验; (2)高强螺栓连接 1)连接摩擦面的平整度和清洁度; 2)螺栓穿入方式和方向及外露长度; 3)螺栓终拧质量。

(3)钢结构制作 1)钢结构切割面或剪切面质量; 2)钢构件外观质量(变形、涂层、表面缺陷); 3)零部件顶紧组装面; (4)钢结构安装 1)地脚螺栓位置、垫板规格与柱底接触情况; 2)钢构件的中心线及标高基准点等标志; 3)钢结构外观清洁度; 4)安装顶紧面; (5)钢结构涂装 1)钢材表面除锈质量和基层清洁度; 2)涂层外观质量(包括防腐和防火涂料)。 5、施工质量 (1)钢结构的制作、安装单位的资质等级及工艺和安装施工组织设计;(2)钢结构工程所采用的钢材应具有质量证明书,并应符合设计要求和有关规定: 1)承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证; 2)市场结构的钢材强屈比不应小于1.2,伸长率应大于20%; 3)采用焊接连接的节点,当板厚大于或等于50mm,并承受沿板厚方向的拉力时,应进行板厚方向的材料性能试验; 4)进口钢材应严格遵守先试验后的原则,除具有质量证明和商检报告外,进场后,应进行机械性能和化学成分的复试; 5)当钢材表面有锈蚀、麻点或划痕等缺陷时,其深度不行大于该钢材厚度负偏差的1/2; (3)钢结构所采用的连接材料应具有出厂质量证明书,并符合设计要求和有关规定: 1)焊接用的焊条、焊丝和焊剂,应与主体金属强相适应; 2)不得使用药皮脱落或焊芯生锈的焊条和受潮结块的焊剂,焊丝、焊钉在前应

