文档视界 最新最全的文档下载
当前位置:文档视界 › 图像分辨率概念简介

图像分辨率概念简介

图像分辨率概念简介
图像分辨率概念简介

图像分辨率的概念

图像分辨率为数码相机可选择的成像大小及尺寸,单位为dpi。常见的有640 x 480;1024 x 768;1600 x 1200;2048 x 1536。在成像的两组数字中,前者为图片宽度,后者为图片的高度,两者相乘得出的是图片的像素。长宽比一般为4:3。

在大部分数码相机内,可以选择不同的分辨率拍摄图片。一台数码相机的像素越高,其图片的分辨率越大。分辨率和图象的像素有直接的关系,一张分辨率为640 x 480的图片,那它的分辨率就达到了307200,也就是我们常说的30万像素,而一张分辨率为1600 x 1200的图片,它的像素就是200万。这样,我们就知道,分辨率表示的是图片在长和宽上占的点数的单位。

一台数码相机的最高分辨率就是其能够拍摄最大图片的面积。在技术上说,数码相机能产生在每寸图像内,点数最多的图片,通常以dpi为单位,英文为Dot per inch。分辨率越大,图片的面积越大。

像素越大,分辨率越高,照片越清晰,可输出照片尺寸也可以越大。

分辨率是什么?分辨率的定义、特质及分类详细介绍分辨率可以从显示分辨率与图像分辨率两个方向来分类。显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。

概述

定义

1、图像处理或信号处理中的空间或时间分辨率:能够分辨图像中两个点或线的能力。最好的数学定义是使用点扩展函数的分布大小。

2、信号处理中的频谱分辨率,由观察的时间窗长所决定的所能够分辨的最小的频谱分量的差别。

以分辨率为1024×768的屏幕来说,即每一条水平线上包含有1024个像素点,共有768条线,即扫描列数为1024列,行数为768行。分辨率不仅与显示尺寸有关,还受显像管点距、视频带宽等因素的影响。其中,它和刷新频率的关系比较密切,严格地说,只有当刷新频率为“无闪烁刷新频率”,显示器能达到最高多少分辨率,才能称这个显示器的最高分辨率为多少。

分辨率是和图像相关的一个重要概念,它是衡量图像细节表现力的技术参数。但分辨率的种类有很多,其含义也各不相同。正确理解分辨率在各种情况下的具体含义,弄清不同表示方法之间的相互关系,是至关重要的一步。

一些用户往往把分辨率和点距混为一谈,其实,这是两个截然不同的概念。点距是指象素点与点之间的距离,象素数越多,其分辨率就越高,因此,分辨率通常是以象素数来计量的,如:640×480,其象素数为307200。注:640为水平象素数,480为垂直象素数。

由于在图形环境中,高分辨率能有效地收缩屏幕图象,因此,在屏幕尺寸不变的情况下,其分辨率不能越过它的最大合理限度,否则,就失去了意义。

特质

分辨率决定了位图图像细节的精细程度。

通常情况下,图像的分辨率越高,所包含的像素就越多,图像就越清晰,印刷的质量也就越好。同时,它也会增加文件占用的存储空间。

单位

描述分辨率的单位有:dpi(点每英寸)、lpi(线每英寸)和ppi(像素每英寸)。但只有lpi是描述光学分辨率的尺度的。虽然dpi和ppi也属于分辨率范畴内的单位,但是他们的含义与lpi不同。而且lpi与dpi无法换算,只能凭经验估算。

另外,ppi和dpi经常都会出现混用现象。但是他们所用的领域也存在区别。从技术角度说,“像素”只存在于电脑显示领域,而“点”只出现于打印或印刷领域。

换算

ppi和lpi可以换算,lpi等于ppi的一半,但是取决于纳奎斯特极限。

DPI

设备分辨率(DeviceResolution)又称输出分辨率,指的是各类输出设备每英寸上可产生的点数,如显示器、喷墨打印机、激光打印机、绘图仪的分辨率。这种分辨率通过DPI

来衡量,PC显示器的设备分辨率在60至120DPI之间,打印设备的分辨率在360至2400DPI 之间。

PPI

图像分辨率(ImageResolution)指图像中存储的信息量。这种分辨率有多种衡量方法,典型的是以每英寸的像素数(PPI,pixel per inch)来衡量。当然也有以每厘米的像素数(PPC,pixel per centimeter)来衡量的。图像分辨率决定了图像输出的质量,图像分辨率和图像尺寸(高宽)的值一起决定了文件的大小,且该值越大图形文件所占用的磁盘空间也就越多。图像分辨率以比例关系影响着文件的大小,即文件大小与其图像分辨率的平方成正比。如果保持图像尺寸不变,将图像分辨率提高一倍,则其文件大小增大为原来的四倍。

LPI

网屏分辨率(ScreenResolution)又称网幕频率(是印刷术语),指的是印刷图像所用网屏的每英寸的网线数(即挂网网线数),以(LPI)来表示。例如150LPI是指每英寸加有150

条网线。

位分辨率

图像的位分辨率(BitResolution)又称位深,是用来衡量每个像素储存信息的位数。这种分辨率决定可以标记为多少种色彩等级的可能性。一般常见的有8位、16位、24位或32位色彩。有时我们也将位分辨率称为颜色深度。所谓"位",实际上是指"2"的平方次数,8位即是2的八次方,也就是8个2相乘,等于256。所以,一幅8位色彩深度的图像,所能表现的色彩等级是256级。

