文档视界 最新最全的文档下载
当前位置:文档视界 › 分子生物学复习题(基本完整版)知识讲解

分子生物学复习题(基本完整版)知识讲解

分子生物学复习题(基本完整版)知识讲解
分子生物学复习题(基本完整版)知识讲解

分子生物学复习题(基

本完整版)

分子生物学复习题

第一章

1、蛋白质的三维结构称为构象(conformation),指的是蛋白质分子中所有原子在三

维空间中的排布,并不涉及共价键的断裂和生成所发生的变化。

2、维持和稳定蛋白质高级结构的因素有共价键(二硫键)和次级键,次级键有4种

类型,即离子键、氢键、疏水性相互作用和范德瓦力。

3、蛋白质的二级结构是指肽链中局部肽段的构象,它们是完整肽链构象(三级结构)

的结构单元,是蛋白质复杂的立体结构的基础,因此二级结构也可以称为构象单元。α螺旋、β折叠是常见的二级结构。

4、一些肽段有形成α螺旋和β折叠两种构象的可能性(或形成势),这类肽段被称为

两可肽。

5、两个或几个二级结构单元被连接肽段连接起来,进一步组合成有特殊几何排列

的局域立体结构,称为超二级结构(介于二、三级结构间)。超二级结构的基本组织形式有αα,βαβ和ββ等3类

6、蛋白质家族(f amily) :一类蛋白质的一级结构有30%以上同源性,或一级结构

同源性很低,但它们的结构和功能相似,它们也属于同一家族。例如球蛋白的氨基酸序列相差很大,但属于同一家族。超家族(superfamily):有些蛋白质家族之间,一级结构序列的同源性较低,但在许多情况下,它们的结构和功能存在一定的相似性。这表明它们可能存在共同的进化起源。这些蛋白质家族属于同一超家族。

7、结构域是一个连贯的三维结构,是可互换并且半独立的功能单位,在真核细胞

中由一个外显子编码,由至少40个以上多至200个残基构成最小、最紧密也

最稳定的结构,作为结构和功能单位,会重复出现在同一蛋白质或不同蛋白质中。

8、蛋白质一级结构所提供的信息有哪些?α螺旋、β折叠各自的特点?

第二章

1、DNA是由脱氧核糖核苷酸组成的长链多聚物,是遗传物质。具有下列基本特

性:①具有稳定的结构,能进行复制,特定的结构能传递给子代;②携带生命的遗传信息,以决定生命的产生、生长和发育;③能产生遗传的变异,使进化永不枯竭。

2、DNA链的方向总是理解为从5’—P端到3’—OH端。DNA的一级结构实际上就

是DNA分子内碱基的排列顺序。

3、DNA是双螺旋结构:主链由脱氧核糖和磷酸基团以3’,5’—磷酸二酯键交互连

接构成的,在双螺旋的外侧,碱基在内侧,碱基必须配对。一条链绕着另一条链旋转、盘绕,一条链上的嘌呤与另一条链上的嘧啶相互配对,嘌呤与嘧啶以氢键保持在一起。

4、双螺旋DNA熔解成单链的现象称为DNA变性。已经变性的DNA在一定条件

下重新恢复双链的过程称为复性。

5、染色质是以双链DNA为骨架,与组蛋白(histon)、非组蛋白(non-histon)以及少

量的各种RNA等共同组成丝状结构。在染色质中,DNA和组蛋白的组成非常稳定,非组蛋白和RNA随细胞生理状态不同而有变化。

6、常染色质是在细胞间期核内染色体折叠压缩程度较低,处于伸展状态,碱性染

性着色较浅而均匀的那些染色质。主要是单一拷贝和中度重复序列。异染色

质是在细胞间期核内染色质压缩程度较高,处于凝集状态,碱性染料着色较深的部分。

7、核小体是构成真核生物染色质的基本结构单位,是DNA和蛋白质构成的紧密

结构形式。

8、RNA的种类及其各自的特点?

第三章基因和基因组

1、基因被定义为转录功能单位,是编码一种可扩散产物的一段DNA序列,其产

物可以是蛋白质或RNA。一个完整的基因应该由两部分组成,即编码区和调控区。

2、基因组是一种生物染色体内全部遗传物质的总和,包括构成基因和基因之间区

域的所有DNA。所谓总和,还应该指该物种的不同DNA功能区域在DNA分子上结构分布和排列的情况。基因组以及基因一般以DNA的长度和序列表示。

3、病毒基因组的结构特点:

(1)与细菌相比较,病毒的基因组很小,所含遗传信息量较小,只能编码少数的蛋白质。(2)病毒基因组由DNA或RNA组成。核酸的结构可以是单链或双链、闭合环状或线状分子。(3)常有基因重叠现象,即同一DNA分子序列可以编码2种或3种蛋白质分子。

4、细菌基因组的一般特点

1)基因组通常仅由一条环状双链DNA分子组成。但现发现有越来越多的线形基因组。2)只有一个复制起始点。3)有操纵子的结构。数个相关(参与一个生化过程)的结构基因串联在一起,受同一调控区调节,合成多顺反子

mRNA。4)编码蛋白质的结构基因是单拷贝的,但rRNA基因往往是多拷贝的。5)非编码的DNA所占比例少,类似病毒基因组。6)基因组DNA具有多种调控区,如复制起始区、复制终止区、转录启动子、转录终止区等特殊序列。7)与真核生物类似,具有可移动的DNA序列。

5、真核生物基因组特点

(1)基因组的分子量大。低等真核生物大约107-108 bp,而高等真核生物为5×108-1010 bp(2)真核生物细胞往往有很多染色体,一般呈线状。每个染色体DNA 有很多复制起始点。(3)细胞核DNA与蛋白质稳定地结合成染色质的复杂结构。染色质内除了含有DNA和组蛋白外,还有大量非组蛋白。(4)由于存在核膜,细胞被分隔成细胞核和细胞质,因此,在基因表达中,转录和翻译在时间和空间上是分隔的,不偶联的。(5)基因组的大量序列是非编码序列,有大量重复序列。( 6)真核生物的蛋白质基因往往是单拷贝存在,转录产物是单顺反子mRNA。(7)存在一些可移动的DNA序列。(8)绝大多数真核生物基因含有内含子,因而基因编码区是不连续的。(9)真核生物基因内部也可能含有大量的重复序列。

