文档视界 最新最全的文档下载
当前位置:文档视界 › 浅谈地震勘探处理方法

浅谈地震勘探处理方法

浅谈地震勘探处理方法
浅谈地震勘探处理方法

浅谈地震勘探处理方法

论文提要

地震勘探技术在油气田勘探开发中起着重要的作用。地震勘探包括三大阶段,野在采集,数据处理和室内解释。其中地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比,分辨率和保真度以便于解释。地震数据处理主要包括地震反褶积,叠加和偏移成像三大技术。

地震数据处理出现于20时纪20年代初期,随后的40年间是对光点记录和模拟记录进行处理,处理技术发展较慢,进入20世纪60年代以后,计算机的出现把地震勘探处理技术带入了数字时代,数字技术为数据处理的发展提供了广阔的前景。下面简单介绍地震数据处理的流程以及地震数据处理的方法。

正文

一、地震数据处理流程

(一)地震数据处理的三个阶段

1.预处理,预处理就是把野在数据格式转换成适合计算机处理的格式,并对数据做相应编辑和校正。

预处理包括数据解编,格式转换,编辑,几何扩散校正,建立野在观测系统,野在静校正

2.常规处理,是对预处理后地震数据做必要的基本处理预算。常规处理包括反褶积,道均衡,抽取共中心点道集,速度分析,剩余静校正,切除,叠加,偏移。

3.特殊处理,针对不同目的采用不同的特殊的处理手段,包括t-p变换,小波变换,三维叠前深度偏移,子波处理,属性分析,反演。

二、数字滤波

(一)数字滤波的有关概念

从广义上讲,任何一种对输入信号的改造作用都可看成滤波,实现这种滤波的系统称为滤波器,滤波器分为模拟滤波器和数字滤波器。

1.模拟滤波器,也称电滤波器,它由电阻、电感和点容等元器件组成,它组成的是一个低通滤波器(LCF)如图1。

由于模拟滤波器运算速度快,因此某些具有单一滤波功能的构件可由它来完成,但模拟滤波器一旦固定,不易修改,适应面较窄,成本也较高,所以模拟滤波器进一步发展成了数字滤波器。

2.数字滤波器,数字滤波器主要目的是压制噪声,信号要进行数字滤波,首先要进行采样。抽样过程要满足抽样定理,不然会使频谱混叠,产生假频,抽样定理可由以下两个公式描述。

(1)频率域 Ws=2WN>=2Wmax

式中Ws称为采样频率,WN称为折叠频率,也称为Niquist频率Wmax称为最高频率。

(2)时间域Δt<=1/2fmax

式中^t为采样间隔,fmax为信号的最高频率。

(二)一维滤波

利用有效波和干扰波的频率差异,采用一维滤波,主要压制面波。

1.理想低通滤波器

有一些地区存在较强高频干扰,因此需要通过低通滤波把高频干扰除去,这种滤波器的形状像门一样,故又称门式滤波器。如图2

有效波在有限频带范围内出现高、低干扰波,仪器车上滤去高频低频,频率扫描,检查剖面分辨率和信噪比。如图3

3.带陷滤波器

又叫带阻滤波器,主要消除某些特殊的干扰,如工区经过高压线即50Hz 工业电干扰。如图4

地震资料中,有些干扰频率很低,如面波,可用高通滤波器。如图5

(三)二维滤波

1.二维滤波要满足二维抽样定理即时间采样间隔和空间采样间隔应同时满足。

2.二维频波图,视速度相同的信号成分在频波图上位于过原点的直线上,而且斜率

图 6

3.扇形滤波器,在实际地震资料中,由于地层的视速度一般都很大,因此常用的二

图7

4.视速度滤波的处理流程如图8所示。

图8

三、速度分析、动静校正和叠加

(一)速度分析

速度分析是为叠加提供最佳叠加速度。通常有两种地震波速度的测量方法,一是声波测井的直接测量法;二是地震勘探数据的间接测量法。根据这两方面的信息,可以得到多种不同物理意义和用途的地震速度,如层速度,平均速度,均方根速度,瞬时速度,相速度,群速度,动校正(NMO)速度,叠加速度和偏移速度等。

1.层速度

层速度为两个反射界面之间的平均速度,一定岩石组分岩层的层速度受下面几种因素影响:孔隙形状,孔隙压力,孔隙流体饱合度,围压,温度。

2.速度扫描原理

对一个CMP道集,用一系列常速度重复做动校正,每校正一次得一张图像,当速度小时,校正的结果为过校正,速度大时,欠校正,只有当速度合适时,校正后道集构成一条水平直线,此时的速度为所求的叠加速度,此方法精度高,工作量大。

3.常速度叠加法

对多个相邻CMP道集,用一系列速度进行校正,叠加,叠后同相轴振幅最强且是连续性好的所对应的速度即所求叠加速度,此法适合解决复杂构造。

4.速度谱

对共反射点时距曲线,固定to求取ti,取各道记得振幅进行相加得A(V),当V=Va时计算时间与实际记得同相轴的相位时间一致,由于同相轴的相位时间不一致,叠加振幅小,一系列叠加速度中,振幅最大的速度即所求叠加速度。图9a表示一个层状地层模型的CMP道集,根据叠加振幅,从速度谱上选取下面几个作为叠加速度函数如图9b:2700,2800,3000m/s分别对应浅、中、深三种同相轴,速度谱不仅能提供叠加速度,使我们由此区分反射波多次波

a b

图9

5.影响速度估算的因素

以下因素会限制地震资料速度估算的精度和分辨率:排列长度,叠加次数,信噪比,切除,时窗宽度,速度采样,相干属性量的选择,双曲线正常时差的偏离度,数据的频谱宽度

(二)动校正

动校正起消除正常时差的过程。

1.动校正量随炮检距、深度和速度的关系。

NMO随炮检距,随深度递减,同时,速度越大,NMO值越小。

2.动校正速度的选择对校正效果的影响,如图10,采用低速度,得到过校正道集,采用高速度,得到欠校正道集。

图10

3.动校正拉伸

动校正结果出现了频率畸变,尤其是对浅层的大炮检距,就是NMO拉伸。通常要考虑信噪比和切除两方面,采取折衷,特别是当信噪比很高时,宁愿多切除一些以保留信号频带宽度。反之,如果信噪比很低,这时应多保留一些拉伸,以便叠加之后得到一切可能得到的同相轴,如图11。