VR头显分辨率

目前虚拟现实头显分辨率一览(部分)

Oculus Rift 1200×1080

HTC Vive 1200×1080

PlayStation VR 1920×1080RGB

三星Gear VR 2560×1440

3Glasses 1920×1080

雷蛇VR 1920×1080

Star VR 2560×1440

不过,分辨率并不是评判视觉表现的唯一标准。Vive和Rift所需求的高端显卡带来的视觉冲击力要比单纯的像素密度高得多。

数字图像处理教学大纲(2014新版)

数字图像处理 课程编码:3073009223 课程名称:数字图像处理 总学分: 2 总学时:32 (讲课28,实验4) 课程英文名称:Digital Image Processing 先修课程:概率论与数理统计、线性代数、C++程序设计 适用专业:自动化专业等 一、课程性质、地位和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源

1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成 第二章:数字图像基础(4学时) 教学目标:了解视觉感知要素;了解几种常用的图像获取方法;掌握图像的数字化过程及其图像分辨率之间的关系;掌握像素间的联系的概念;了解数字图像处理中的常用数学工具。 重点难点:要求重点掌握图像数字化过程及图像中像素的联系。 2.1 视觉感知要素(1学时) 2.1.1 人眼的构造 2.1.2 眼镜中图像的形成 2.1.3 亮度适应和辨别 2.2 光和电磁波谱 2.3 图像感知和获取(1学时) 2.3.1 用单个传感器获取图像 2.3.2 用条带传感器获取图像 2.3.3 用传感器阵列获取图像 2.3.4 简单的图像形成模型 2.4 图像取样和量化(1学时) 2.4.1 取样和量化的基本概念 2.4.2 数字图像表示 2.4.3 空间和灰度级分辨率 2.4.4 图像内插 2.5 像素间的一些基本关系(1学时) 2.5.1 相邻像素 2.5.2 临接性、连通性、区域和边界 2.5.3 距离度量 2.6 数字图像处理中所用数学工具的介绍 2.6.1 阵列与矩阵操作

图像处理基础概念

图像处理基础概念

2.2 图像基本概念 2.2.1 像素与灰度 像素和分辨率在计算机中,有两个大家都熟悉的概念:像素(pixel)和分辨率(resolution)。我们将图像进行采样的单位称为像素,像素是是组成图像的最基本元素,是数字图像显示的基本单位。像素是一个逻辑尺寸单位,比如一台计算机,其屏幕大小为17英寸,可以用800行*1280列个像素(格子)来显示桌面的图像,也可以用768行*1024列来显示桌面图像,不过显示的图像的清晰度会有差别。在计算机编程中,由像素组成的图像也通常叫“位图”或“光栅图像”。而分辨率狭义的是指显示器所能显示的像素的多少,当用户设置桌面分辨率为1280*800时,表示的意思就是在这个屏幕大小的物理尺寸上,显示器所显示的图像由800行*1280列个像素组成;可以看出,在同样大小的物理尺寸上,分辨率越高的图像,其像素所表示的物理尺寸越小,画面也就越精细,整个图像看起来也就越清晰。广义的分辨率是指对一个物体成像数字时化时进行采样的物理尺寸的大小,比如我们嫦娥一号卫星拍摄的月亮的照片,其分辨率是个很大的数(通常称分辨率很低),如几千平方公里,意思是说,在拍摄的月球的照片上,一个像素点相当于月球上几千公里见方。 2.2.2 采样量化 将空间上连续的图像变换成离散点的操作称为采样。采样间隔和采样孔径的大小是两个很重要的参数。当对图像进行实际的抽样时,怎样选择各抽样点的间隔是个非常重要的问题。关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。 经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。将像素灰度转换成离散的整数值的过程叫量化。表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。一幅数字图像中不同灰度级的个数称为灰度级数,用G表示。灰度级数就代表一幅数字图像的层次。图像数据的实际层次越多视觉效果就越好。一般来说,G=2g,g就是表示存储图像像素灰度值所需的比特位数。若一幅数字图像的量化灰度级数G=256=28级,灰度取值范围一般是0~255的整数,由于用8bit就能表示灰度图像像素的灰度值,因此常称8 bit 量化。从视觉效果来看,采用大于或等于6比特位量化的灰度图像,视觉上就能令人满意。一幅大小为M×N、灰度级数为G的图像所需的存储空间,即图像的数据量,大小为M×N×g (bit)。 图2.4 分辨率与图像清晰度图2.5 量化等级与图像清晰度