6、基因家族:一组功能类似、结构具有同源性的基因称为基因家族。基因家族的

分类有多种方式。基因家族各成员在结构上非常类似,具有保守性,如rRNA 基因家族,但基因之间的间隔区可以有很大的长度差异和序列差异。重要的基因家族:rRNA基因家族、5S rRNA基因、组蛋白基因家族、珠蛋白基因家族、生长激素基因家族、超基因。

7、超基因(supergene)是指一组由多基因和单基因组成的更大的基因家族。在高等

真核细胞中,一个基因簇内含有数百个功能相关的基因,它们可能是由基因

扩增后结构上轻微变化而产生的,这些基因的结构有程度不等的同源性,功能上仍保持原始基因的基本功能,或者进化成具有相关而不同的新功能,这样的一簇基因称为超基因家族。有免疫球蛋白超基因家族、核受体超基因家族、细胞因子超基因家族等。

8、在初始转录产物hnRNA加工产生成熟的mRNA时,被切除的非编码序列称为

内含子(intron)。在成熟的mRNA或蛋白质中存在的序列称为外显子(exon)。

基因的不连续性是真核生物基因所特有的,但不是所有真核生物基因都一定具有这种不连续性。

9、内含子的功能:(1)含有可阅读框架(ORF),内含子的ORF可能编码酶或蛋白

质,其中包括逆转录酶、成熟酶。 (2)含有各种剪接信号码,内含子编码的成熟酶直接参与内含子本身的剪接功能。(3)对基因表达有影响,内含子对基因表达在多个水平上施加影响。内含子中的增强子序列增加了基因转录的起始反应。

10、人类基因组计划(human genomic project,HGP)的总体目标是要完成人类全部

24条染色体3×109bp序列的分析。具体包括:①人类基因组作图(遗传学图谱、物理图谱) 。②对基因组DNA进行切割和克隆。③测定基因组的全部

DNA序列。④基因的鉴定。⑤信息系统的建立、信息的储存和处理以及相应软件的开发。

11、结构基因组学(structual genomics) 以全基因组测序为目标的基因结构研究,阐

述基因组中基因的位置和结构,为基因功能的研究奠定基础。

12、功能基因组学(functional genomics)是利用结构基因组学提供的信息,以大规模

实验方法及统计与计算机分析,全面系统地分析全部基因的功能。

13、蛋白质组(proteome)是一个基因组在特定细胞内所表达的蛋白质。对于一种生

物来说,它的基组DNA基本上是恒定的,但蛋白质组是动态的。也就是不同组织的细胞中蛋白质组是不同的,在同一细胞的不同生长状态、病理状态下也是不一样的。蛋白质组只指某一特定时间内的蛋白质集合体。

14、生物信息学是用数理和信息科学的观点、理论和方法去研究生命现象,组织

和分析呈指数增长的生物学数据的一门学科。生物信息学位于生物、计算

机、数学等多个领域的交叉点上,其研究目标是揭示“基因组信息结构的复杂性及遗传语言的根本规律”。生物信息学包含了基因组信息学、蛋白质结构模拟和药物设计等3个组成部分。目前的研究包括下面几个方面:

①相关信息的收集、储存、管理与提供。

②新基因的发现和鉴定。③非编码区的信息结构分析。

④大规模基因功能表达谱的分析。

⑤蛋白质分子空间结构预测、模拟和分子设计。

⑥药物开发。

第四章生物大分子的相互作用

1、生物大分子之间特异性地、可逆解离地形成复合物的能力是生命活动的基础,

这种特异性的、可逆的相互作用被称为生物分子的识别。

2、参与大分子相互作用的非共价键类型 (1)疏水性相互作用,(2)范德瓦力,(3)氢

键,(4)静电相互作用。

3、参与蛋白质相互作用的结构域有:BRCT(breast cancer susceptibility gene C

terminus)结构域、Lim结构域、SH3结构域、SH2结构域、Bromo结构域、

POZ结构域、WW结构域、锚蛋白重复序列(ankyrin repeat,ANK)的结构域、PH结构域、环指结构域(ring finger domain)。

4、蛋白质与RNA的识别以“间接读出”(indirect readout)机制为主。所有的RNA结

构,包括线状序列、发夹、膨泡、内环、假结、双螺旋等都可以作为蛋白质专一性识别的靶结构。

5、各种DNA结合蛋白,特别是转录因子(transcription factors)都含有与DNA相互

作用的区域,称为DNA结合结构域(DNA-binding domain),简称结合域。6、对基因进行调节、控制的蛋白质,如各种普遍性(或基础)转录因子、基因调控

因子,相对于作用于它的靶位点DNA序列而言,广义地称为反式作用因子(trans-acting factors)。

7、锌指结构蛋白质是自然界中广泛分布的一类含锌蛋白质,构成了一个超家族。

锌指结构家族蛋白,以其形状和结合锌的复杂性,特别是锌指四面体结构,可以分为C2H2,C4和C6等几种类型。

8、亮氨酸周期重复不在于形成一个疏水面,而在于两个蛋白质的两个α螺旋之

间,依靠亮氨酸周期性侧链交错相插,螺旋靠拢,在疏水作用之下形成一个稳定的非共价结合的拉链结构,即所谓的亮氨酸拉链(leucine zipper)。

第五章基因工程原理

1、基本概念

(1)基因工程:是用酶学方法,把天然的或人工合成的、同源或异源的DNA片段与具有复制能力的载体分子(如质粒、噬菌体、病毒等)形成重组DNA分子,再导入不具有这种重组分子的宿主细胞内,进行持久而稳定的复制、表达,使宿主细胞产生外源DNA或其蛋白质分子。