压力容器焊接质量控制的具体措施

压力容器焊接质量控制的具体措施 发表时间:2017-11-13T17:12:07.860Z 来源:《基层建设》2017年第22期作者:裘臻[导读] 摘要:随着工业发展的不断深入,对于压力容器焊接质量的要求也越来越高。 斯派莎克工程(中国)有限公司上海 201114 摘要:随着工业发展的不断深入,对于压力容器焊接质量的要求也越来越高。在压力容器的焊接过程中,只有采取针对性的焊接措施,并加强管理才能够确保焊接质量。随着科技的进步和现代焊接技术的进步,压力容器的焊接质量控制也应与时俱进,不断更新焊接方法,保证压力容器的安全可靠性。本文主要对制造压力容器中焊接质量的重要性及焊接质量管理措施进行了探讨。 关键词:压力容器;焊接质量;控制措施 1 压力容器焊接质量控制的重要性 压力容器的质量很大程度上决定于其焊接工艺的质量,压力容器的焊接性能很大程度上直接决定了压力容器的质量和安全性能。在焊接过程中,焊机熔渣中以及焊接表面有油污时,可能造成气孔。在潮湿环境中,空气中的水汽或液体在熔渣中形成气泡导致焊接过程中的质量影响,严重的内部缺陷最后可能导致压力容器在高压环境下演变成裂纹,形成巨大安全隐患。 因此要控制压力容器焊接过程中的质量,优化压力容器焊接过程中的措施就要控制以上影响因素。外部缺陷通常肉眼就能看出来,一般表现为焊缝尺寸偏差大、焊缝截面不规整等。裂纹对压力容器的影响非常大,压力容器通常承受着较大的压力、压强,同时伴随着腐蚀性气体或液体的影响,裂纹极易扩大,最后造成整体的崩溃,严重时可能造成极大的安全事故,影响群众的生命财产安全,造成社会经济损失。由此可见,在压力容器的设计制造过程中,压力容器的焊接质量十分重要。 2 在焊接过程中比较多见的质量问题 焊接工艺的好坏对压力容器的质量有非常大的影响,不仅对生产效率和生产成本造成了一定程度的影响,而且对压力容器的安全性能和质量也有非常大的影响。目前来说,压力容器存在的焊接问题主要有容器表面飞溅、容器咬边、容器有裂纹、容器尺寸不合格、容器融合度低等。一般情况下,用肉眼就可以观察到容器外部的焊接问题,常见外部焊接问题有:焊缝的界面不规则、焊缝的尺寸偏差较大、表面出现了裂纹和气孔、焊缝过大或者过小等。在压力容器中一般装有压强比较大的气体,而且在腐蚀性气体和液体的影响下,很容易导致裂缝扩大的情况出现,进而引发压力容器崩溃,甚至引发安全事故的情况出现。人为焊接操作失误是导致压力容器出现内部缺陷的主要原因,在所有的内部焊接问题中,气孔是一个非常常见的问题,在焊接的过程中,操作方法不正确、焊接表面存在油污、熔池过快等都是导致气孔产生的主要因素,另外焊接的环境也会对焊接质量造成影响。例如焊接的环境比较潮湿液体中的熔渣或者空气中的水汽就会产生影响焊接质量的气泡,如果内容缺陷比较严重,会使压力容器在高压环境下出现裂纹,进而产生更加严重的安全隐患。 3 压力容器焊接质量控制的具体措施 3.1 焊接材料的选择控制 对于不等强度级别钢的焊接,原则上应选择低强度等级的焊接材料,在某些特殊情况下,如点固焊或厚板的第一道焊往往要求强度高,可以选用高强度等级的焊接材料。焊接材料的选择还应综合考虑结构和工艺因素及刚度特点,如冷冲压冷卷要求焊接接头有较高的塑性变形能力,热卷和热处理则要求接头经高温热处理后仍能保证所要求的强度性能及韧性,因此,应选用合金成分较高的焊材,而形状复杂,结构刚性大以及大厚度的焊件,由于焊接过程中产生较大的焊接应力,容易产生裂纹,因此必须选用抗裂性好的低氢焊条。 .2 焊接工艺方面的控制 在对压力容器产品进行施焊之前,一定要根据由国家能源局认可的《承压设备焊接工艺评定》的相关要求,实施对受压元件焊缝、受压元件彼此互焊的焊缝、存在于永久焊缝里面的定位焊缝,并以上提到焊缝的返修焊缝等在焊接工艺方面的评估。在评定过程中,关于接头型式和材料种类以及焊接工艺并厚度覆盖方面都要符合公司产品在焊接方面的要求,而且其覆盖率一定要实现100%。 3.3 加强对焊工的管理 合格的焊工要具有丰富的专业知识,必须持国家考试证书上岗就业,企业也必须聘用这样的工人进行压力容器的焊接操作。企业要根据各个步骤的难易、各道工序的工作特点,并结合焊工的技能水平,合理的安排焊工,保证焊接工作的顺利进行。同时要对在岗焊工进行定期的技能培训,使焊工形成“虚心接受任务,认真读通图纸,严格按工艺施工,时刻保持工作环境整洁,保证设备器具摆放整齐”这样一个工作流程,提高焊工的综合素质。作为焊接工人自身,必须遵守职业操守,不断提高自身素质和职业修养,修其品德,诚信工作,脚踏实地,努力钻研业务,严守操作规范,勤于思考,使理论与实践结合起来,不断更新自己的业务水平,增强工作能力。 3.4 焊接环境控制 环境因素在特定环境下,焊接质量对环境的依赖程度也是比较大的。焊接操作常常在室外露天进行,必然受到外界自然条件(如温度、湿度、风力及雨雪天气)的影响,在其他因素一定的条件下也有可能单纯因环境因素造成焊接质量问题。环境因素的控制措施比较简单,当环境条件不符合规定要求时,可对工件进行适当预热。 3.5 焊接检验控制 3.5.1 焊前检验 焊前检验主要注意一下焊工的资格问题。施焊压力容器的焊工必须按《锅炉压力容器压力管道焊工考试与管理规则》的规定考试合格并取得资格证方可施焊。焊工合格证必须具有与焊工所施焊的焊缝相对应的项目,不可无证施焊。制造厂应经常检查焊工持证上岗情况,焊工施焊时必须严格执行焊接工艺;焊接工作结束后,焊工或检验员应在规定部位打上施焊焊工的钢印,并在相应的检验记录上记录。焊接坡口、接头装配及清理工作也应注意,因为这些方面有缺陷将直接影响到焊缝性能。焊工技术水平的高低直接影响产品的焊接质量,因此必须认真组织好焊工的培训及考试,不断提高焊工的理论水平和实际操作技能,建立焊工质量档案,实行奖罚制度,鼓励焊工提高操作水平。 3.5.2 施焊过程的检验 施焊过程的主要检验内容是检查焊工是否严格按照焊接工艺、技术标准、图样规定进行焊接,以及检验产品试板的焊缝外观等相关方面的执行情况。焊缝外观的检验可以一定程度的反应产品的内部缺陷,所以要求焊工要了解焊缝外现的检查要求,以及外观缺陷产生的原因和补救措施等,这对压力容器的焊接质量起着非常重要的作用。