图像处理基础知识

网络域名及其管理 【教材分析】 本节课是浙江教育出版社出版的普通高中课程标准实验教科书《信息技术基础》第三章第三节的内容。教材内容分图像的几个基本概念和图像的编辑加工两部分。基本概念有:像素、分辨率、位图和矢量图、颜色、图形与图像、文件格式。其中“像素和分辨率”旨在让学生了解描述数字图像的基本概念;“位图和矢量图,图形和图像”重在要求学生分清这两组概念;“颜色”阐述了用计算机三原色描述和存储数字图像颜色的原理,学生应该学会计算一幅图像的存储空间。“文件格式和图像的编辑加工”旨在让学生了解常见的图像文件格式及简单的图像编辑加工。因此不作为教学的重点。由此可见,本节课内容重在概念原理和技术深层思想的探析,为学生今后进一步学习图像的编辑加工奠定了基础。同时,这部分知识也是对第一章“信息的编码”学习的一个承接,在内容上强化了多媒体信息的编码与二进制编码的对应关系。当然,在这些概念的学习中都体现了“由简单到复杂”这一人类认识事物的基本规律和“逐步细化”这一信息技术解决问题的基本思路,都体现了问题解决与“技术更好地为人服务”的基本思想。 【学情分析】 本节课的学习对象为高一学生。通过第一章的学习,他们已经能够掌握信息的编码及二进制的相关知识。但调查发现,对于具体的图像在计算机市如何表示的,学生还只是有一个大概的了解,知道是用二进制表示的。作为必修课的学习,学生对于信息技术不仅要“知其然”,更重要的是“知其所以然”,也即要理解相关技术原理,技术思想以及研究问题的方法。而理解的目的则是为了更好联系日常生活,更好的的应用。基于上述分析,引领他们探究数字图像的基础知识、训练解决信息技术问题的方法。 【课时安排】一课时 【教学目标】 (一)知识与技能 1.了解像素掌握图像分辨率的概念。 2.掌握数字图像颜色的表示方法及存储空间的大小。 3. 了解位图和矢量图,图像和图形的不同。 4. 了解图像文件的文件格式。 5. 在操作体验的基础上理解像素及颜色的表示。 (二)过程与方法 通过教师讲解、自主探究、讨论交流和操作实践,掌握像素、分辨率、数字图像的颜色的表示方式,进而能够运用这些知识分析、解决现实生活中碰到的实际问题。 (三)情感态度与价值观 结合ps图像的讲解训练,培养灌输学生的法制观念提高学生的网络道德水平。 【教学重点】 分辨率的定义及现实生活中的分辨率的使用;。 【教学难点】 数字图像颜色的表示及存储方法 【教学策略】

第01章电路的基本概念与基本定律

1 一、例题精解 【例题1.1】在图1.1中,在开关S 断开和闭合的两种情况下,试求A 点的电位。 【解】(1)开关S 断开时 先求电流 89.03 9.320) 12(12=++??=I mA 再求20 k 电阻的电压 U ?20 = 0.89×20 = 17.8V 而后求A 点电位V A 12-V A = 17.8V V A =12-17.8 =8.5?V (2)开关S 闭合时 20k ?电阻两端的电压为 04.10209 .3200 1220=×+?=U V A 点电位为 V A = 12- 10.04 = 1.96V E 1R 1 A 图1.1 例题1.1的图 图1.2 例题1.2的图 【例题1.2】电路如图1.2所示。已知E 1= 6V ,E 2 = 4V ,R 1 = 4?,R 2 = R 3 = 2。求A 点电位V ?A 。 【解】 1246 2111=+=+=R R E I A I 2 = 0A 所以 V A =V 2214021232?=×+?=+?R I E R I 或 V A =V 264140111232?=+×??=+??E R I E R I 【例题1.3】电路如图1.3所示。已知R 1 = R 2 =1?,R 3 = 7?,R 4=2?,E 1=10V , E 2 = 8V ,E 3 = 9V 。求电流I 及A 点电位V A 。 1E 4 R 3R A 图1.3 例题1.3的图

电工学试题精选与答题技巧 2【解】 由基尔霍夫电压定律有 113IR E E =?则 A 11 10 91131?=?=?= R E E I 又因为 2223R I E E =?所以 118 92232=?=?=R E E I A 由分压公式有 29272 34344=×+=+=E R R R U V V A =U V 112224=?=?R I 【例题1.4】把额定电压110V 、额定功率分别为100W 和60W 的两只灯泡,串联在端电压为220V 的电源上使用,这种接法会有什么后果?它们实际消耗的功率各是多少?如果是两个110V 、60W 的灯泡,是否可以这样使用?为什么? 【解】 两只灯泡的电阻 ?===121100 1102 1N 2N 1P U R ?===202601102 2N 2N 2P U R 每只灯泡两端的实际电压值 4.82220202121121 2111=×+=+=U R R R U V 6.137220202 121202 2122=×+=+=U R R R U V 因为U 1U N ,60W 灯泡超过额定电压,会被烧坏。 两个灯泡实际消耗的功率 561214.822 1211===R U P W<100W 7.93202 6.1372 2222===R U P W>60W 两个110V 、60W 的灯泡是可以串联使用的,因为它们的电阻相同,每个灯泡两端的电压也相同,都能达到额定值。这样接法的缺点是,若有一只灯泡坏了,另一只也不能发光。 【例题1.5】在图1.4所示的电路中,欲使灯泡上的电压U 3和电流I 3分别为12V 和0.3A ,求外加电压应为多少? 【解】已知U 3 = 12V ,I 3 = 0.3A ,可求得 6.020 12 4== I A A 9.06.03.0432=+=+=I I I

