文档视界 最新最全的文档下载
当前位置:文档视界 › 材料力学复习资料全

材料力学复习资料全

材料力学复习资料全
材料力学复习资料全

材料力学复习资料

一、填空题

1、为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度;同时要求他们有足够的抵抗变形的能力,即要求它们有足够的刚度;另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的

稳定性。

2、材料力学是研究构件强度、刚度、稳定性的学科。

3、强度是指构件抵抗破坏的能力;刚度是指构件抵抗变形的能力;稳定性是指构件维持其原有的平衡状态的能力。

4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。

5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。

6、截面法是计算力的基本方法。

7、应力是分析构件强度问题的重要依据。

8、线应变和切应变是分析构件变形程度的基本量。

9、轴向尺寸远大于横向尺寸,称此构件为杆。

10、构件每单位长度的伸长或缩短,称为线应变。

11、单元体上相互垂直的两根棱边夹角的改变量,称为切应变。

12、轴向拉伸与压缩时直杆横截面上的力,称为轴力。

13、应力与应变保持线性关系时的最大应力,称为比例极限。

14、材料只产生弹性变形的最大应力,称为弹性极根;材料能承受的最大应力,称为强度极限。

15、弹性模量E是衡量材料抵抗弹性变形能力的指标。

16、延伸率δ是衡量材料的塑性指标。δ≥5%的材料称为塑性材料;δ<5%的材料称为脆性材料。

17、应力变化不大,而应变显著增加的现象,称为屈服或流动。

18、材料在卸载过程中,应力与应变成线性关系。

19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化。

20、使材料丧失正常工作能力的应力,称为极限应力。

21、在工程计算中允许材料承受的最大应力,称为许用应力。

22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比。

23、胡克定律的应力适用围是应力不超过材料的比例极限。

24、杆件的弹性模量E表征了杆件材料抵抗弹性变形的能力,这说明在相同力作用下,杆件材料的弹性模量E值越大,其变形就越小。

25、在国际单位制中,弹性模量E的单位为GPa。

26、低碳钢试样拉伸时,在初始阶段应力和应变成线性关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为弹性极限的时候。

27、在低碳钢的应力—应变图上,开始的一段直线与横坐标夹角为,由此可知其正切tg在数值上相当于低碳钢拉压弹性模量E的值。

28、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成45o角的系统条纹,此条纹称为滑移线。

29、使材料试样受拉达到强化阶段,然后卸载,再重新加载时,其在弹性围所能达到的最大荷载将提高,而且断裂后的延伸率会降低,此即材料的冷作硬化现象。

30、铸铁试样压缩时,其破坏断面的法线与轴线大致成45o的倾角。

31、铸铁材料具有抗压强度高的力学性能,而且耐磨,价廉,故常用于制造机器底座,床身和缸体等。

32、铸铁压缩时的延伸率值比拉伸时大。

33、混凝土这种脆性材料常通过加钢筋来提高混凝土构件的抗拉能力。

34、混凝土,石料等脆性材料的抗压强度远高于它的抗拉强度。

35、为了保证构件安全,可靠地工作,在工程设计时通常把许用应力作为构件实际工作应力的最高限度。

36、安全系数取值大于1的目的是为了使工程构件具有足够的强度储备。

37、设计构件时,若片面地强调安全而采用过大的安全系数,则不仅浪费材料而且会使所设计的结构物笨重。38、约束反力和轴力都能通过静力平衡方程求出,称这类问题为静定问题;反之则称为超静定问题;未知力多于平衡方程的数目称为几次超静定。

39、构件因强行装配而引起的力称为装配力,与之相应的应力称为装配应力。

40、材料力学中研究的杆件基本变形的形式有拉伸或压缩、剪切、扭转和弯曲。

41、吊车起吊重物时,钢丝绳的变形是拉伸变形;汽车行驶时,传动轴的变形是扭转变形;教室梁的变形是弯曲变形;建筑物的立柱受压缩变形;铰制孔螺栓连接中的螺杆受剪切变形。

42、通常把应力分解成垂直于截面和切于截面的两个分量,其中垂直于截面的分量称为正应力,用符号σ表示,切于截面的分量称为剪应力,用符号τ表示。

43、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相重合。

44、杆件轴向拉伸或压缩时,其横截面上的正应力是均匀分布的。

45、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面形心。

46、在轴向拉伸或压缩杆件的横截面上的正应力相等是由平面假设认为杆件各纵向纤维的变形大小都相等而推断的。

47、正方形截而的低碳钢直拉杆,其轴向向拉力3600N,若许用应力为100Mp a,由此拉杆横截面边长至少应为

6mm。

48、求解截面上力的截面法可以归纳为“截代平”,其中“截”是指沿某一平面假想将杆

截断分成两部分;“代”是指用力代替去除部分对保留部分的作用;“平”是指对保留部分建立平衡方程。

49、剪切的实用计算中,假设了剪应力在剪切面上是均匀分布的。

50、钢板厚为t,冲床冲头直径为d,今在钢板上冲出一个直径d为的圆孔,其剪切面面积为πdt。

51、用剪子剪断钢丝时,钢丝发生剪切变形的同时还会发

生挤压变形。 52、挤压面是两构件的接触面,其方位是垂直于挤压力的。 53、一螺栓联接了两块钢板,其侧面和钢板的接触面是半圆柱面,因此挤压面面积即为半圆柱面正投影的面积。 54、挤压应力与压缩应力不同,前者是分布于两构件接触表面上的压强而后者是分布在构件部截面单位面积上的力。