(2)基因组DNA文库(P157):是某一生物体的染色体全部DNA序列被随机切割成适当大小的片段后,插入到载体内构成的DNA文库。

(3)cDNA基因文库(P160):一群含有重组DNA的细菌,质粒或噬菌体的克隆,来自某细胞类型全部的mRNA。

(4)扣除文库(P163):将两重不同组织来源的mRNA进行比较,用扣除杂交排除相同部分,即共同表达的那部分mRNA,选出剩余有差异的、特异表达的mRNA,构建成cDNA文库,称为cDNA扣除文库。

(5)分子杂交(P171):指具有一定同源性的两条核酸单链在一定条件下(适宜的温度和离子强度)可按碱基配对的原则退火形成双链的过程。

(6)PCR技术原理:PCR技术是利用两种寡核苷酸引物,分别与双链DNA片段的两端互补,形成DNA聚合酶反应中的模板和引物的关系。

(7)物理图谱:DNA片段上限制性内切酶酶切位点的图谱,表示各种限制性内切酶识别位点在DNA序列上的线性排列。

(8)Southern杂交:用于检测DNA片段混合物中存在特定序列的技术。又称Southern印迹。检验的目的DNA通常用一种或一种以上的限制性内切酶酶切,得到各种特定长度的片段,在凝胶电泳中依长度分成条带,DNA片段原位地转移到NC膜或尼龙膜上。然后,膜上的DNA片段与标记的探针DNA 进行杂交,已杂交的DNA片段可通过标记的探针进行放射性或显色反应定位。

(9)Northern杂交(P156):从真核生物的特定组织或发育阶段的细胞分离出全部RNA或mRNA,用变性凝胶电泳分离后转移到NC膜上。用变性的探针DNA对NC膜上的RNA进行杂交。从显影或显色反应判断阳性杂交的存在。

(10)亚克隆(P156):当载体中插入的外源DNA片段太大,难以作某些操作或分析时,需要对该克隆片段作些再切割,将大的DNA片段酶切成较小的片段,然后再与另外的新载体重组,并进行转化程序,这个过程称为亚克隆。

2、思考题

(1)、PCR技术原理的是什么?179

答:PCR技术是利用两种寡核苷酸引物,分别与双链DNA片段的两端互补,形成DNA聚合酶反应中的模板和引物的关系,这是PCR技术的核心。PCR聚合酶反应体系的一些重要条件包括:模板、一对寡核苷酸引物、4种底物dNTP和Tap DNA聚合酶。反应分为3步:双链模板DNA变性、退火和链的延伸。

(2)基因工程中工具酶的种类? P141

答:限制性内切酶、DNA连接酶、DNA聚合酶、逆转录酶、RNA聚合酶。

(3)DNA聚合酶的特点? P142

答:①需要提供合成模板;

②不能起始新的DNA链,必须要有引物提供3'-OH;

③合成的方向都是5'→3';

④除聚合DNA外还有其它功能;

⑤以脱氧核苷酸三磷酸(dNTP)为前体催化合成DNA。

(4)熟悉基因工程的载体的种类和特点?

答:①种类:质粒载体,λ噬菌体载体,M13噬菌体载体,柯斯质粒载体,细菌人工染色体,酵母人工染色体,动物病毒载体

②特点:◆载体DNA是单个复制单元,在宿主细胞内应具有独立复制能力;

◆分子量尽可能的小,便于细胞中分离纯化,离体条件下操作;◆含有多种

限制行内切酶的单一切点;◆载体内有不影响其复制,生长的非必要区域;

◆具有多种选择行标记。

(5)基因工程载体的基本要求和特点 P142

①基本要求:

◆载体能够独立复制,具有复制起点。

◆应具有灵活的克隆位点和方便的筛选标记。

◆应具有很强的启动子,能为大肠杆菌RNA聚合酶所识别。

◆应具有阻遏子,使启动子受到控制,只有当诱导时才能进行转录。

◆应具有很强的终止子,只转录克隆的基因,所产生的mRNA较为稳定。

②特点:

1.载体DNA是单个复制单元,在宿主细胞内应具有DNA独立复制能力;

2.分子量尽可能的小,以便容易从细胞中分离纯化,便于离体条件下操作;

3.含有多种限制性内切酶的单一切点。在切点内可以与外源DNA进行连接、重组;

4.载体内有不影响其复制、生长的非必要区域,在此区域内可以插入、接受外源DNA,外源DNA与载体分子一起复制、扩增;

5.具有多种选择性标志,如营养缺陷型、抗药性、形成噬菌斑的能力、外源性蛋白的产生等,作为区分重组的转化子与非重组转化子的指标。

③基因工程的基本步骤 P140

1.目的DNA的获得;

2.载体的选择与构建;

3.目的DNA与载体的重组;

4.重组DNA的转化或转染等,从而导入宿主细胞;

5.筛选含有重组DNA分子的宿主细胞,获得克隆。

(6)DNA文库构建的基本步骤? P158

1.λ载体DNA和双臂的制备

2.提取大分子DNA和制备大片段

3.载体与外源DNA重组

4.重组DNA的离体包装

5.重组DNA的转化

第六章

1、名词解释

DNA半保留复制:在DNA复制时,子代双链DNA中,一条链来自亲代,而另一条链是新合成的。

复制叉:复制起始点要形成一个特殊的叉形结构,是复制有关的酶和蛋白质组装成复合物和新链合成的部位。

复制子:从复制起始点到终止点的区域为一个复制子。

半不连续复制:在复制叉上发生一条新链为连续合成,另一条新链为不连续合成的复制机制,称为半不连续复制。

前导链:在DNA复制时,复制叉上一条连续合成的链。

后滞链:在DNA复制时,复制叉上一条不连续合成的链。

冈崎片段:DNA复制时后滞链所合成的短片段。

2、思考题

1.DNA复制的特征? P195

答:①核酸生物合成的一般规则;

②半保留复制;

③以复制子为单位进行;

④复制的起始点和终止点;

⑤具有复制叉结构和复制方向;

⑥复制的模型。

2.复制过程的几个阶段?(P216)

答:第一阶段,亲代DNA分子超螺旋构象的松弛及螺旋的解旋,使复制的模板展现出来;

第二阶段,是复制的引发过程,引物在5 →3 方向的合成;

第三阶段,是DNA链的延伸过程,在引物RNA合成的基础上,转换成DNA 链的5 →3 方向的合成;

第四阶段,是终止过程,复制进行到终止位点ter,有蛋白因子Tus参与,复制即终止。

3.线粒体DNA的复制模式?