时序逻辑电路51时序逻辑电路的基本概念1时序逻辑电路

第5章时序逻辑电路 5.1 时序逻辑电路的基本概念 1.时序逻辑电路的结构及特点 时序逻辑电路在任何时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关,触发器就是最简单的时序逻辑电路,时序逻辑电路中必须含有存储电路。时序电路的基本结构如图 5.1 所示,它由组合电路和存储电路两部分组成。 图5.1 时序逻辑电路框图 时序逻辑电路具有以下特点: (1)时序逻辑电路通常包含组合电路和存储电路两个组成部分,而存储电路要记忆给定时刻前的输入输出信号,是必不可少的。 (2)时序逻辑电路中存在反馈,存储电路的输出状态必须反馈到组合电路的输入端,与输入信号一起,共同决定组合逻辑电路的输出。 2.时序逻辑电路的分类 (1)按时钟输入方式 时序电路按照时钟输入方式分为同步时序电路和异步时序电路两大类。同步时序电路中,各触发器受同一时钟控制,其状态转换与所加的时钟脉冲信号都是同步的;异步时序电路中,各触发器的时钟不同,电路状态的转换有先有后。同步时序电路较复杂,其速度高于异步时序电路。 (2)按输出信号的特点 根据输出信号的特点可将时序电路分为米里(Mealy)型和摩尔(Moore)型两类。米里型电路的外部输出Z既与触发器的状态Q n有关,又与外部输入X有

关。而摩尔型电路的外部输出Z仅与触发器的状态Q n有关,而与外部输入X无关。 (3)按逻辑功能 时序逻辑电路按逻辑功能可划分为寄存器、锁存器、移位寄存器、计数器和节拍发生器等。 3.时序逻辑电路的逻辑功能描述方法 描述一个时序电路的逻辑功能可以采用逻辑方程组(驱动方程、输出方程、状态方程)、状态表、状态图、时序图等方法。这些方法可以相互转换,而且都是分析和设计时序电路的基本工具。 5.2 时序逻辑电路的分析方法和设计方法 1.时序逻辑电路的分析步骤 (1)首先确定是同步还是异步。若是异步,须写出各触发器的时钟方程。(2)写驱动方程。 (3)写状态方程(或次态方程)。 (4)写输出方程。若电路由外部输出,要写出这些输出的逻辑表达式,即输出方程。 (5)列状态表 (6)画状态图和时序图。 (7)检查电路能否自启动并说明其逻辑功能。 5.2.1 同步时序逻辑电路的设计方法 1.同步时序逻辑电路的设计步骤 设计同步时序电路的一般过程如图5.10所示。 图5.10 同步时序电路的设计过程

图像处理技术的一些基本概念期末考试

什么是图像:“图”是物体透射或反射光的分布,是客观存在的。 “像”是人的视觉系统对图在大脑中形成的印象或认识,是人的感 觉。图像(image)是图和像的有机结合,既反映物体的客观存 在,又体现人的心理因素;是客观对象的一种可视表示,它包含 了被描述对象的有关信息。 图像分类:根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。 模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。 图像处理(image processing)就是对图像信息进行加工处理和分析,以满足人的视觉心理需要和实际应用或某种目的(如压缩编码或机器识别)的要求。图像处理可分为以下3类:▓模拟图像处理(analogue image processing); ▓数字图像处理(digital image processing); ▓光电结合处理(optoelectronic processing)。 模拟图像处理:也称光学图像处理,它是利用光学透镜或光学照相方法对模拟图像进行的处理,其实时性强、速度快、处理信息量法对模拟图像进行的处理,其实时性强、速度快、处理信息量大、分辨率高,但是处理精度低,灵活度差,难有判断功能。 数字图像处理:即利用计算机对数字图像进行处理,它具有精度高、处理内容丰富、方法易变、灵活度高等优点。但是它的处理速度受到计算机和数字器件的限制,一般也是串行处理,因此处理速度较慢。 光电结合处理:用光学方法完成运算量巨大的处理(如频谱变换等),而用计算机对光学处理结果(如频谱)进行分析判断等处理。该方法是前两种方法的有机结合,它集结了二者的优点。光电结合处理是今后图像处理的发展方向,也是一个值得关注的研究方向。 图像的数学表示:一幅图像所包含的信息首先表现为光的强度(intensity ),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x ,y,z,λ,t) 式中(x,y,z )是空间坐标,λ是波长,t 是时间,I是光点( x,y,z ) 的强度(幅度)。上式表示一幅运动的(t)、彩色/多光谱的(λ) 、立体的( x,y,z )图像。 图像的特点: (1)空间有界:人的视野有限,一幅图像的大小也有限。 (2)幅度(强度)有限:即对于所有的x,y都有0≤f(x,y) ≤Bm 其中B m 为有限值。 数字图像处理的基本步骤 ▓图像信息的获取:采用图像扫描仪等将图像数字化。 ▓图像信息的存储:对获取的数字图像、处理过程中的图像 信息以及处理结果存储在计算机等数字系统中。 ▓图像信息的处理:即数字图像处理,它是指用数字计算机 或数字系统对数字图像进行的各种处理。 ▓图像信息的传输:要解决的主要问题是传输信道和数据量 的矛盾问题,一方面要改善传输信道,提高传输速率,另外要 对传输的图像信息进行压缩编码,以减少描述图像信息的数据 量。 ▓图像信息的输出和显示:用可视的方法进行输出和显示。