焊接控制程序

焊接控制程序 1 范围 本程序明确了压力容器现场组焊工程的焊接工艺评定、焊工、焊接材料、焊接设备、焊接管理、焊缝返修、产品焊接检查试板等工作程序、职责、权限的一般规定。 本程序适用于FCC所从事的压力容器现场组焊的焊接过程控制。 2引用文件 FCC/QM02-2005《压力容器质量保证手册》 FCC/VP02-2005 《文件和资料控制程序》 FCC/VP03-2005《材料控制程序》 FCC/VP16-2005《质量记录控制程序》 FCC/QG05.10-2005《焊工考试管理规定》 3职责 3.1 本程序由技术处主办,质量处、人力资源处等有关处室协办。 3.2 设备安装工程公司及项目经理部负责本单位(项目)的焊工管理和焊接过程管理。 3.3压力容器现场组焊的焊接控制由项目焊接责任工程师负责。 4 管理内容 4.1 焊接工艺评定 4.1.1 项目焊接责任工程师进行专业审图后,根据《钢制压力容器焊接规程》(JB/T4709)的要求,查阅FCC压力容器用《焊接工艺评定汇编》,编写压力容器焊接施工技术文件中的“焊接工艺卡”,报项目质保工程师审批后执行。FCC《焊接工艺评定汇编》中未列入的新材料的焊接工艺评定,应向FCC技术处办理焊接工艺评定开发申请,FCC焊接责任工程师审核后向焊接培训站办理焊接工艺评定委托。 4.1.2 焊接培训站的焊接工程师根据《焊接工艺评定申请委托书》编制“焊接工艺指导书”(WPS),进行焊接工艺评定,并负责将评定后的“焊接工艺评定报告”(PQR)连同试件及焊材的质量证明书、焊接记录、热处理记录、无损检测报告和理化试验报告等汇编成册,经FCC焊接责任工程师审核后,报FCC压力容器质保工程师批准。 4.1.3 经批准的PQR原件由FCC技术处存档保管,经PQR验证合格的WPS在FCC范围内通用,改变附加因素而增加的试验数据,可对PQR进行补充,但需按上述4.1.2条重新审批。 4.1.4 FCC技术处每年根据经批准的PQR发布FCC《焊接工艺评定汇编》增补文件,项目焊接责任工程师根据《焊接工艺评定汇编》选择压力容器现场组焊所需的焊接工艺评定。 4.2 焊工管理 4.2.1从事压力容器主体、受压部件焊接的焊工必须按《锅炉压力容器压力管道焊工考试与管理规则》的规定考试合格,取得和施焊位置相应的焊接资格后才能从事相应位置的焊接

压力管道焊接质量控制要点.doc

压力管道焊接质量控制要点 焊接过程是钢制压力管道工程施工的关键过程和主要过程。压力管道组队、焊接质量的的好坏直接影响管道介质的流速流向、管道磨损情况和安全运行。因此对压力管道的焊接质量有着极为严格的要求,除要求焊接接头为完全熔透焊缝外,对压力管道的耐蚀性以及焊缝表明的质量也有着具体的焊接标准、焊缝的表面(罐内、外)应平缓、均匀、不得有明显的凸凹焊道。焊接过程的质量控制对保证压力管道工程的安装起着重要的作用。为此,控制好压力管道工程中的焊接质量是管道安装质量控制的关键。 1.焊前准备 焊工 凡是从事压力管道焊接的焊工、必须按照现行《锅炉压力容器压力管道焊工考试与管理规则》、《现场设备工业管道焊接工程施工及验收规范》的规定进行考试,考试合格后,方可从事相应的焊接施工; 焊接用设备 压力管道焊接所需的手弧焊机、氩弧焊机、焊条烘干设备和焊缝热处理装置应齐全、完好、性能稳定可靠,应装有在周检(校)期内合格的电流、电压表、压力表。 坡口加工及清理 现场条件允许的情况下,应尽量采用等离子弧、氧乙炔等热加工方法。坡口加工完成后,必须除去坡口表明的氧化皮、油污、熔渣及影响接头质量的表面层,清除范围为坡口及其两侧母材不少于20毫米区域,并应将凹凸不平处打磨平整。