答:

4.DNA链延伸的几个阶段?(P223)

答:①双螺旋DNA的不断解螺旋;

②前导链DNA的合成;

③后滞链模板不断引发,合成新的RNA产物;

④在RNA引物的基础上由DNA聚合酶合成冈崎片段;

⑤除去RNA引物,填补空隙,冈崎片段连接成后滞链。

5.真核与原核生物的复制相同点与差异之处?(P230)

答:相同之处:都是半保留的和半不连续的复制,复制过程都有引发、延伸和终止三个阶段,要求有模板以及有相应功能的DNA聚合酶和蛋白质参与。

不同之处:①真核的每条染色体有多个复制起始位点,而原核只有一个起始位点;

②真核染色体在全部复制完成之前,各个起始点上不能开始新一轮复制,受

到一种复制的调控;而原核DNA的起始点可以连续地开始新的复制事件,表现为一个复制子上有多个复制叉存在。

6.DNA损伤修复的种类?(P247)

答:直接修复、切除修复、重组修复、SOS修复。

7.原核DNA聚合酶的一般特性?(P211)

答:有单链DNA为模板,具有3 -OH基的引物,合成的方向总是5 -3 ,由模板决定加上去何种脱氧核苷酸,从引物的3 -OH端逐个延长。

第七章

1、名词解释

医学分子生物学

医学分子生物学 疾病和基因关系始终是医学领域关注的重大问题。在孟德尔遗传规律被重新认识的初期,就发现许多疾病受到遗传因素的控制,遵守孟德尔遗传因子的传递规律。遗传连锁定律的提出,现代经典遗传学理论体系的完善,极大地促进了对遗传性疾病的认识。上世纪40年代,L Pauling提出了”分子病”的概念,1956年,V Ingram发现血红蛋白β链第六位氨基酸从谷氨酸突变为缬氨酸是导致镰刀状贫血的原因。几乎同时,J.Lejeune发现Down综合症是由于21号染色体三陪体异常所致,系列染色体疾病病因。1976年,H Vanmus 和M Bishop在对肿瘤病毒学的研究中,发现了病毒癌基因,继而又无确定细胞癌基因的存在,此后抑癌基因也相继被发现,建立了肿瘤发生的基因理论,肿瘤被认为是体细胞的遗传病得到了普遍的认可。1983年,将亨廷顿病基因定位于第四号染色体上,1986年,克隆了慢性肉芽肿病的致病基因,同年杜氏肌营养不良和视网膜母细胞瘤的基因,也被定位克隆成功,掀起了单基因遗传病致病基因鉴定和克隆的热潮。世纪之交,人类基因组计划的完成,新的DNA标记的发现,为研究常见病的遗传因素成为了可能,2005年,首次用全基因组关联分析(GWAS),解析了视网膜黄斑变性病的相关基因,揭开了复杂性疾病易感基因确定的序幕,此后,一系列的常见多发疾病基因的GWAS研究,极大地丰富了人们对疾病发病机制的认识,加深了对疾病发生发展机制的认知。今天,疾病和基因关系仍是很长一段时间的重点工作,解析疾病基因,不但可以确定疾病的遗传易感性,有目的的开展预防、诊治,更

重要的是了解疾病新的致病机制,为分子诊断、分子靶向干预提供分子靶点。另一方面,药物作用靶点分子基因在人群的多态性,对药物作用的疗效影响;参与药物吸收、分布、代谢、排泄和毒性(admet)的基因多态性,也会影响药物的疗效,即药物基因组方面的研究,必将成为后基因组时代的重要研究内容。以疾病基因组学和药物基因组学为代表的组学研究进展,将为个体化医疗、精准医学提供理论和实践基础。

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

中南大学_医学分子生物学试题库答案.pdf

医学分子生物学习题集 (参考答案) 第二章基因与基因组 一、名词解释 1.基因(gene):是核酸中储存有功能的蛋白质多肽链或RNA序列信息及表达这些信息 所必需的全部核苷酸序列。 2.断裂基因(split gene):真核生物基因在编码区内含有非编码的插入序列,结构基因 不连续,称为断裂基因。 3.结构基因(structural gene):基因中用于编码RNA或蛋白质的DNA序列为结构基因。 4.非结构基因(non-structural gene):结构基因两侧一段不编码的DNA片段,含有基 因调控序列。 5.内含子(intron):真核生物结构基因内非编码的插入序列。 6.外显子(exon):真核生物基因内的编码序列。 7. 基因间DNA (intergenic DNA):基因之间不具有编码功能及调控作用的序列。 8. GT-AG 法则 (GT-AG law):真核生物基因的内含子5′端大多数是以GT开始,3′ 端大多数是以 AG 结束,构成 RNA 剪接的识别信号。 9.启动子(promoter):RNA聚合酶特异识别结合和启动转录的DNA序列。 10.上游启动子元件(upstream promoter element ):TATA合上游的一些特定的DNA序 列,反式作用因子,可与这些元件结合,调控基因转录的效率。 11.反应元件(response element):与被激活的信息分子受体结合,并能调控基因表达的 特异DNA序列。 12.poly(A)加尾信号 (poly(A) signal) :结构基因末端保守的 AATAAA 顺序及下游 GT 或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。 13.基因组(genome):细胞或生物体一套完整单倍体的遗传物质的总称。 14.操纵子(operon):多个功能相关的结构基因成簇串联排列,与上游共同的调控区和下 游转录终止信号组成的基因表达单位。 15.单顺反子(monocistron):一个结构基因转录生成一个mRNA分子。 16.多顺反子(polycistron):原核生物的一个mRNA分子带有几个结构基因的遗传信息,