第二章 数字图像处理的基本概念

第二章数字图像处理的基本概念 1.什么是图像对比度?人眼感受的亮度与哪些因素有关? 图像对比度是图像中最大亮度B max与最小亮度B min之比。即C1=B max/B min 2.图像数字化包括哪两个过程?它们对数字化图像质量有何影响? 采样和量化。 采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素越多,空间分辨率高,质量好,但数据量大。 量化等级越多,所得图像层次越丰富,灰度分辨率越高,质量越好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,质量变差,会出现假轮廓现象,但数据量小。 3.数字化图像的数据量与哪些因素有关? 采样间隔越大,量化等级越小,数据量越小;采样间隔越小,量化等级越多,数据量越大。 4.连续图像f(x,y)与数字图像I(r.c)中各量的含义是什么?它们有何联系和区别? 5.图像处理按功能分有哪几种形式? 按图像处理的输出形式,图像处理的基本功能可分为三种形式。 (1)单幅图像→单幅图像; (2)多福图像→单幅图像; (3)单(或多)幅图像→单幅图像。 6.什么是点处理?你所学算法中有哪些属于点处理?试举3种不同作用的点运算。 在局部处理中,当输出值JP(i,j)值仅与IP(i,j)像素灰度有关的处理称为点处理。 图像对比度增强、图像二值化、灰度的线性变换、线性拉伸等属于点处理。 7.什么是局部处理?你所学算法中有哪些属于局部处理?试举3种不同作用的局部运算。 在对输入图像进行处理时,计算某一像素的小邻域N[IP(i,j)]中的像素值确定,这种处理称为局部处理。 图像的移动平均平滑法、空间域锐化属于局部处理。 8.图像特性包括哪些类型? 自然特征:亮度、对比度; 人工特征:直方图、频率。 9.什么是窗口处理和模板处理?二者有何区别与联系? 对图像中选定矩形区域内的像素进行处理叫做窗口处理; 预先准备一个和输入图像IP相同大小的二维数组,存储该区域的信息,然后参照二维数组对输入图像处理,叫做模板处理。 模板处理中若模板为矩形区域,则与窗口处理具有相同的效果,但窗口处理与模板处

图像处理基础概念

2.2 图像基本概念 2.2.1 像素与灰度 像素和分辨率在计算机中,有两个大家都熟悉的概念:像素(pixel)和分辨率(resolution)。我们将图像进行采样的单位称为像素,像素是是组成图像的最基本元素,是数字图像显示的基本单位。像素是一个逻辑尺寸单位,比如一台计算机,其屏幕大小为17英寸,可以用800行*1280列个像素(格子)来显示桌面的图像,也可以用768行*1024列来显示桌面图像,不过显示的图像的清晰度会有差别。在计算机编程中,由像素组成的图像也通常叫“位图”或“光栅图像”。而分辨率狭义的是指显示器所能显示的像素的多少,当用户设置桌面分辨率为1280*800时,表示的意思就是在这个屏幕大小的物理尺寸上,显示器所显示的图像由800行*1280列个像素组成;可以看出,在同样大小的物理尺寸上,分辨率越高的图像,其像素所表示的物理尺寸越小,画面也就越精细,整个图像看起来也就越清晰。广义的分辨率是指对一个物体成像数字时化时进行采样的物理尺寸的大小,比如我们嫦娥一号卫星拍摄的月亮的照片,其分辨率是个很大的数(通常称分辨率很低),如几千平方公里,意思是说,在拍摄的月球的照片上,一个像素点相当于月球上几千公里见方。 2.2.2 采样量化 将空间上连续的图像变换成离散点的操作称为采样。采样间隔和采样孔径的大小是两个很重要的参数。当对图像进行实际的抽样时,怎样选择各抽样点的间隔是个非常重要的问题。关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。 经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。将像素灰度转换成离散的整数值的过程叫量化。表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。一幅数字图像中不同灰度级的个数称为灰度级数,用G表示。灰度级数就代表一幅数字图像的层次。图像数据的实际层次越多视觉效果就越好。一般来说,G=2g,g就是表示存储图像像素灰度值所需的比特位数。若一幅数字图像的量化灰度级数G=256=28级,灰度取值范围一般是0~255的整数,由于用8bit就能表示灰度图像像素的灰度值,因此常称8 bit 量化。从视觉效果来看,采用大于或等于6比特位量化的灰度图像,视觉上就能令人满意。一幅大小为M×N、灰度级数为G的图像所需的存储空间,即图像的数据量,大小为M×N×g (bit)。 图2.4 分辨率与图像清晰度图2.5 量化等级与图像清晰度 一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大,如图2.4所

图像处理基本概念计算公式

1亮度处理—图像整体变亮或变暗 实现方法:加大或减小每个像素的三基色值 计算式:V=V'*(1+d) V —调整后颜色值 V'—原颜色值 d —亮度调整系数,-1<=d<=1 2. 对比度处理—图像亮处更亮暗处更暗 实现方法:以亮度的中间值为基准,加大较大的颜色值,减小较小的颜色值 中间值的取法:ⅰ固定取127;ⅱ取所有像素点各基色的平均值 计算公式:V=127+(V'-127)*(1+d) V —调整后颜色值 V'—原颜色值 d —对比度调整系数,-1<=d<=1 3. 色阶处理 将给定的输入范围映射到给定的输出范围,输出范围一般默认为[0,255] 公式:121'255)(d d d V V -?-= d 1——输入范围的下界值 d 2——输入范围的上界值 4. 图像平滑 目的:消除图像中的噪声 噪声即叠加在图像上的正负随机亮度值 均值平滑:取本身及周围9个像素点的颜色平均值 中值平滑:取本身及周围9个像素点的颜色中间值 5. 水平一阶微分法 求各像素点与左侧像素点颜色值的绝对值得到边缘强度值,以各点的边缘强度值为灰度形成一幅边缘检测结果灰度图像。 6. 垂直一阶微分法 像素点与上边像素点颜色差值的绝对值 7. 双向一阶微分法 水平、垂直分别求边缘值,取最大者 8. 锐化-即加大边缘处的颜色差异 9. 双向一阶微分锐化 对每个像素点的每种基色值,分别求与左侧和上侧点的差值,将两者均值叠加到当前值上。