图11

4.各种地层模型的NMO速度

(1)单一水平层,反射界面以上的速度

(2)水平层状地层,由小排列给出的均方根速度函数

(3)单一倾斜层,界面以上介质速度除以倾角的余弦

(4)多层任意倾斜层,由小排列,小倾角定义的均方根速度函数

(三)静校正

由于激发点和接收点条件变化引起的时差称静校正量,消除静校正量的过程称作静校正。静校正量随地表高程变化和浅层低、降速带的存在而发生变化,其中激发点的静校正量为正,反之,接收点的静校正量为负。

静校正包括基准面校正,就是把所有炮点和接收点都校正到同一水平面上,这个水平面称基准面。基准面校正就是把所有炮点和接收点都校正到同一水平面上的过程。

由近地表不规则所造成的畸变绝大部分通过野在静校正予以消除,下面为剩余静校正的处理流程图,如图12.

图12

(四)叠加

1.一般水平叠加,参与叠加道的质量基本一致

2.自适应水平叠加,参与叠加道质量差异较大。

四、反褶积

反褶积是地震资料最常用和最重要的处理方法之一。它可用于叠前,也可用于叠后。反褶积的主要作用是压缩地震子波,提高地震资料的分辨率,从而提高资料解释的精度,为油田精细勘探和开发服务。另外,反褶积还可以消除短周期鸣震和其它多次干扰,突出有效波,提高地震资料的信噪比。

(一)反褶积的基本概念

若地震波以脉冲波形式激发,经过地层时无吸收,透射和多次反射等因素的影响,而且整个传播过程不存在随机干扰,这样可以得到理想的输出,这时得到的输出实际上就是反射系数序列,同实际地震记得相比,它有很高的分辨率。

1为什么要做反褶积,实际地震记得由于受复杂子波的作用和干扰的影响,分辨能

力较低,地质界面上各反射波互相叠加,彼此干涉,成为一复杂的形式。

由一函数与地震记得褶积得到反射系数,这一过程被称为反褶积,有时也称为反滤波,即反射系数与地震子波褶积,地震记得与反子波褶积得到反射系数。

(二)最佳维纳滤波

维纳滤波即最小平方滤波,是由维纳1942年提出的,这种方法以一种最佳准则来设计滤波器,使滤波器的实际输出与期望输出的差的平方和最小。因为维纳滤波器是一种最佳滤波器,维纳滤波又经常被称为最佳维纳滤波器。

1.下面介绍维纳滤波的基本原理,如图13。

图13

2.维纳滤波与各种反褶积间的关系

若期望输出是零延迟尖脉冲,则有脉冲反褶积;若期望输出是时间提前了的输入序列,则有预测反褶积,特别是当预测(步长)为1时,这时预测反褶积成了脉冲反褶积;若期望输出是任一延迟尖脉冲或波形,则有子波整形反褶积。下图则是维纳滤波与反褶积方法关系图,如图14。

图14

(三)其他反褶积方法

1.最小平方反褶积,输入是地震子波,输出是脉冲,用最小平方反褶积。

2.预测反褶积,用预测滤波原理来实现反褶积问题的方法就是预测反褶积。下面介绍预测反褶积的基本流程。

输入地震记得,计算n+a个延迟的自相关(n为预测滤波器长,a为预测步长)。用方程(如图15)计算滤波因子,滤波因子与输入相褶积,结果按预测步长延迟,由输入减去刚才得到的结果得到输出。用预测反滤波消除多次波是典型,还可以消除海上鸣震干扰。

图 15

3.子波整形反褶积

(1)子波振幅谱相同,最小相位子波对期望输出为零延迟的反褶积,误差最小;

(2)在子波为混合相位和最大相位时,期望输出的相位应与子波的相位匹配,只有这样才能得到合适的反褶积结果。

五、偏移成像

地震偏移技术是现代地震勘探数据处理的三大基本技术之一,它是在过去的古典技术上发展起来的,其它两大技术都是从其它相关学科引进到地震中来的。所以,偏移技术具有地震勘探本身的特征。但是,地震偏移方法本身由于使用计算机而引起了许多革命性的变化。这就使得它从研究简单的探测目标的几何图形进而发展成研究反射界面空间的波场特征,振幅变化和反射率等。

(一)地震偏移效果叠前见图16、叠后见图17。

图16 图17

(二)偏移方法分类

1.叠加:适用于水平层状介质。

2.法向射线深度转换:严格用于没有构造倾角且速度只随深度变化的情况。

3.时间偏移:适用于叠加剖面上有绕射波或构造倾角以及速度有垂直变化的情况;速度的横向变化不大时也能用。

4.深度偏移:用于叠加剖面上有构造倾角和强横向变速的情况。

5.叠前部分偏移:叠后偏移适用于叠加剖面与零炮检距剖面等价的情况,但不适合具有不同叠加速度的地层倾角不一致或强横向变速的地区,叠前部分偏移能够为叠后偏移提供更好的叠加剖面,但叠前偏移只解决具有不同叠加速度的地层倾角不一致的问题。