分子生物学笔记

分子生物学笔记 ? ?第一章基因的结构第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。蛋白质组(proteome)和蛋白质组学(proteomics)

第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中DNA序列的分类? (一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.)LINES ②短散在重复序列(Short interspersed repeated segments)SINES SINES:长度<500bp,拷贝数>105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl (三)单拷贝序列(Unique Sequence) 包括大多数编码蛋白质的结构基因和基因间间隔序列, 三、基因家族(gene family)

分子生物学笔记完全版

分子生物学笔记第一章基因的结构 第一节基因和基因组 一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR) ④调控 序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene) ,外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划( human genome project, HGP ) 基因组学( genomics ),结构基因组学( structural genomics )和功能基因组学( functional genomics )。 蛋白质组( proteome )和蛋白质组学( proteomics ) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2 —>% ), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因. 可能由某一共同祖先基因(ancestral gene) 经重复(duplication) 和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如 rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生 有功能的基因产物,这种基因称为假基因(Pseudogene) . ¥ a1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1 .功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。 3 .细菌DNA大部分为编码序列。 二、病毒基因组的特点 1 .每种病毒只有一种核酸,或者DNA,或者RNA ; 2 .病毒核酸大小差别很大,3X10 3 一3X106bp ; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4 .大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5. 真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6. 有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone): 一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere) :真核生物线状染色体分子末端的DNA 区域端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

分子生物学基础知识要点

Northern blot:是DNA/RNA的杂交,它是一项用于检测特异性RNA的技术,RNA混合物首先按照它们的大小和相对分子量通过变性琼脂糖凝胶电泳加以分离,凝胶分离后的RNA 通过southern印迹转移到尼龙膜或硝酸纤维素膜上,再与标记的探针进行杂交反应,通过杂交结果分析可以对转录表达进行定量或定性。它是研究基因表达的有效手段。与Southern blot 相比,它的条件更严格些,特别是RNA容易降解,前期制备和转膜要防止Rnase的污染。实验步骤:1.用具的准备2.用RNAZaP去除用具表面的RNase酶污染3.制胶4. RNA样品的制备5.电泳6.转膜7.探针的制备8.探针的纯化及比活性测定9.预杂交10.探针变性11.杂交12.洗膜13.曝光14.去除膜上的探针15.杂交结果 半定量PCR要求比普通PCR更严格一些,另外往往通过转膜后的同位素杂交检测或凝胶成像后的灰度测定比较样品间的差异。 半定量RT-PCR一般是在没有条件做实时PCR 的情况下使用,用于测定体内目的基因的表达增加减少与否,即通过目的基因跑出来的电泳带与管家基因(如β-actin)的电泳带的相对含量比较,观测目的基因表达增减,另外还要做一个β-actin的内参照对照。 实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1.实时荧光定量PCR无需内标 2.内标对实时荧光定量PCR的影响 Sybr green(荧光染料掺入法)和Taqman probe(探针法) 检测两种蛋白质相互作用方法 1共纯化、共沉淀,在不同基质上进行色谱层析 2蛋白质亲和色谱基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。 3免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高4 Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 1.酵母双杂交 2.GSTpull-down实验 3.免疫共沉淀 4.蛋白质细胞内定位 RACE是基于PCR技术基础上由已知的一段cDNA片段,通过往两端延伸扩增从而获得完整的3'端和5'端的方法 1.此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有 利用价值的信息 2.节约了实验所花费的经费和时间。 3.只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长 基因特异性引物(GSPs)应该是: 23-28nt 50-70%GC Tm值≥65度,Tm值≥70度可以获得好的结果 注意事项 1.cDNA的合成起始于polyA+RNA。如果使用其它的基因组DNA或总RNA,背景会很高

(珍贵)浙江大学05-12年博士医学分子生物学真题

2012浙江大学医学分子生物学(乙)回忆版: 一.名词解释(3分*5) 1.The Central Dogma 2.Telomere 3.nuclear localization signal, NLS 4.Protein Motif 5.Splicesome 二.简答题:(5分*9) 1.一个基因有哪些结构组成? 2.基因、染色体、基因组的关系? 3.表观遗传机制改变染色质结果的机制? 4.内含子的生物学意义? 5.什么是蛋白质泛素化?其生物学意义是什么? 6.蛋白质纯化的方法? 7.MicroRNA是什么?它如何发挥作用? 8.什么是全基因组关联研究(Genome Wide Association Studies,GWAS)?其研究目的是什么? 9.分子生物学研究为什么需要模式生物? 三.问答题:(10分*4) 1.人体不同部位的细胞其基因组相同,为什么表达蛋白质的种类和数量不同? 2.用分子生物学知识,谈谈疾病发生机制? 3.有一块肿瘤组织及癌旁组织,设计一个实验证明细胞内蛋白质在肿瘤发生发展中的作用? 4.目前,基因靶点研究已成为新药开发的用药部分,结合目前药物靶点在新药开发中的应用,谈谈你的建议和观点?