10. 镜像(垂直翻转、水平翻转) 围绕图像中心点,像素进行左右置换或上下置换。 垂直翻转可逐行进行,水平翻转函数要逐行逐点进行处理。 11. 缩小 缩小:图像画面面积减小,像素减少,图像等比例缩小 裁剪:图像画面面积减小,像素减少,但图像不变,只是局部处于画面中,多出部分丢弃 宽度与高度方向的缩小比例可以不同 实现方法:抽点发—采样法 12. 放大 图像放大:图像画面增大,像素增多,图像等比例放大 画布放大:图像画面增大,图像不变,图像周围为空白画面 实现方法:插值法—线性插值、二次插值、三次插值 采样法 放大采样法的处理程序与缩小采样法程序完全相同 双向线性插值方法例子: 设dw=biWidth/dWidth=0.7,dh=0.7 则新图像中的点(6,8)对应于原图像中的位置为(4.2,5.6) 当采用采样法时,将取离该位置最近的点(4,6)填入新图像的(6,8)点。 当采用双向线性插值时,则取该位置周围的四个点,插值计算该点的值。如下图: V 1 V 3 34 则有:V12=V1*(1-0.6)+V2*0.6 V34=V3*(1-0.6)+V4*0.6 V =V12*(1-0.2)+V34*0.2 =V1*(1-0.6)*( 1-0.2)+V2*0.6*( 1-0.2) +V3*(1-0.6)*0.2+V4*0.6*0.2

第1章 电路的基本概念与基本定律

第1章电路的基本概念与基本定律 一、填空题: 1. 下图所示电路中,元件消耗功率200W P ,U=20V,则电流I为 10 A。 U 2. 如果把一个24伏的电源正极作为零参考电位点,负极的电位是_-24___V。 3.下图电路中,U = 2 V,I = 1 A 3 A,P 2V = 2 W 3 W , P 1A = 2 W,P 3Ω = 4 W 3 W,其中电流源(填电流源或 电压源)在发出功率,电压源(填电流源或电压源)在吸收功率。 U 4. 下图所示中,电流源两端的电压U= -6 V,电压源是在发出功率 5.下图所示电路中,电流I= 5 A ,电阻R= 10 Ω。 B C 6.下图所示电路U=___-35 ________V。

7.下图所示电路,I=__2 __A,电流源发出功率为_ 78 ___ W,电压源吸收功率20 W。 8. 20.下图所示电路中,根据KVL、KCL可得U=2V,I1= 1 A,I2= 4 A ;电流源的功率为 6 W;是吸收还是发出功率发出。2V电压源的功率为 8 W,是吸收还是发出功率吸收。 V 4 9.下图所示的电路中,I2= 3 A,U AB= 13 V。 10.电路某元件上U = -11 V,I = -2 A,且U 、I取非关联参考方向,则其吸收的功率是22 W。 11. 下图所示的电路中,I1= 3 A,I2= 3 A,U AB= 4 V。

12.下图所示的电路中,I= 1 A;电压源和电流源中,属于负载的是电压源。 8V 13. 下图所示的电路中,I=-3A;电压源和电流源中,属于电源的是电流源。 8V I 14.下图所示的电路,a 图中U AB与I之间的关系表达式为 155 AB U I =+ ;b 图 中U AB与I之间的关系表达式为 510 AB U I =- 。 5Ω Ω I I A B B A 10V a图 b图 15. 下图所示的电路中,1、2、3分别表示三个元件,则U = 4V ;1、2、3这三个元件中,属于电源的是 2 ,其输出功率为 24W 。 + 8V 4V _ + + _ U 16.下图所示的电路中,电流I= 6 A,电流源功率大小为24 W,是在发出(“吸收”,“发出”)功率。

数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案 第一章和第二章作业:1.简述数字图像处理的研究内容。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 3.列举并简述常用表色系。 1.简述数字图像处理的研究内容? 答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面, 将这几个方面展开,具体有以下的研究方向: 1.图像数字化, 2.图像增强, 3.图像几何变换, 4.图像恢复, 5.图像重建, 6.图像隐藏, 7.图像变换, 8.图像编码, 9.图像识别与理解。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?