6.叠前全时间偏移:输出偏移剖面,不产生未经偏移的中间叠加剖面,但无论如何这是解决倾角不一致地层问题的最精确方法。叠前部分偏移是这种处理方法的一种简化。

7.叠前深度偏移:用于严重横向变速的情况,这时无法做合适的叠加处理。

8.三维叠后时间偏移:用于叠加剖面上出现来自射线平面以外的倾斜同相轴(即垂直测线方向)的情况,这是叠后最常用的一种三维偏移方法。

9.三维叠后深度偏移:用来解释与三维地下复杂构造有关的强横向变速问题。

10.三维叠前时间偏移:用于叠前部分偏移不适用且叠加剖面上有横向倾斜层反射的情况。

11.三维叠前深度偏移:用于叠前深度偏移:用于叠后偏移和时间偏移不能正确成像的具有强横向变速的三维复杂地区,它对三维速度-深度模型的精度有较高的要求。

(三)偏移的目的

倾斜界面归位,绕射波收敛。

六、总结

通过学习地震数据处理这门学科,使我们了解到了许多这方面的知识。随着计算机技术的发展处理方法随之发展,对今后的工作带来了很大的方便。将会发财许多以前不易发财的小构造。希望处理技术继续快速发展,是中国石油工作者有更好的工作顺利条件。

地震勘探原理复习题答案

绪论 一、名词解释 1.地球物理方法(ExplorationMethods):利用各种仪器在地表观测地壳上的各种物理现象,从而推断、了 解地下的地质构造特点,寻找可能的储油构造。它是一种间接找油的方法。特点:精度和成本均高于 地质法,但低于钻探方法。 2、地震勘探:就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 二、简答题 1、了解地下资源信息有那些主要手段。 (1)、地质法(2)、地球物理方法(3)、钻探法(4)、综合方法:地质、物探(物化探)、钻探 结合起来,进行综合勘探。其中,地质法贯穿始终,物探是关键,钻探是归宿。 2有几种主要地球物理勘探方法,它们的基本原理。 地球物理勘探方法是以岩矿石(或地层)与其围岩的物理性质差异为物质基础,用专门的仪器设备 观测和研究天然存在或人工形成的物理场的变化规律,进而达到查明地质构造寻找矿产资源和解决工 程地质、水文地质以及环境监测等问题为目的勘探,叫地球物理勘探,简称物探。相应的各种勘探方法,叫地球物理勘探方法,简称为物探方法,有地震勘探、重力勘探、磁法勘探、电法勘探、地球物 理测井。 (1)重力勘探:利用岩石、矿物(地层)之间的密度差异,引起重力场变化,产生重力异常,用重 力仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (2)磁法勘探:利用岩石、矿物(地层)之间的磁性差异,引起磁场变化,产生磁力异常,用磁力 仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (3)电法勘探:利用岩石、矿物(地层)之间的电性差异,引起电(磁)场变化,产生电性异常,用 电法(磁)仪测量其异常,根据异常变化情况反演地下地质构造情况。 (4)地震勘探:利用岩石、矿物(地层)之间的弹性差异,引起弹性波场变化,产生弹性异常(速 度不同),用地震仪测量其异常值(时间变化),根据异常变化情况反演地下地质构造情况。 (5)地球物理测井:电测井;电磁测井;放射性测井;声波测井;地温测井;密度测井。 3、地震勘探的主要工作环节。 (1)野外数据采集(2)室内资料处理(3)地震资料解释

地震数据处理方法(DOC)

安徽理工大学 一、名词解释(20分) 1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号) 3、模拟信号:随时间连续变化的信号。 4、数字信号:模拟数据经量化后得到的离散的值。 5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt. 6、采样定理: 7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。 8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。 9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。 10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。 11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。 12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正, 13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。 14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。 15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

地震勘探史

地震勘探史 地震勘探是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法。地震勘探是钻探前勘测石油与天然气资源的重要手段。 地震勘探起始于19世纪中叶。地震勘探技术经过了一个世纪的研究和发展,从1845 年Mallet 以“人工地震”测量地震速度实验开始,1922 年明特罗普地震勘探公司正式组建装备了两个地震勘探队,利用机械式地震仪在墨西哥和美国墨西哥湾沿岸地区进行折射波法地震勘探,1913 年由Reginald Fessenden 提出了反射法地震勘探,1924 年利用单次覆盖地震资料首次在美国德克萨斯州发现穹隆油田。20世纪30年代,苏联Г。А。甘布尔采夫等吸收了反射法的记录技术,对折射法作了相应的改进。20世纪50~60年代,反射法的光点照相记录方式被模拟磁带记录方式所代替,从而可选用不同因素进行多次回放,提高了记录质量。20世纪70年代,模拟磁带记录又为数字磁带记录所取代,形成了以高速数字计算机为基础的数字记录、多次覆盖技术、地震数据处理技术相互结合的完整技术系统,大大提高了记录精度和解决地质问题的能力。从20世纪70年代初期开始,采用地震勘探方法研究岩性和岩石孔隙所含流体成分。 我国的地震勘探发展史可分为四个阶段:电子管技术阶段、模拟技术阶段、数字技术阶段、遥测技术阶段。 1955年,我国煤炭工业上开始采用地震勘探技术,并在华东组建了全国第一支地震勘探队伍。1971年,由煤炭科学研究总院西安分院、渭南煤矿专用设备厂研制成功MD-1型半导体磁带记录地震仪。1979年我国打破了西方国家的技术封锁,成功研制出MDS-1型数字地震仪,对数字地震勘探起到了很大的推动作用。1984~1985年,随着对外改革开放政策的实施,我国煤田地震勘探队伍开始从国外引进21套以DFS-V和SN338为主的数字地震仪,同时引进了以IBM-4381为主机的地震数据处理系统。1978年,中国煤田地质总局在伊敏河矿区开展煤田三维地震勘探技术前提性研究。1989年、1993年山东煤田物探队与煤炭科学研究总院西安分院利用小型数字地震仪进行三维地震勘探技术的试验研究。1994年,由中国矿业大学和安徽煤田物探测量队联合开展的“煤矿采区高分辨率三维地震技术”研究项目,在安徽淮南矿务局谢桥煤矿采区地震勘探中首次在采区地