2011浙江大学博士入学考试医学分子生物学试题回忆 一、英文名解 1、冈崎片段: 2、反式作用因子: 3、多克隆位点: 4、micro RNA: 5、分子伴侣: 二、简答 1、蛋白质四级结构。 2、真核转录调控点。 3、表观遗传学调控染色质。 4、真核RNA聚合酶类型及作用。 5、基因突变。 6、组学概念及举例。 7、简述兔源多克隆抗体的制备。

!!分子生物学笔记完全版

列〃一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和 3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断 裂基因(split-gene),外显子不连续。二、基因组(genome) 一 特定生物体的整套(单倍体)遗传物质的总和,基因组的大小 用全部 DNA 的碱基对总数表示。 人基因组 3X1 09(30 亿 bp),共编码约 10 万个基因。 每种真核生物的单倍体基因组中的全部 DNA 量称为 C 值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组一、真核生物基因组的特 点:, ①真核基因组 DNA 在细胞核内处于以核小体为基本单位的染色体结构中〃 ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中 DNA 序列的分类 &#8226; (一)高度重复序列(重复次数>lO5) 卫星 DNA(Satellite DNA) (二)中度重复序列 1〃中度重复序列的特点

①重复单位序列相似,但不完全一样, ②散在分布于基因组中〃 ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为 DNA 标记〃 ⑤中度重复序列可能是转座元件(返座子), 2〃中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments〃) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105〃如人 Alu 序列 LINEs:长

【期末复习总结】基础分子生物学.doc

【期末复习总结】基础分子生物学 基础分子生物学 第一章 1. DNA的发现 Avery的肺炎双球菌转化实验 Hershey和Chase的噬菌体侵染细菌试验 2. 基因工程操作的工具 限制性内切酶。DNA连接酶。运载体。 3. 原核生物的基因组和染色体结构都比较简单,转录和翻译在同一时间和空间内发生,基因表达的调控主要发生在转录水平。 真核生物转录和翻译过程在时间和空间上都被分隔开,且在转录和翻译后都有复杂的信息加工过程,其基因表达的调控可以发生在各种不同的水平上。其基因表达调控主要表现在信号传导研究、转录因子研究及RNA 剪辑3个方面。 弟一早 1. 原核细胞染色体: 一般只有一条大染色体且大都带有单拷贝基因,除少数基因外(如rRNA基因)。整个染色体DNA儿乎全部由功能基因和调控序列所 组成。 几乎每个基因序列都与它所编码蛋白质序列呈线性对应关系。

2. 真核生物 真核生物染色体中相对分子质量一般大大超过原核生物,并结合有大 量的蛋白质DNA具体组成成分为:组蛋白、非组蛋白、DNAo 其蛋白质与相应DNA的质量之比约为2:lo 5. 组蛋白 组蛋白是染色体的结构蛋白,其与DNA组成核小体。根据其凝胶电泳 性质可将其分为HL H2A、H2B、H3及H4。 6. 组蛋白的特性: 进化上极端保守性。其中H3、H4最保守,H1较不保守。 无组织特异性. 肽链上氨基酸分布的不对称性. 组蛋白的修饰作用。包括甲基化、乙基化、磷酸化及ADP核糖基化等。 富含赖氨酸的组蛋白H5. 7. 非组蛋白 色体上除了存在大约与DNA等量的组蛋白以外,还存在大量的非组蛋白。 组蛋白的量大约是组蛋白的60%?70%,非组蛋白的组织专一性和种属专一性。 组蛋白包括酶类、骨架蛋白、核孔复合物蛋白以及肌动蛋白、肌球蛋白等。它们也可能是染色质的组成成分。 类常见的非组蛋白: HMC蛋白。一般认为可能与DNA的超螺旋结构有关。

医学分子生物学试题答案

名词解释: 基因是核酸中贮存遗传信息的遗传单位,是贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。 基因组(gencme):细胞或生物中,一套完整单倍体遗传物质的总和(包括一种生物所需的全套基因及间隔序列)称为基因组。基因组的功能是贮存和表达遗传信息。 SD序列(Shine-Dalgarno sequence,SD sequence) 是mRNA能在细菌核糖体上产生有效结合和转译所需要的序列。SD序列与16S rRNA的3’末端碱基(AUUCCUCCAC-UAG-5’)互补,以控制转译的起始 分子克隆:克隆(clone):是指单细胞纯系无性繁殖,现代概念是将实验得到的人们所需的微量基因结构,引入适当的宿主细胞中去,在合适的生理环境中进行无性繁殖,从而利用宿主的生理机制繁衍人们所需要的基因结构,并进行表达。由于整个操作在分子水平上进行,所以称为分子克隆(molecular cloning)。 动物克隆(Animal cloning)就是不经过受精过程而获得动物新个体的方法. 基因诊断:就是利用现代分子生物学和分子遗传学的技术方法,直接检测基因结构 (DNA水平)及其表达水平(RNA水平)是否正常,从而对疾病做出诊断的方法。 基因治疗就是将有功能的基因转移到病人的细胞中以纠正或置换致病基因的一种治疗方法,是指有功能的目的基因导入靶细胞后有的可与宿主细胞内的基因发生整合,成为宿主细胞遗传物质的一部分,目的基因的表达产物起到对疾病的治疗作用。 转基因动物就是把外源性目的基因导入动物的受精卵或其囊胚细胞中,并在细胞基因组中稳定整合,再将合格的重组受精卵或囊胚细胞筛选出来,采用借腹怀孕法寄养在雌性动物(foster mother)的子宫内,使之发育成具有表达目的基因的胚胎动物,并能传给下一代。这样,生育的动物为转基因动物。 探针:在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记。这种带有一定标记的已知顺序的核酸片段称为探针。 限制性核酸内切酶:限制性核酸内切酶(restriction endonuclease)是一类专门切割DNA 的酶,它们能特异结合一段被称为限制酶识别顺序的特殊DNA序列并切割dsDNA。 载体:要把一个有用的基因(目的基因-研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 限制性片段长度多肽性分析(RFLP):DNA片段长度多态性分析(restriction fragment length polymer-phism,RFLP)基因突变导致的基因碱基组成或(和)顺序发生改变,会在基因结构中产生新的限制性内切酶位点或使原有的位点消失. 用限制酶对不同个体基因组进行消化时,其电泳条带的数目和大小就会产生改变,根据这些改变可以判断出突变是否存在。 简答题: 1.蛋白质的生物合成过程中的成分参与,参与因子,作用? mRNA是合成蛋白质的“蓝图(或模板)” tRNA是原料氨基酸的“搬运工” rRNA与多种蛋白质结合成核糖体作为合成多肽链的装配机(操作台) tRNA mRNA是合成蛋白质的蓝图,核糖体是合成蛋白质的工厂,但是,合成蛋白质的原料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,需要转运RNA把氨基酸搬运到核糖体中的mRNA上 rRNA 核糖体RNA(rRNA)和蛋白质共同组成的复合体就是核糖体,核糖体是蛋白质合成的场所。