答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。 根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。 图像处理着重强调在图像之间进行的变换。比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。图像处理主要在图像的像素级上进行处理,处理的数据量非常大。 图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。 图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。 第三章图像基本概念 1.图像量化时,如果量化级比较小时会出现什么现象?为什么? 答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。图像的量化等级反映了采样的质量,数字图像的量化级数随图像的内容及处理的目的差别而不同,低的量化级数只满足于处理简单的线条而对于图像,若线条不明显时,则会产生伪轮廓。人眼对灰度误差有一个敏感度阈值,当灰度误差大于门限值时,即量化误差大于视觉阈值时,人眼看到的图像会出现伪轮廓。 2.为什么非均匀量化多用于量化级数少的场合,而在量化级数多的场合不用? 答:①非均匀量化是依据一幅图像具体的灰度值分布的概率密度函数,,是按总的量化误差最小的原则进行量化的方法,通过对图像中像素灰度值频繁

数字图像处理复习资料

数字图像处理复习资料 第1章绪论第2章数字图像处理基本概念 1. 解答题 (1)什么叫数字图像? 答:数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。 (2)数字图像处理包括哪些内容? 答:图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。 (3)数字图像处理系统包括哪些部分? 答:输入(采集);存储;输出(显示);通信;图像处理与分析。 (4)从“模拟图像”到“数字图像”要经过哪些步骤? 答:图像信息的获取;图像信息的存储;图像信息处理;图像信息的传输;图像信息的输出和显示。 (5)什么叫数字图像的“空间分辨率”和“幅度分辨率”?各由数字化哪个过程决定? 答:空间分辨率是指图像可辨认的临界物体空间几何长度的最小极限;幅度分辨率是指幅度离散,每个像素都有一个强度值,称该像素的灰度,一般量化采用8bit。 (6)数字图像1600?1200什么意思?灰度一般取值范围0~255,其含义是什么? 答:数字图像1600x1200表示空间分辨率为1600x1200像素;灰度范围0~255指示图像的256阶灰阶,就是通过不同程度的灰色来来表示图像的明暗关系,8bit的灰度分辨率。(7)P42:2,3,6(直方图概念),10,11 2.图像的数字化包括哪两个过程?它们对数字化图像质量有何影响? 答:采样;量化 采样是将空间上连续的图像变换成离散的点,采样频率越高,还原的图像越真实。 量化是将采样出来的像素点转换成离散的数量值,一幅数字图像中不同灰度值得个数称为灰度等级,级数越大,图像越是清晰。 3数字化图像的数据量与哪些因素有关? 答:图像分辨率;采样率;采样值。 6.什么是灰度直方图?它有哪些应用?从灰度直方图中你可可以获得哪些信息? 答:灰度直方图反映的是一幅图像中各灰度级像素出现的频率之间的关系; 它可以用于:判断图像量化是否恰当;确定图像二值化的阈值;计算图像中物体的面积;计算图像信息量。 从灰度直方图中你可可以获得: 暗图像对应的直方图组成成分几种在灰度值较小的左边一侧 明亮的图像的直方图则倾向于灰度值较大的右边一侧 对比度较低的图像对应的直方图窄而集中于灰度级的中部 对比度高的图像对应的直方图分布范围很宽而且分布均匀 10.什么是点处理?你所学算法中哪些属于点处理? 答:在局部处理中,输出值仅与像素灰度有关的处理称为点处理。如:图像对比图增强,图像二值化。

01分电路的基本概念和基本定律

电路的基本概念和基本定律 一、是非题 1.在电路的节点处,各支路电流的参考方向不能都设为指向节点,否则将只有流入节点的电流,而没有流出节点的电流。 2.电流强度的大小定义为单位时间内通过单位面积的电量。 3.在电路中,由于所标明的电流参考方向是任意假定的,所以电流可能为正,也可能为负。 4.电路中某两点的电位都很高,则这两点间的电压一定很高。 5.电路中某两点间的电压等于两点的电位差,所以该两点间的电压与参考点有关。 6.若改变电路中的参考点,则电路中各点的电位一般都将改变。 7.某元件的电压u和电流i为非关联参考方向,若用p=ui算得的功率值为 5W,则该元件实际供出5W的功率。 8.若某元件的电流I和电压U采用非关联参考方向,则P=UI为该元件供出的功率。 9.短路元件的电压为零,其电流不一定为零。开路元件的电流为零,其电压不一定为零。 10.根据P=UI,对于额定值220V、40W的灯泡,由于其功率一定,如电源电压越高,则其电流必越小。 11.有两个额定电压相同的电炉,电阻不同。因为P =I2R,所以电阻大的功率大。 12.如果电池被短路,输出的电流将最大,此时电池输出的功率也最大。 13.无论流过电压源的电流多大,电压源的电压总保持常量或给定的时间函数。 14.如果一个电压源的电压U S=0,则它相当于开路。 15.直流电源的内阻为零时,电源电动势就等于电源端电压。 16.某实际直流电源的开路电压为U S,若该电源外接一个电阻器,其电阻值在某范围变化时都满足U R=U S,则在一定的电流条件下,该实际电源的模型为一电压源。

17.与电压源并联的各网络,对电压源的电压并无影响;与电流源串联的各网络,对电流源的电流并无影响。 18.如果一个电流源的电流I S=0,则它相当于开路。 19.电路中任意两点a、b之间的电压u ab,等于从a点沿任意一条路径到b点间所有元件电压的代数和。 20.KCL对于电流的参考方向或实际方向均成立,KVL对于电压的参极性或实际极性也都是成立的。 21.在列写KCL和KVL方程时,对各变量取正号或负号,均按该变量的参考方向确定,而不必考虑它们的实际方向。 22.线性电阻的电压、电流特性曲线的斜率总是正值。 23.实际直流电源的特性越接近电压源时,其内阻越小。实际电源的特性越接近电流源时,其内阻越大。 24.将小灯泡与可变电阻串联后接到直流电压源上,当电阻增大时,灯泡的电压减小,所以灯泡变暗。 答案部分 1.( -)2.(+)3.(+)4.(-)5.(-)6.(+)7.(-) 8.(+)9.(+)10.(-) 11.(-)12.(-)13.(+)14.(-)15.(+)16.(+)17.(+)18.(+)19.(+) 20.(+)21.(+)22.(-)23.(+)