定位/组对 管接头组对应在确认坡口加工、清理质量后进行。管接头的组对定位焊是保证焊接质量、促使管接头背面成形良好的关键,如果坡口形式、组对间隙、钝边大小不合适,易造成内凹、焊瘤、未焊透等缺陷。组对间隙应均匀,定位时应保证接管的内壁平齐、内壁错边量不超过管壁厚度的10%,且不应大于15毫米。如壁厚不一致,应按规定进行修磨过渡。若焊接定位板时应在焊管板角焊缝的同一方向。管件组对时应垫置牢固,并应采取措施防止焊接过程产生变形。定位焊时,应采用与根部焊道相同的焊接材料和焊接工艺,并由合格焊工施焊。 2.焊接过程控制 材料与焊材 施工单位应具备完善的材料管理体系,以保证材料的规格、型号符合设计要求。 现场材料:现场材料员根据到货凭证核对材料的名称、规格、型号、数量和质量证明等资料是否与事物相符。经检验合格的材料、现场材料员负责进行入库,并对其登记上账。有时现场某些材料规格很大,无法在库房存放,故应该选合适的露天场地存放,并做好防护工作。需要进库房存放的材料必须入库妥善保管,以防丢失和损坏。材料发放时,一定要核对材料的工程项目、规格、型号、材料和数量,以防有错。现场使用的焊条必须烘干,操作人员用保温桶领用,以防返潮。每一只桶内只能领用同一牌号的焊条,以防错用,且一次最多不能超过5公斤,在桶内存放时间不应超过四小时,否则必须进行重新烘干。焊丝一次领用数量不得超过最小

焊接质量控制

焊接原材料因素 焊接生产所使用的原材料包括母材、焊接材料(焊条、焊丝、焊剂,保护气体)等,这些材料的自身质量是保证焊接产品质量的基础和前提。为了保证焊接质量,原材料的质量检验很重要。在生产的起始阶段,即投料之前就要把好材料关,才能稳定生产,稳定焊接产品的质量。在焊接质量管理体系中,对焊接原材料的质量控制主要有以下措施: (1)加强焊接原材料的进厂验收和检验,必要时要对其理化指标和机械性能进行复验。 (2)建立严格的焊接原材料管理制度,防止储备时焊接原材料的污损。 (3)实行在生产中焊接原材料标记运行制度,以实现对焊接原材料质量的追踪控制。(4)选择信誉比较高、产品质量比较好的焊接原材料供应厂和协作厂进行订货和加工,从根本上防止焊接质量事故的发生。 总之,焊接原材料的把关应当以焊接规范和国家标准为依据,及时追踪控制其质量,而不能只管进厂验收,忽视生产过程中的标记和检验。 相互依赖,不能忽视或偏废任何一个方面。在焊接质量管理体系中,对影响焊接工艺方法的因素进行有效控制的做法是: (1)必须按照有关规定或国家标准对焊接工艺进行评定。 (2)选择有经验的焊接技术人员编制所需的工艺文件,工艺文件要完整和连续。(3)按照焊接工艺规程的规定,加强施焊过程中的现场管理与监督。 (4)在生产前,要按照焊接工艺规程制作焊接产品试板与焊接工艺检验试板,以验证工艺方法的正确性与合理性。 还有,就是焊接工艺规程的制定无巨细,对重要的焊接结构要有质量事故的补救预案,把损失降到最低。对各种焊接工艺方法的重要因素和补加因素的5.环-----环境因素 在特定环境下,焊接质量对环境的依赖性也是较大的。焊接操作常常在室外露天进行,必然受到外界自然条件(如温度,湿度、风力及雨雪天气)的影响,在其它因素一定的情况下,也有可能单纯因环境因素造成焊接质量问题。所以,也应引起一定的注意。在焊接质量管理体系中,环境因素的控制措施比较简单,当环境条件不符合规定要求时,如风力较大,风速大于四级,或雨雪天气,相对湿度大于90%,可暂时停