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。 6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面 存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。(3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA 链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。

分子生物学试验基础知识

分子生物学实验基础知识 分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也是分子水平研究疾病发生机制、基因诊断和基因治疗的方法。转化(trans formation)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采用的手段。基因重组的目的之一是基因克隆(gene clone),基因克隆可理解为以一分子基因为模板扩增得到的与模板分子结构完全相同的基因。使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。 外来基因引起细胞生物性状改变的过程叫转化(transformation),以噬菌体把外源基因导入细菌的过程叫转染(transfection)。利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的过程叫转导(transduction)。一个或一组基因从一处转移到基因组另一处的过程叫转位(transposition),这些游动的基因叫转位子。 一、基因工程的常用工具 (一)载体 载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。 质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合。质粒有严紧型和松弛型之分。严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。质粒经过改造品种繁多,常用的有pBR322、pUC系列等。这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Ap r、抗四环素Tc r等)或大肠埃希菌部分乳糖操纵子(E.coli LacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达。质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点。 常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统。噬菌体应和相应的宿主细胞配合使用。以上载体各有特点,便于选择,灵活应用。 (二)工具酶

研究生-分子生物学Ⅱ笔记整理版

分子生物学Ⅱ 专题一细胞通讯与细胞信号转导(一)名词解释 (1)信号分子(signal molecule):是指在细胞间或细胞内进行信息传递的化学物质。 (2)受体(receptor):是指细胞中能识别信息分子,并与之特异结合、引起相应生物效应的蛋白质。 (3)蛋白激酶(protein kinase):是指使蛋白质磷酸化的酶。 (二)简答分析 (1)细胞通讯的方式及每种作用方式的特点。 答: (2)膜受体介导的信息传递途径的基本规律。

答:配体→膜受体→第二信使→效应蛋白→效应。(3)试以肾上腺素、干扰素、胰岛素、心纳素为例,阐述其信息转导过程。 答:①肾上腺素:cAMP-PKA途径; 过程:首先肾上腺素与其受体结合,使G蛋白被激活;然后G蛋白与膜上的腺苷酸环化酶相互作用,后者将ATP转化为cAMP;最后cAMP磷酸化PKA,从而产生一系列生物学效应。 ②胰岛素:受体型TPK途径; 过程:胰岛素与其靶细胞上的受体结合后,可使其受体中的TPK激活,随后通过下游的Ras途径继续传递信号,直至发生相应的生物学效应。 ③干扰素:Jak-STAT途径; 过程:首先干扰素与受体结合导致受体二聚化,然后受体使JAK(细胞内TPK)激活,接着JAK将下游的STAT磷酸化形成二聚体,暴露出入核信号,最后STAT进入核内,调节基因表达,产生生物学效应。 ④心钠素:cGMP-PKG途径; 过程:心钠素与其受体结合,由于该受体属于GC型酶偶联受体,具有鸟苷酸环化酶的的活性,因此结合后可直接将GTP转化为cGMP,进而激活下游的PKG,最终产生一系列的生物学效应。

(4)类固醇激素是如何调控基因表达的? 答:类固醇激素穿膜后与细胞内(或核内)受体结合,使受体变构形成激素受体活性复合物并进入细胞核中,然后以TF的形式作用于特异的DNA序列,从而调控基因表达。 专题二基因分析的策略 (一)名词解释 (1)分子杂交(molecular hybridization):是指具有一定同源序列的两条核酸单链(DNA或RNA)在一定条件下,按碱基互补配对原则经退火处理,形成异质双链的过程。(2)核酸分子杂交技术:是指采用杂交的手段(方式),用一已知序列的DNA或RNA片段(探针)来测检样品中未知核苷酸顺序。 (3)探针(Probe):是指用来检测某特定核苷酸序列的标记DNA或RNA片段。 (4)增色效应:是指DNA变性时260nm紫外吸收值增加的现象。 (5)解链温度(Tm):是指加热DNA溶液,使其对260nm 紫外光的吸光度达到其最大值一半时的温度,即50%DNA 分子发生变性的温度。 (6)转基因:是指是借助基因工程将确定的外源基因导入

基础分子生物学(生物科学专业用)