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

对地震勘探技术的基本认识

对地震勘探技术的基本认识 论文提要 勘探石油的方法有三类,第一类是地质法,第二类是物探法,第三类是钻探法。其中物探法又包括重力勘探,磁法勘探,电法勘探,地震勘探。由此可见,勘探石油是一项很复杂的工作。它需要各种方法互相配合,协作,需要综合分析,研究各方面的资料。在勘探石油的各种物探方法中,地震勘探具有勘探精度高能更清晰地确定油气构造形态,埋藏深度,岩石性质等优点,成为油气勘探的主要手段,并且被广泛采用。 正文 一、概述 地震勘探是根据地下介质的强性和密度差异,通过观测和分析大地对人工激发地震波的影响,推断地下岩层的性质和形态是一种地球物理勘探方法。在地表附近用人工方法激发的地震波,向下传播时,如遇到介质性质不同的沿层分界面会发生反射和透射,在地表或井中都可以用检波器接收到这种地震波。收到的地震波信号与震源特性,检波点的位置,地震波经过的地下岩层的性质和结构有关。通过对地震波记录进行处理和解释,可以推断地下岩层的性质和形态。地震勘探在分层的详细程度和勘查的精度上,都优于其它地球物理勘探方法。地震勘探的深度一般从数十米到数十千米。 爆炸震源是地震勘探中广泛采用的非人工震源。目前已发展了一系列震源,如重锤,连续震动源,气动震源等。但陆地地震勘探经常采用的重要震源仍为炸药。海上地震勘探除采用炸药震源之外,还广泛采用空气枪、蒸汽枪及电火花引爆气体等方法。地震勘探是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘察、区域地质研究和地壳研究等方面,也得到广泛应用。 二、发展简史 地震勘探始于19世纪中叶。1845年,R·马利特曾用人工激发的地震波来测量弹性波在地壳中的传播速度,这可以说是地震勘探方法的萌芽。 反射法地震勘探最早起源于1913年前后R·费尔登的工作。但当时的技术尚未达到能够实际应用的水平。1921年,J·C卡彻将反射法地震勘探投入实际应用。在美国俄克拉荷马州首次记录到人工地震产生的清晰的反射波。1930年,通过反射地震勘探工作,在该地区发现了三个油田。从此,反射法进入了工业应用的阶段。 折射法地震勘探始于20世纪早期德国L·明特罗普的工作。20年代,在墨西哥湾沿海地区,利用折射法地震勘探发现很多盐丘。30年代末,苏联T·A甘布尔采夫等吸收了反射法的记录技术,对折射法做了相应的改进。早期的折射法只能记录最先到达的折射波,改进后的折射法还可以记录后到的各个折射波,并可更细致地研究波形特征。50-60年代,反射法的光点照相记录方式被模拟磁带记录方式所代替,从而可选用不同因素进行多次回放,提高了记录质量。70年代,模拟磁带记录又为数字磁带记录所取代,形成了以高速数字计算机为基础的数字记录、多次覆盖技术、地震数据处理技术相互结

地震资料数字处理试卷合集

一、名词解释 1.道均衡:是指在不同或同一地震记录道建立振幅平衡。 2.数字信号:相对于模拟信号,记录瞬间信息的离散的信号。 模拟信号:随时间连续变化的信号. 有效信号:能为我们所利用的信号就叫有效信号。 3.最小相位:能量集中在序列前部。 4.反射波:在波速突变的分界面上,波的传播方向要发生改变,入射波的一部分被反 射,形成反射波。 折射波:滑行波在传播过程中也会反过来影响第一种介质,并在第一种介质中激发新的波。这种由滑行波引起的波,叫折射波。 5.共深度点:CDP。地下界面水平时,在共中心点下方的点,界面倾斜时无共深度点。 6.解编:地震数据是按各道同一时刻的样点值成列排放的,解编就是将数据重排成行。 12. 最大相位:能量集中在序列后部。 16.地震波:地震波是在岩石中传播的弹性波。 多次波:在地下经过多次反射接收到的波叫多次波。 17. 切除:地震信号经动校正后被拉伸畸变,目前处理动校正拉伸畸变的方法是切除, 即把拉伸严重部分的记录全部充零。 18. 混合相位:能量集中在序列中部。 自相关:一个时间信号与自身的互相关。 互相关:一个时间信号与另一个时间信号的相关。 21.环境噪音:交流电、人、风吹草动等环境因素所引起的对地震波有干扰的信号。 随机噪音:交流电、人、风吹草动等随机因素所引起的对地震波有干扰的信号。 22.反射系数:反射振幅与入射振幅的比值。 28.模拟记录:把地面振动情况,以模拟的方式录制在磁带上。 二、简答题 1、地震资料数字处理主要流程?地震资料的现场处理主要包括哪些内容? 地震勘探资料数据处理中的预处理主要包括哪些内容? 简述地震资料数据中有哪些目标处理方法? 地震资料数字处理如何分类? 地震资料数字处理质量控制有哪些? 地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。 地震资料的现场处理主要有:预处理、登录道头、道编辑、切除初至、抽道集、增益恢复、 设计野外观测系统、实行野外静校正、还可以进行频谱分析、速度分析、水平叠加等(2分)。 地震勘探资料数据处理中的预处理主要包括登录道头、废炮道编辑、切除初至、抽道集(4分)、增益恢复、预滤波、反褶积等. 地震资料数据中目标处理方法有高分辨率地震资料处理、三维地震资料处理、叠前深度偏移处理、井孔地震资料处理(4分)、多波多分量地震资料处理、时间推移地震资料处理等地震资料数字处理分类有数据预处理、数据校正、叠加和偏移归位、振幅处理、滤波、分析、正反演、复地震道技术等。(3分) 地震资料数字处理质量控制包括野外原始资料检查与验收、处理流程及主要参数确定、