塑料焊接质量控制点

在进行焊接时,压力、时间、吸热量(熔融量)是确保焊接质量的三要素。 1. 压力 对焊接表面施加适当的压力,焊接材料将由弹性向塑性过渡,还可以促进了分子相互扩散并挤去焊缝中的残余空气,从而增加焊接面密封性能。 2. 时间 要有适当的热熔时间和足够的冷却时间。当热功率一定时,时间不够会出现虚焊,时间过长会造成焊件变形,熔渣溢出,有时还会在非焊接部位出现热斑(变色)。必须保证焊接面吸收足够的热量达到充分熔融的状态,才能保证分子间充分扩散融合,同时必须保证足够的冷却时间使焊缝达到足够的强度。 3. 熔融量 热熔时间和热功率协调调整才会的到最恰当的熔融量,保证足够的分子间融合,消除虚焊的现象。除了焊接设备和操作人员技能水平外,来之于塑料内部或外部的各种因素,对焊接质量有一定的影,应当引起重视。 热风焊接原理及其影响因素:热风焊接的主要设备有供气系统,加热系统及焊枪组成。 供气系统的作用是提供干净纯净的,具有一定稳定压力和流量的压缩空气。压缩空气的压力一般控制在0.05~0.1Mpa,压力过小供热不足,影响焊接速度;压力过大会使焊缝表面粗糙发毛,影响外观效果。对于易变热氧化分解的塑料,如PVC、PA,供气源最好改用

氮气和二氧化碳。 加热系统通常由调压装置和加热元件构成,以保证压缩空气通过加热元件后,焊枪的出口温度可以控制在20~650℃之间变化以适应各种不同的塑料品种。 焊枪的作用是将压缩空气通过加热元件加热到塑件所需温度,经喷嘴对焊接和焊条进行加热,使焊接表面熔化成粘稠状,加压冷却定型得到制品。 热风焊接的焊接强度,主要取决于焊件和焊条的品种,焊缝结构和焊接技术。 焊缝结构应根据材料的厚度,制品结构特点,使用场合,焊接的方便等进行选择。焊缝的结构形式分为对接、搭接、角接和T型焊接等。在设计焊缝结构时,接缝尽可能少。 塑料的吸湿性 如果焊接潮湿的塑料制品,内含的水分会在受热后化为蒸汽跑出而在焊缝内部出现气泡,导致焊缝的强度密封性能减弱。吸湿较为严重的材料有PA 、ABS 、PMMA 等。用这些材料做的制品,焊前必须进行干燥处理。 塑料中的填充物 塑料填充玻璃纤维、滑石粉、云母等,它们改变了材料的物理特性、增加强度。塑料中填充料的含量同塑料的可焊性和焊接质量有很大的关系。填充物含量低于20% 的的塑料可以正常进行焊接,不需要进行特殊的处理。填充物含量超过30% 时,由于表面塑料比例不足,分子间融合的不够,会降低密封性。 焊接面的清洁 焊接区域表面必须清洁没有油污杂质,才能保证足够的焊接强度和气密性。

压力管道焊接质量控制要点(正式)

编订:__________________ 单位:__________________ 时间:__________________ 压力管道焊接质量控制要 点(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1148-76 压力管道焊接质量控制要点(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 焊接过程是钢制压力管道工程施工的关键过程和主要过程。压力管道组对、焊接质量的的好坏直接影响管道介质的流速流向、管道磨损情况和安全运行。因此对压力管道的焊接质量有着极为严格的要求,除要求焊接接头为完全熔透焊缝外,对压力管道的耐蚀性以及焊缝表明的质量也有着具体的焊接标准、焊缝的表面(罐内、外)应平缓、均匀、不得有明显的凸凹焊道。焊接过程的质量控制对保证压力管道工程的安装起着重要的作用。为此,控制好压力 管道工程中的焊接质量是管道安装质量控制的关键。 1.焊前准备 焊工凡是从事压力管道焊接的焊工、必须按照现行《锅炉压力容器焊工考试规则》、《现场设备工业管