基础分子生物学 三、选择题 1、RNA 合成的底物是------ ---------。 A dATP, dTTP , dGTP , d CTP BATP, TTP , GTP , CTP C ATP ,GTP, CTP,UTP D 、GTP, CTP,UTP,TTP 2.模板DNA的碱基序列是3′—TGCAGT—5′,其转录出RNA碱基序列是:A.5′—AGGUCA—3′ B.5′—ACGUCA—3′ C.5′—UCGUCU—3′ D.5′—ACGTCA—3′ E.5′—ACGUGT—3′ 3、转录终止必需。 A、终止子 B、ρ因子 C、DNA和RNA的弱相互作用 D上述三种 4、在转录的终止过程中,有时依赖于蛋白辅因子才能实现终止作用,这种蛋白辅因子称为---- -----。 A σ因子 B ρ因子 C θ因子 D IF因子 5.识别RNA转转录终止的因子是: A.α因子 B.β因子 C.σ因子 D.ρ因子 E.γ因子 6.DNA复制和转录过程有许多异同点,下列DNA复制和转录的描述中错误的是: A.在体内以一条DNA链为模板转录,而以两条DNA链为模板复制 B.在这两个过程中合成方向都为5′→3′ C.复制的产物通常情况下大于转录的产物 D.两过程均需RNA引物 E.DNA聚合酶和RNA聚合酶都需要Mg2+ 7、核基因mRNA 的内元拼接点序列为。 A、AG……GU B、GA……UG C、GU……AG D、UG……GA 8、真核生物mRNA分子转录后必须经过加工,切除---------,将分隔开的编码序列连接在一起,使其成为蛋白质翻译的模板,这个过程叫做RNA的拼接。 A 外显子 B 启动子 C 起始因子 D 内含子 9、在真核生物RNA polⅡ的羧基端含有一段7个氨基酸的序列,这个7肽序列为Tyr-Ser-Pro-Thr-Ser-Pro-Ser ,被称作。 A C末端结构域 B 帽子结构 C Poly(A)尾巴 D 终止子 10.真核生物RNA的拼接需要多种snRNP的协助,其中能识别左端(5’)拼接点共有序列的snRNP 是: A.U1 snRNP B.U2 snRNP C.U5 snRNP E.U2 snRNP+ U5 snRNP 四、是非题 1、所有的启动子都位于转录起始位点的上游。( X ) 2、RNA分子也能像蛋白酶一样,以其分子的空间构型产生链的断裂和和合成所必须的微环境。(对) 3、真核生物的mRNA中的poly A 尾巴是由DNA编码,经过转录形成的。( X ) 4、在大肠杆菌RNA聚合酶中,β亚基的主要功能是识别启动子。( X ) 5、所有起催化作用的酶都是蛋白质。( X ) 五、问答题

(完整word版)医学分子生物学

医学分子生物学 名词解释: 结构基因(structural genes): 可被转录形成 mRNA,并转译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。 ORF 开放阅读框架( open reading frame,ORF ): 是指DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码。 C值(C-value): 一种生物体单倍体基因组DNA的总量,用以衡量基因组的大小。 C值矛盾/ C值悖论: C值和生物结构或组成的复杂性不一致的现象。 基因组(genome): 是指生物体全套遗传信息,包括所有基因和基因间的区域 重叠基因 是指同一段DNA片段能够参与编码两种甚至两种以上的蛋白质分子。 SNP单核苷酸多态性(singl e nucleotid e polymorphism) 是由基因组DNA上的单个碱基的变异引起的DNA序列多态性。是人群中个体差异最具代表性的DNA多态性,相当一部分还直接或间接与个体的表型差异、对疾病的易感性或抵抗能力、对药物的反应性等相关。SNP被认为是一种能稳定遗传的早期突变 蛋白质组(proteomics): 指应用各种技术手段来研究蛋白质组的一门新兴科学,其目的是从整体的角度分析细胞内动态变化的蛋白质组成成份、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律. 质谱技术mass spectrometry,MS 样品分子离子化后,根据不同离子间质核比(m/z)的差异来分离并确定分子量 开放阅读框=ORF 基因工程

又称为重组DNA技术,是指将外源基因通过体外重组后导入受体细胞,并使其能在受体细胞内复制和表达的技术。 限制性核酸内切酶(restriction endonuclease, RE) 是一类能识别和切割双链DNA特定核苷酸序列的核酸水解酶。 逆转录酶 依赖RNA的DNA聚合酶,它以RNA为模板、4种dNTP为底物,催化合成DNA,其功能主要有:1)逆转录作用;2)核酸酶H的水解作用;3)依赖DNA的DNA聚合酶作用。 粘性末端 被限制酶切割后突出的部分就是粘性末端(来自360问答) 载体vector 指能携带外源DNA片段导入宿主细胞进行扩增或表达的工具。载体的本质为DNA。多克隆位点 载体上具有多个限制酶的单一切点(即在载体的其他部位无这些酶的相同切点)称为多克隆位点 报告基因(reporter gene): 是指处于待测基因下游并通过转录和表达水平来反映上游待测基因功能的基因,又称报道基因。 转化 以质粒DNA或以它为载体构建的重组子导入细菌的过程称为转化(transformation) 感受态细胞 细胞膜结构改变、通透性增加并具有摄取外源DNA能力的细胞称谓感受态细胞(competent cell)。 碱裂解法 在NaOH提供的高pH(12.0~12.6)条件下,用强阳离子去垢剂SDS破坏细胞壁,裂解细胞,与NaOH共同使宿主细胞的蛋白质与染色体DNA发生变性,释放出质粒DNA。 核酸变性 变性(denaturation):在某些理化因素的作用下,维系DNA分子二级结构的氢键和碱基堆积力受到破坏,DNA由双螺旋变成单链过程。 核酸复性

完整word版,分子生物学总结完整版,推荐文档

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

分子生物学实验基础

分子生物学实验基础 分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也是分子水平研究疾病发生机制、基因诊断和基因治疗的方法。转化(transforma tion)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采用的手段。基因重组的目的之一是基因克隆(gene clone),基因克隆可理解为以一分子基因为模板扩增得到的与模板分子结构完全相同的基因。使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。 外来基因引起细胞生物性状改变的过程叫转化(transformation),以噬菌体把外源基因导入细菌的过程叫转染(transfection)。利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的过程叫转导(transduction)。一个或一组基因从一处转移到基因组另一处的过程叫转位(transposition),这些游动的基因叫转位子。 一、基因工程的常用工具 (一)载体 载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(p lasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。 质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合。质粒有严紧型和松弛型之分。严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。质粒经过改造品种繁多,常用的有pBR322、pUC系列等。这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Apr、抗四环素Tcr等)或大肠埃希菌部分乳糖操纵子(E.coli LacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达。质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点。 常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统。噬菌体应和相应的宿主细胞配合使用。以上载体各有特点,便于选择,灵活应用。

相关文档
相关文档 最新文档