地震勘探实习报告

课程编号:课程性质:必修 地震勘探数据采集与处理 学院:测绘学院 专业:地球物理学 地点:校内 班级:201111401 组号:第 1 组 姓名:宋颖 学号:2011301140008 教师:张丽琴 2014年 11 月 30 日至 2014 年 12 月 20 日

第一章实习概况 (3) 第一节实习目的 (3) 第二节实习时间、地点和人员 (3) 第二章野外资料的采集 (4) 第一节实习场地和仪器 (4) 第二节实习原理 (4) 第三节数据初步分析 (6) 第三章室内数据处理 (6) 第一节理论基础 (6) 第二节理论数据处理 (7) 2.1 建立数据模型 (7) 2.2 产生模拟数据 (8) 2.3 修改道头信息 (9) 2.4 抽道选排 (10) 2.5 频谱分析 (11) 2.6 频率滤波 (13) 2.7速度谱分析 (15) 2.8动校正 (16) 2.9水平叠加 (17) 2.10 综合处理 (18) 第三节折射波数据处理 (20) 3.1 数据格式转换 (21) 3.2 数据的集成 (22) 3.3 观测数据增益调节 (22) 实习感想: (23) 参考文献: (24)

摘要:学习完地震勘探这门课后,张丽琴老师带领我们2011级地球物理班学生在武汉大学国软操场进行了地震实习,接下来需要我们自己进行数据处理。由于我们这一组的实习数据不理想,与理论不符,所以只好采用第二组的数据进行处理。数据处理是一个比较难的工作,首先我们必须学会用unix,在su平台下完成理论的演示,而后才可以处理实际数据。由于取样不同,所得到的结果也不同,而且在处理过程中出了一点错误就会出现不同的结果,在判断有效波时也不尽相同。 关键字:SUnix 合成记录抽道选排 cdp道集叠加 第一章实习概况 第一节实习目的 实习目的: 1.通过野外数据采集实习,要求学生掌握地震勘探野外工作的测线布置原则及布置形 式,具体任务所采用的具体方法,观测系统的确定,观测参数的选取等,掌握地震 勘探仪器的实用,并学会处理野外可能出现的各种故障; 2.通过室内数据处理上机实习,要求学生掌握地震数据处理流程,各处理环节所解决 的问题、所起的作用,各处理方法的特点和相互间的衔接。掌握水平叠加时间剖面 形成过程等。 第二节实习时间、地点和人员 1.实习时间和地点:在2014年11月17号为第一组在武汉大学信息学部国软操场 进行数据采集,之后为实习数据处理和写实习报告的时间,野外数据采集时人很少,噪音少,但有不小的风,干扰不大,室内数据整理的地点在寝室内处理,平台是Seismic Unix,时间为三个星期。 2.实习人员: 组别组长成员完成日期 第一组詹鹏宋颖宋超徐增波赵亮 11月17号 熊奥林刘杰刘小梅

地震勘探原理期末总复习 3 (共四部分)

5组合法的缺陷: 1、进行组合是为了利用地震波在传播方向的差异来压制干扰波,但组合本身有一定的频率选择作用。 2、在设计组合方案时,只考虑到有效波和干扰波的传播方向的差异,没有考虑它们在频谱上的差别,组合的这种低通频率特性只能起使有效波畸变的不良作用。 我们不希望组合改变波形,只希望提高信噪比。因此,对于有效反射波应尽可能通过野外工作方法增大视速度(即减小△t)以获得最佳组合效果。 3、组合实质上是针对某一频率成分的视速度滤波,有效波和干扰波都包括许多不同的频率成分,各种组合方式主要压制比f 频率高的成分,压制不了干扰波中比f 低的频率成分。这是组合法不可避免的缺陷。 6随机干扰的压制: 来源可分三类: 1)地面的微震,如风吹草动,人走车行,这类干扰的特点是在震源激发前就已存在。 2)仪器接收或处理过程中的噪音。 3)次生的干扰波,如不均匀体散射等。特点是无方向性,相位变化无规律。 随机干扰的“统计规律”: 对随机干扰也有较好的压制作用,这种压制作用主要是利用组合的统计特性 组合对随机干扰的统计效应的主要结论: 组内检波器的间距大于该地区的随机干扰的相关半径时,用n 个检波器组合后,对垂直入射到地面的有效波振幅增强n 倍;对随机干扰振幅只增强n1/2倍。因此,有效波相对振幅增强n1/2倍 7 信噪比 信噪比是有效波与随机干扰相对强弱的对比 由此可知,组合后的信噪比为组合前的信噪比的 倍,即采用n 个组合后,有效波对无规则干扰波的信噪比提高了 倍,当n 越大时,信噪比提高的越高。 8 平均效应 组合的平均效应表现在两个方面: 1) 表层的平均效应,当检波器在安置条件上有差异时,包括地形的起伏和表层的低降 速带的变化,组合的作用是把它们平均,使反射波受地表条件的变化的影响减少。 2) 深层的平均效应,深层的平均效应为当反射界面起伏不平时,因为组合检波器接收 的反射波是反射界面上的不同点的反射,组合的作用是将这些反射波平均,使反射界面的起伏变小,尤其在多断层的地区,当组合的总长度过大时,组合的平均效应更明显,可以造成反射波同相轴的畸变。 )() () ()()()()(ωωωωωωωR S n R n S n R S b Z Z ===