道焊接工程施工及验收规范》的规定进行考试,考试合格后,方可从事相应的焊 接施工 焊接用设备 压力管道焊接所需的手弧焊机、氩弧焊机、焊条烘干设备和焊缝热处理装置应齐全、完好、性能稳定可靠,应装有在周检(校)期内合格的电流、电压表、压力表。 坡口加工及清理 现场条件允许的情况下,应尽量采用等离子弧、氧乙炔等热加工方法。坡口加工完成后,必须除去坡口表明的氧化皮、油污、熔渣及影响接头质量的表面层,清除范围为坡口及其两侧母材不少于20毫米区域,并应将凹凸不平处打磨平整。 定位/组对 管接头组对应在确认坡口加工、清理质量后进行。管接头的组对定位焊是保证焊接质量、促使管接头背面成形良好的关键,如果坡口形式、组对间隙、钝边

钢箱梁工地焊接质量控制措施

钢箱梁焊接质量控制措施 1、编制依据 1.1 设计文件 《桥梁工程设计说明及图纸》 设计交底及图纸会审记录。 1.2 有关规范及标准 《公路工程技术标准》(JTG B01-2003) 《公路桥涵设计通用规范》(JTG D60-2004) 《公路桥涵施工技术规范》(JTG/T F50-2011) 2、编制范围 本方案针对XXX桥梁工程—主桥钢箱梁焊接工程编制。 3、工程概况 XXX为跨径35m+4x50m+35m的拱结构支撑的钢连续箱梁桥。 4、工作内容 钢箱梁工地焊接主要包括梁段环缝对接、梁段纵缝对接、嵌补段对接。梁段环缝对接系指顶板、底板、腹板横向对接焊缝。纵缝焊接和环缝焊接完成后,再进行结构嵌补段焊接,有U形肋嵌补段、球扁钢嵌补段、T型肋补段、I型钢补段等。还有加劲板、封板等焊接。 5、焊接工艺评定 正式施工前,根据本桥设计图纸和有关规定,编制《焊接工艺评定方案》及《焊接工艺任务书》,模拟实际施工条件,逐项进行焊接工艺评定。 图1 焊接工艺评定流程图 6、主桥钢箱梁焊接工程技术要求

(1)加工单位对其首次采用的钢材、焊接材料、焊接接头形式、焊接方法等应进行焊接工艺评定,并根据评定报告确定焊接工艺作为指导生产性文件,并报监理工程师认可; (2)对焊缝集中、刚性较强节点编制焊接程序,将焊接应力降到最低限度; (3)焊条使用前需经350°C~400°C烘焙二小时,焊剂使用前须经250°C左右烘焙二小时,然后存放在恒温箱中,施焊时焊条、焊剂应放在焊条保温筒中,防止受潮; (4)施焊前,焊工应复查焊件接头质量和焊区的处理情况,当不符合要求时,应经修整合格后方可施焊; (5)焊接时,焊工遵守焊接工艺,不得自由施工及在焊道外的母材上引弧; (6)焊接应采用双数焊工从中间逐渐向外,左右进行,以保证构件自由收缩; (7)多道多层焊应连续施工,每层焊道焊毕后应及时清理检查,清除缺陷后再焊;多层焊起落点相互错开,角焊缝转角处要连续施焊; (8)埋弧自动焊在所有对接焊缝的两端设置引弧和熄弧板,引弧板的坡口形式、材料与工件相同;埋弧自动焊在施工过程中不应断弧,如发生断弧应按照规定将停弧处刨成1:5的坡度后,再继续搭接50mm进行施焊,焊接应搭接圆润一致; (9)焊缝出现裂纹时,焊工不得擅自处理,应查明原因确定修补工艺后方可进行处理。焊缝同一位置不得出现二次以上返修,超过二次时,应按返修工艺进行; (10)本桥焊缝等级分类: 一级焊缝:除二级焊缝之外的焊缝(采用等强度焊接)。 二级焊缝:飘带部分焊缝、横隔板和加劲板可以采用二级焊缝(但支座附近和拱梁结合区附近的横隔板、加劲肋的焊缝采用一级焊缝); (11)焊缝的检查:焊缝的外形尺寸、质量等级及缺陷分级应符合现行的有关国家规范、规程、质检标准的有关规定;对一级焊缝超声波探伤有疑问的部分用X射线复查,射线探伤、焊缝质量按有关国家规范、规程、质检标准的有关规定执行;二级焊缝进行磁粉探伤及检查,凡出现缺陷磁粉迹痕均作返修处理。 7、钢箱梁焊接的管理措施 7.1焊接人员培训