《数字图像处理》教学大纲

《数字图像处理》教学大纲 课程编码:3073009223 课程名称:数字图像处理 总学分:2 总学时:32 适用专业:自动化专业等 先修课程:概率论与数理统计、线性代数、C++程序设计 一、课程性质、目标和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源 1.3 数字图像处理领域的应用实例 1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成

第2章 数字图像的基础知识和基本概念

第2章数字图像的基础知识和基本概念 一、数字图像 数字图像是以二进制数字组形式表示的二维图像。利用计算机图形图像技术以数字的方式来记录、处理和保存图像信息。在完成图像信息数字化以后,整个数字图像的输入、处理与输出的过程都可以在计算机中完成,它们具有电子数据文件的所有特性。通常把计算机图形主要分为两大类:位图(bitmap)图像和矢量(vector)图形(如图2-1所示)。 图2-1 计算机图形的主要分类 1.关于位图图像 (1)概念 位图图像(在技术上称作栅格图像)使用图片元素的矩形网格(像素)表现图像。每个像素都分配有特定的位置和颜色值。在处理位图图像时,人们所编辑的是像素。位图图像是连续色调图像(如照片或数字绘画)最常用的电子媒介,因为它们可以更有效地表现阴影和颜色的细微层次。 (2)分辨率 位图图像与分辨率有关,也就是说它们包含固定数量的像素。因此,如果在屏幕上以高缩放比率对它们进行缩放或以低于创建时的分辨率来打印它们,则将丢失其中的细节,并会呈现出锯齿,如图2-2所示。 图2-2 不同放大级别的位图图像示例 (3)特点 ①位图图像有时需要占用大量的存储空间。对于高分辨率的彩色图像,由于像素之间独

立,所以占用的硬盘空间、内存和显存比矢量图都大。 ②位图放大到一定倍数后会产生锯齿。位图的清晰度与像素点的多少有关。 ③位图图像在表现色彩、色调方面的效果比矢量图更加优越,尤其在表现图像的阴影和色彩的细微变化方面效果更佳。 ④位图的格式有bmp、jpg、gif、psd、tif、png等。 ⑤处理软件:Photoshop、ACDSee、画图等。 2.关于矢量图形 (1)概念 矢量图形(又称矢量形状或矢量对象)是由称作矢量的数学对象定义的直线和曲线构成的。矢量根据图像的几何特征对图像进行描述。 (2)分辨率 矢量图形是与分辨率无关的,即当调整矢量图形的大小、将矢量图形打印到PostScript 打印机、在PDF文件中保存矢量图形或将矢量图形导入到基于矢量的图形应用程序中时,矢量图形都将保持清晰的边缘(如图2-3所示)。 图2-3 不同放大级别的矢量图形示例 (3)特点 ①矢量图形可以任意放大和缩小,图形不模糊,不会丢失细节或影响清晰度,不会产生锯齿效果。因此,对于将在各种输出媒体中按照不同大小使用的图稿(如徽标),矢量图形是最佳选择,常用于标志设计、VI设计、字体设计等。 ②矢量图形中保存的是线条和图块的信息,所以矢量图形文件与分辨率和图像大小无关,只与图像的复杂程度有关,图像文件所占的存储空间较小。 ③可采取高分辨率印刷。矢量图形文件可以在任何输出设备(如打印机)上以打印或印刷的最高分辨率进行打印输出。 ④矢量图可以作为图像元素导入Photoshop里使用,它会很好地适应于导入图像的分辨率。 ⑤在Photoshop里的一些矢量工具,比如:钢笔(路径)、文字、形状等在图像处理和创意中都发挥着重要的作用。 3.像素 (1)像素定义 像素(Pixel)是用来计算数字图像的一种单位。数字图像连续性的浓淡阶调是由许多色彩相近的小方点组成,这些小方点就是构成数字图像的最小单位“像素”。越高位的像素,其拥有的色板也就越丰富,越能表达颜色的真实感。人们也经常用点来表示像素,因此PPI 有时缩写为DPI(dots per inch)。用来表示一幅图像的像素越多,结果就更接近原始的图像,即图像的精度越高。 (2)关于像素的扩展

图像处理基本算法及要解决的主要问题

数字图像处理的基本算法及要解决的主要问题 图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。 图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。 目录 [隐藏] * 1 解决方案 * 2 常用的信号处理技术 o 2.1 从一维信号处理扩展来的技术和概念 o 2.2 专用于二维(或更高维)的技术和概念 * 3 典型问题 * 4 应用 * 5 相关相近领域 * 6 参见 [编辑] 解决方案 几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。 从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。 [编辑] 常用的信号处理技术大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。 [编辑] 从一维信号处理扩展来的技术和概念 * 分辨率(Image resolution|Resolution) * 动态范围(Dynamic range) * 带宽(Bandwidth) * 滤波器设计(Filter (signal processing)|Filtering) * 微分算子(Differential operators) * 边缘检测(Edge detection)

相关文档
相关文档 最新文档