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

地震数据处理vista软件使用手册

Vista 5.5的基本使用方法 数据输入 地震分析窗口 一维频谱 二维频波谱 观测系统 工作流 一、数据输入 1.1 把数据文件加入Project 首先选择File/New Project,新建一个Project,按住不放,出现按钮组合,可以选择不同类型 的数据集,选择,向Project中增加一个新的2-D数据集,按住不放,出现按钮组合, 可以选择加入不同类型的地震数据,选择,选择一个SEG-Y数据,即可将该数据文件加入新建的数据集。 1.2 命令流中数据的输入 双击进入如下界面 1.2.1 Input Data List 数据输入列表,选择已加入到Project的数据集,下面的文本框中会显示选择的数据的基本信息。 1.2.2 Data Order 选择输入数据的排列方式,对不同的处理步骤可以选择不同的数据排列方式 Sort Order a. NO SORT ORDER 输入数据原始排列方式 b. SHOT_POINT_NO 输入数据按炮点排列方式 c. FIELD_STATION_NUMBER d. CMP_NO 输入数据按共中心点排列方式 e. FIELD_STATION_NUMBER 1.2.3 Data Input Control 数据输入控制 右键-->Data Input Control a. Data Input 进入Flow Input Command(见上) b. Data Sort List 查看数据排列方式的种类 c. Data/header Selection 输入数据的选择,可以控制输入数据的道数和CMP道集 查看所有已经选择的数据 如果没有定义任何可选的数据信息,则如下图所示: 可以选择一种选择方式,单击并设置选择信息。定义有可选的数据信息后,在查看,则如下图所示,会显示选择的信息。 选择共炮点集 单击后,会弹出如下界面:

地震勘探原理题库

地震资料采集试题库 一、判断题,正确者划√,错误者划×。 1、弹性介质中几何地震学的反射系数只与上下介质的速度和密度有关。() 2、纵波反射信息中包括有横波信息,因此可以利用纵波反射系数提取横波信息。() 3、在纵波 AVO分析中,我们可以提取到垂直入射的纵波反射系数剖面。() 4、当纵波垂直入射到反射界面时,不会产生转换横波。() 5、SH波入射到反射界面时,不会产生转换纵波。() 6、直达波总是比浅层折射波先到达。() 7、浅层折射波纯粹是一种干扰波。() 8、折射界面与反射界面一样,均是波阻抗界面。() 9、实际地震记录可以用鲁滨逊地震“统计”模型表示为:反射系数(R(t))与地震子波(W(t))的褶积 S(t)=W(t)*R(t)。() 10、面波极化轨迹是一椭圆,并且在地表传播。() 11、检波器组合可以压制掉所有的干扰波。() 12、可控震源的子波可以人为控制。() 13、对于倾斜地层来说,当最小炮检距和排列长度不变,并且排列固定不动时,上倾激发与下倾激发可获得地下相同的一段反射资料。() 14、单炮记录上就可以看出三维资料比二维资料品质好。() 15、资料的覆盖次数提高一倍,信噪比也相应地提高一倍。() 16、当单位面积内的炮点密度和接收道数一定时,面元越大,面元内的覆盖次数越高。() 17、覆盖次数均匀,其炮检距也均匀。() 18、无论何种情况下,反射波时距曲线均为双曲线形状。() 19、横向覆盖次数越高,静校正耦合越好。() 20、动校正的目的是将反射波校正到自激自收的位置上。() 21、当地下地层为水平时,可以不用偏移归位处理。() 22、偏移归位处理就是将CMP点归位到垂直地表的位置上。() 23、最大炮检距应等于产生折射波时的炮检距。()

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

特殊观测系统在地震勘探的应用

特殊观测系统在地震勘探的应用 地震勘探是地质勘察的一种方法,关系到地质分析的效率和效益。地震勘探中的特殊观测系统,有利于提高地震勘探的水平,优化地震勘探在地质分析中的应用,落实特殊观测系统中的实践性,进而发挥特殊观测系统的优势。因此,本文通过对特殊观测系统进行研究,分析其在地震勘探中的应用。 标签:特殊观测系统地震勘探炮点 地震勘探很容易受到外界环境的影响,增加了地质勘测的压力,引发了多项勘探问题。特殊观测系统在地震勘探中具有实践性的价值,加强地震勘探在野外环境中的控制力度,提高地震勘探的作业水平。特殊观测系统在地震勘探中取得良好的应用效益,完善地震勘探的环境,体现了特殊观测系统的积极性与控制性,强调地震勘探的准确度。 1地震勘探中特殊观测系统的原理与布置 特殊观测系统在地震勘探中的原理是:在矿区地震勘探的过程中,地震波传输的过程中很容易遇到障碍物,不能保障地震勘测的质量。特殊观测法在地震勘探中,取代了传统的勘探方法,通过研究激发点得出地震勘探反射波的路径,记录相关的反射点,合理安排信息处理。 地震勘探中特殊观测系统的布置方法为:首先确定地震勘探的震源点,在震源处实行放炮激发,途中会经过需要勘探的障碍物,而障碍物的另一侧需要安置接收装置,便于获取地震勘探的数据资料;然后根据震源点和接收点的数据信息,得出相关的数据资料,利用特殊观测系统移动震源位置,比对数据后得出障碍物的信息;最后将震源位置与接收位置相互调换,重新安排特殊观测系统的应用,获得另一部分障碍物的信息,由此得出整个障碍物的信息,找准矿区勘探中的障碍物[1]。特殊观测系统在地震勘探中的布置方法,需要加强准确性的控制,保障数据处理的准确性,消除潜在的误差信息。 2地震勘探中特殊观测系统的设计 特殊观测系统的综合性强,需要根据地震勘探的方法进行设计,确保其符合地震勘探的需求[2]。特殊观测系统在地震勘探中的应用,主要是勘探地下障碍物的信息,得出障碍物的准确信息。特殊观测系统在地震勘探中,需要采取灵活修改的方式,合理安排修改,落实特殊观测系统的设计方法。分析地震勘探中特殊观测系统比较常见的设计方式,如:(1)安排专业人员执行修测,按照地震勘探的方式,设计出灵活的特殊观测系统;(2)充分准备特殊观测系统应用中所需要的设备,促使系统设备能够满足实际设计的需求,避免出现发送或接收问题,还能保障炮点分配的准确性;(3)特殊观测系统中应该保障覆盖次数设计的准确性,尽量设计出高于正常值的次数,便于特殊观测系统应用的调节,辅助地震勘探能够准确的得出障碍物的信息,满足现代地震勘探的需求,表现特殊观测系统