PE管热熔焊接技术的施工出现质量问题及控制措施

浅谈聚乙烯PE管热熔焊接施工质量问题及控制措施 摘要:聚乙烯PE管热熔焊接施工符合国家节能减排,低碳化规定,能较好控制施工环境。并对聚乙烯PE管热熔焊接施工中出现质量问题,产生原因进行分析,提出质量控制措施。 一、概述 PE管是建设部“十一.五”推广应用的一种新型材料,也是国际上推崇的绿色建材。目前,国内一些厂家的聚乙烯管材、管件等生产设备和制造技术基本达到国际先进水平,国家制订了燃气、给水等埋地式聚乙烯管材、管件标准和施工规范,从而使聚乙烯PE 燃气管道在市政燃气工程中的大规模应用确立了理论依据, 聚乙烯PE管燃气管道施工得到了迅速发展。 二、聚乙烯PE管施工要点 1.聚乙烯PE燃气管对管沟的要求:其开挖宽度和工作坑尺寸,应根据现场实际情况和管道敷设方法确定。也可按公式确定:单管沟边连接b=DN+0.3,双管同沟连接 b=DN 1+DN 2 +S+0.3(S为两管之间设计净距)。沟底连接时,其宽度应加大。 在湿陷性黄土地区,不宜在雨季施工,或在施工时切实做好排水工作,排除沟内积水。开挖时应在槽底预留30~60mm厚土层进行压实处理。沟底遇有垃圾等杂物时必须清除,并应铺一层厚度不小于15mm的砂土或素土,整平压实至设计标高,对软土基及特殊腐蚀土壤,应按设计要求处理。管道下沟前按设计图纸检查灰土等地基处理层的标高,并清除沟底的一切杂物,管道下沟采用人工下管,下沟时应防止划伤、扭曲或过强的拉伸及弯曲,严禁用金属绳捆绑吊装。 2.施焊的焊工必须持有省质量技术监督局颁发的《锅炉压力容器焊工合格证》且施焊项目与证书规定项目相一致。 3.焊接前先试焊,按照焊接设备性能、管材生产厂家提供的参数,结合规范规定调整加热温度、焊接加热时间、拖动压力、保压时间、冷却时间等焊接参数,制定出合格焊缝的环高、环宽、环缝高标准,正式焊接按《PE管焊接作业指导书》进行正式焊接。 4.聚乙烯PE燃气管连接方式采用热熔对接焊连接,焊机为热熔对接焊机,聚乙烯PE燃气管焊接后,对焊口进行100%的外观检查及10%的焊口切除检验。 5.聚乙烯PE燃气管对接前,两管端各伸出夹具一定长度25~30mm,并校直两对应的连接件,使其处于同一轴线。 6.检查焊机各部分电源线及其它线路连接是否正常。 7.按要求接通加热板、铣削装置、液压系统的电源等。 8.根据所施工的管材规格选用恰当的夹具、设置好机架位置。 9.将两端已清理合格的管材用夹具固定在机架上,注意做到两端面相距在100mm左右,检查夹具使管口错边量小于壁厚的10%,并用棉布擦净管连接端头。 10.测出每根焊接管子的拖动压力并记录。 11.用双面铣刀铣削焊口两端面,完全清除管端氧化层,使其待连接端面吻合,且在同一轴线上。 12.查取相应管材的焊接参数并记录,同时计算出熔接压力,熔接压力=标准焊接压力(理论参数)+拖动压力。 13.将热板加热温度设置在210℃±10℃进行加热,将达到温度要求的加热板置于机

相关文档
相关文档 最新文档