08262026-地震勘探数据处理与解释

吉林大学实验教学大纲 教学单位名称:吉林大学地球探测科学与技术学院 课程名称:地震勘探数据处理与解释 课程代码:08262026 课程类别:专业课 课程性质:必修课 学时/学分:32/2(其中实验8学时) 面向专业:勘查技术与工程 一.实验课程的教学任务、要求和教学目的 《地震数据处理与解释》课程是应用地球物理系列课程中的一个重要方向,是地球物理勘探中的重要方法之一,与地震勘探原理一起构成了地震勘探研究方向的一个完整体系。是勘查技术与方法专业中应用地球物理方向本科生的一门重要选修课。 本实验课是与理论课紧密联系在一起的。通过实验课的教学,使学生加深对理论理解和将理论知识应用于实践的能力,熟悉基本的数据处理流程,并进行实际的地震资料处理。本实验课实际上是地震勘探数据处理与解释课程的重要组成部分。 二.学生应掌握的实验技术及基本技能 1、掌握常用地震数据处理系统的基本操作方法 2、了解常用地震记录的数据格式及剖面显示方式; 3、掌握动、静校正及水平叠加处理的方法; 4、掌握地震信号的频谱分析和一维、二维滤波; 5、掌握预测反褶积处理技术; 6、了解速度分析的方法和步骤; 7、了解地震波场偏移处理的目的和方法; 8、掌握合成地震记录的制作和分析方法; 9、掌握波动方程地震记录的正演模拟; 10、能编写简单的地震数据处理程序。 三.实验项目内容、学时分配和每组人数

四.实验教材或指导书或主要参考资料 教材采用《应用地球物理教程—地震勘探》。另外可参考以下文献: 1.《地震资料分析—地震资料处理、反演和解释》,渥.伊尔马滋 2.CWP/SU:Seismic Un*x用户手册 五.考核要求、考核方式及成绩评定标准 实验成绩可通过写实验报告,或总结性考核而定,占学生学期总成绩的20%~30%。 六.制定人、审核人、日期 制定人:王德利 审核人:潘保芝 审核日期:2009年9

地震勘探原理的基本问题

地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线. 动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正. 多次覆盖:对被追踪的界面进行多次观测. 剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等. 几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学. 水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh. 时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系 剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差. 绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波. 三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征. 水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象. 同相轴:一串套合很好的波峰或波谷. 相位:一个完整波形的第i个波峰或波谷. 纵波:传播方向与质点振动方向一致的波. 转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波. 反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波。 正常时差的定义第一种定义:界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差. 第二种定义:在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差. 1.简述地震勘探原理 地震勘探根据岩石的弹性差别进行工作的,波遇到障碍物会发生反射和透射,折射.通过测反射波和透射波的性质,可以确定障碍物的距离.地震勘探是人工激发地震波.通过在地面布置测线,接收反射波,然后进行一些处理,从而来反映地下构造情况,为寻找油气和其他勘探目的的服务,生产工作包括三个环节:1野外数据采集2室内数据处理3地震资料解释,与其他方法

地震数据处理

地震数据整体流程 不同软件的地震数据处理方式不同,但是所有软件的处理流程基本是固定不变的,最多也是在处理过程中处理顺序的不同。整体流程如下: 1 数据输入(又称为数据IO) 数据输入是将野外磁带数据转换成处理系统格式,加载到磁盘上,主要指解编或格式转换。 解编:将多路编排方式记录的数据(时序)变为道序记录方式,并对数据进行增益恢复等处理的过程。如果野外采集数据是道序数据,则只需进行格式转换,即转成处理系统可接受的格式。 注:早期的时序数据格式为记录时先记录第一道第一个采样点、第二道第一个采样点、……、第一道第二个采样点、第二道第二个采样点、……直至结束。现在的道序记录格式为记录时直接记录第一道所有数据、第二道所有数据、……直至结束,只是在每一道数据前加上道头

数据。将时序数据变为道序数据只需要对矩阵进行转置即可。 2 置道头 2.1 观测系统定义 目的为模拟野外,定义一个相对坐标系,将野外的激发点、接收点的实际位置放到这个相对的坐标系中。即将SPS文件转换为GE-Lib文件,包括1)物理点间距2)总共有多少个物理点3)炮点位置4)每炮第一道位置5)排列图形。 2.2 置道头 观测系统定义完成后,处理软件中置道头模块,可以根据定义的观测系统,计算出各个需要的道头字的值并放入地震数据的道头中。当道头置入了内容后,我们任取一道都可以从道头中了解到这一道属于哪一炮、哪一道?CMP号是多少?炮间距是多少?炮点静校正量、检波点静校正量是多少?等等。 后续处理的各个模块都是从道头中获取信息,进行相应的处理,如抽CMP道集,只要将数据道头中CMP号相同的道排在一起就可以了。因此道头如果有错误,后续工作也是错误的。 GOEAST软件有128个道头,1个道头占4个字节,关键的为2(炮号)、4(CMP号)、17(道号)、18(物理点号)、19(线号)、20(炮检距)等。 2.3 观测系统检查 利用置完道头的数据,绘制炮、检波点位置图、线性动校正图。 3 静校正(野外静校正) 静校正为利用测得的表层参数或利用地震数据计算静校正量,对地震道进行时间校正,以消除地形、风化层等表层因素变化时对地震波旅行时的影响。 静校正是实现共中心点叠加的一项最主要的基础工作。直接影响叠加效果,决定叠加剖面的信噪比和垂向分辨率,同时影响叠加速度分析的质量。 静校正方法: 1)高程静校正 2)微测井静校正-利用微测井得到的表层厚度、速度信息,计算静校正量 3)初至折射波法 4)微测井(模型法)低频+初至折射波法高频 4 叠前噪音压制 干扰波严重影响叠加剖面效果。在叠前对各种干扰进行去除,为后续资料处理打好基础。 常见干扰有:面波、折射波、直达波、多次波、50Hz工业电干扰及高能随机干扰等多种情况。不同干扰波有不同特点和产生原因,根据干扰波和一次反射波性质(如频率、相位、视速度等)上的不同,把干扰和有效波分离,从而达到干扰波的去除,提高地震资料叠加效

地震勘探原理考试试题(C)参考答案

一、解释下列名词 1、反射波:由震源出发向外传播,经波阻抗界面反射到达接收点的波叫做反射波。 2、有效波:那些可用来解决所提出的地质任务的波为有效波或信号,如在进行反射波法地震勘探时,反射纵波为有效波。 3、干扰波:所有妨碍认辩、追踪有效波的其他波均属于干扰波范畴。 4、多次波:从震源出发,到达接收点时,在地下界面之间发生了一次以上反射的波。多次反射波、反射—折射波、折射—反射波和扰射—反射波等等统称为多次波。 二、填空 1.用于石油和天然气勘探的物探方法,主要有重力勘探,磁法勘探,电法勘探和地震勘探。其中,有效的物探方法是地震勘探。 2.用___人工______方法(如爆炸,敲击等)产生振动,研究振动在地下介质中__的传播规律,进一步查明__地下__地质构造和有用矿藏的一种__物探____方法,叫地震勘探. 3.地震勘探分___折射波_______地震法、____反射波_____地震法和____透射波___地震法三种.用于石油和天然气勘探主要是__反射波_____地震法,其它两方法用的较少. 4. 反射波地震勘探,首先用人工方法使__地表_____产生振动,振动在地下__介质___形成地震波,地震波 5 反射波到达地表时,引起地表的__振动_____.检波器把地表的__振动 _____转换成___电信号__,通过电缆把电振动输送到数字地震仪器里, 记录在磁带上的, 这就成为____数字磁带___地震记录. 6. 对数字磁带地震记录,用电子计算机进行地震资料____处理_____,得到各种时间剖面,再对时间剖面进行地震资料____解释______,做出地震_构造图___________,并提出____井位_____进行钻探,这样就完成了地震勘探工作. 7. 根据炮点__检波点____和地下反射点三者之间的关系,要__连续____追踪反射波,炮点和接收点之间需要保持一定的_____相互位置______关系.这种关系称为__观测系统______. 8.根据炮点和接收点的相对位置,地震测线分为__纵测线___和____非纵测线____两大类. 9.地震波属于__弹性波____波的一种,振动只有在弹性___介质____中,才能传播出去而形成波。 三、选择题 1 在反射波地震法勘探中,_____B.反射波.________就是有效波. 2 共反射点记录反映的是地下界面上____ A.一个点_________.

地震数据处理课程设计(报告)

《地震资料数据处理》课程设计 总结报告 专业班级: 姓名: 学号: 设计时间: 指导老师: 2011年5月30日

目录 一、设计内容……………………………………………………………… (1)褶积滤波……………………………………………… (2)快变滤波……………………………………………… (3)褶积滤波与快变滤波的比较………………………… (4)设计高通滤波因子…………………………………… (5)频谱分析……………………………………………… (6)分析补零对振幅谱的影响…………………………… (7)线性褶积与循环褶积………………………………… (8)最小平方反滤波……………………………………… (9)零相位转换…………………………………………… (10)最小相位转换………………………………………… (11)静校正………………………………………………… 二、附录………………………………………………………………………… (1)附录1:相关程序…………………………………… (2)附录2:相关图件……………………………………

【附录1:有关程序】 1.褶积滤波 CCCCCCCCCCCCCCCCC 褶积滤波CCCCCCCCCCCCCCCCC PROGRAM MAIN DIMENSION X(100),H1(-50:50),H2(-50:50),Y_LOW(200),Y_BAND(200) PARAMETER (PI=3.141592654) CCCCCCCC H1是低通滤波因子,H2为带通滤波因子CCCCCC REAL X,H1,H2,Y_LOW,Y_BAND REAL dt,F,F1,F2 INTEGER I dt=0.002 F=70.0 F1=10.0 F2=80.0 OPEN(1,FILE='INPUT1.DA T',FORM='FORMATTED',STATUS='UNKNOWN') READ(1,*)(X(I),I=1,100) CCCCCCCCCCCCCCCCCC低通滤波器CCCCCCCCCCCCCCCCC DO 10 I=-50,50 IF (I.EQ.0)THEN H1(I)=2*F*PI/PI ELSE H1(I)=SIN(2*PI*F*I*dt)/(PI*I*dt) END IF 10 CONTINUE CCCCCCCCCCCCCCCC输出低通滤波因子CCCCCCCCCCCCCCCC OPEN(2,FILE='H1_LOW.DAT',FORM='FORMATTED',STATUS='UNKNOWN') WRITE(2,*)(H1(I),I=-50,50) CLOSE(2) CALL CON(X,H1,Y_LOW,100,101,200) CCCCCCCCCCCCCCCC输出滤波后的数据CCCCCCCCCCCCCCCC OPEN(3,FILE='Y_LOW.DA T',FORM='FORMATTED',STATUS='UNKNOWN') WRITE(3,*)(Y_LOW(I),I=51,150) CLOSE(3) CCCCCCCCCCCCCCCCCC带通滤波器CCCCCCCCCCCCCCCCCCCC DO 20 I=-50,50 IF(I.EQ.0)THEN H2(I)=140 ELSE H2(I)=SIN(2*PI*F2*I*dt)/(PI*I*dt)-SIN(2*PI*F1*I*dt)/(PI*I*dt) END IF 20 CONTINUE CCCCCCCCCCCCCCC输出带通滤波因子CCCCCCCCCCCCCCCCC OPEN(4,FILE='H2_BAND.DAT',FORM='FORMA TTED',STATUS='UNKNOWN')

相关文档
相关文档 最新文档