55、当剪应力不超过材料的剪切比例极限时,剪应变与剪应力成正比。

56、构件接触面上的相互压紧的现象称为挤压,与构件压缩变形不同的。

57、凡以扭转变形为主要变形的构件称为轴。

58、功率一定时,轴所承受的外力偶矩e M 与其转速n 成反比。

59、已知圆轴扭转时,传递的功率为kW P 15=,转速为rpm n 150=,则相应的外力偶矩为=e M 954.9N.m 。 60、在受扭转圆轴的横截面上,其扭矩的大小等于该截面一侧(左侧或右侧)轴段上所有外力偶矩的代数和;在扭转杆上作用集中外力偶的地方,所对应的扭矩图要发生突变,突变值的大小和杆件上集中外力偶之矩相同。 61、圆轴扭转时横截面上任意一点处的切应力与该点到圆心间的距离成正比。

62、当切应力不超过材料的比例极限时,切应力与切应变成正比例关系,这就是剪切胡克定律。 63、GI P 称为材料的截面抗扭刚度。

64、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,横截面上任意点的切应变与该点到圆心的距离成正比,截面边缘上各点的变形为最大,而圆心的变形为零;距圆心等距离的各点其切应变必然相等。

65、从观察受扭转圆轴横截面的大小、形状及相互之间的轴向间距不改变这一现象,可以看出轴的横截面上无正应力。

66、圆轴扭转时,横截面上力系合成的结果是力偶,力偶作用于面垂直于轴线,相应的横截面上各点的切应力应垂直于半径,切应力的大小沿半径呈线性规律分布,横截面同一圆周上各点的切应力大小是相等的。 67、横截面面积相等的实心轴和空心轴相比,虽材料相同,但空心轴的抗扭承载能力(抗扭刚度)要强些。

68、材料的三个弹性常数是E 、G 、μ_;在比例极限,对于各向同性材料,三者关系是2(1)

E

G μ=

+。

69、组合截面对任一轴的静矩,等于各部分面积对同一轴静矩的代数和。

70、在一组相互平行的轴中,截面对各轴的惯性矩以通过形心轴的惯性矩为最小。

71、通过截面形心的正交坐标轴称为截面的形心轴。 72、恰使截面的惯性积为零的正交坐标轴称为截面的主惯性轴,截面对此正交坐标轴的惯性矩,称为主惯性矩。 73、有一正交坐标轴,通过截面的形心,且恰使截面的惯性积为零,则此正交坐标轴称为截面的形心主惯性轴,截面对正交坐标轴的惯性矩称为形心主惯性矩。

74、梁产生弯曲变形时的受力特点,是梁在过轴线的平面受到外力偶的作用或者受到和梁轴线相垂直的外力的作用。

75、以弯曲变形为主要变形的构件称为梁。

76、车床上的三爪盘将工件夹紧之后,工件夹紧部分对卡

盘既不能有相对移动,也不能有相对转动,这种形式的支座可简化为固定端支座。

77、梁弯曲时,其横截面上的剪力作用线必然平行于横截面。

78、在一般情况下,平面弯曲梁的横截面上存在两种力,即剪力和弯矩,相应的应力也有两种,即剪应力和正应力。 79、若在梁的横截面上,只有弯矩而无剪力,则称此情况为纯弯曲。

80、z EI 称为材料的抗弯刚度。

81、梁在发生弯曲变形的同时伴有剪切变形,这种平面弯曲称为横力弯曲。 82、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对截面形心力矩的代数和;弯矩的正负,可根据该截面附近的变形情况来确定,若梁在该截面附近弯成上凹 下凸_,则弯矩为正,反之为负。

83、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为正。

84、将一悬臂梁的自重简化为均布载荷,设其载荷集度为

q ,

梁长为L ,由此可知在距固定端2/L 处的横截面上的剪力为qL / 2,固定端处横截面上的弯矩为qL 2

/ 2。 85、由剪力和载荷集度之间的微分关系可知,剪力图上某点的切线斜率等于对应于该点的载荷集度.

86、设载荷集度q (x )为截面位置x 的连续函数,则q (x )是弯矩M (x )的二阶导函数。

87、梁的弯矩图为二次抛物线时,若分布载荷方向向上,则弯矩图为向下凸的抛物线。

88、弯矩图的凹凸方向可由分布载荷的正负符号确定。 89、在梁的某一段,若无载荷的作用,则剪力图是平行于x 轴的直线。 90、矩形截面梁的切应力是沿着截面高度按抛物线规律变化的,在中性轴上切应力为最大,且最大值为该截面上平均切应力的1.5倍。

91、梁在纯弯曲时,其横截面仍保持为平面,且与变形后的梁轴线相垂直;各横截面上的剪力等于零,而弯矩为常量。

92、梁在弯曲时的中性轴,就是梁的中性层与横截面的交线。它必然通过其横截面上的形心那一点。

93、梁弯曲时,其横截面的正应力按直线规律变化,中性轴上各点的正应力等于零,而距中性轴越远(填远或者近)正应力越大。以中性层为界,靠凹边的一侧纵向纤维受压力作用,而靠凸边的一侧纵向纤维受拉应力作用。 94、对于横截面高宽度比2:=b h 的矩形截面梁,在当截面竖放时和横放时的抗弯能力(抗弯截面系数)之比为2。 95、面积相等的圆形、矩形和工字形截面的抗弯截面系数

分别为圆W 、矩W 和工W ,比较其值的大小,其结论应是圆W 比矩W 小,工W 比矩W 大。(填大或者小)

96、由弯曲正应力强度条件可知,设法降低梁的最大弯矩,

并尽可能提高梁截面的抗弯截面系数,即可提高梁的承能力。

97、工程上用的鱼腹梁、阶梯轴等,其截面尺寸随弯矩大小而变,这种截面变化的梁,往往就是近似的等强度梁。 98、等截面梁的最大正应力总是出现在最大弯矩所在的横截面上。 99、若变截面梁的每一横截面上的最大正应力等于材料的许用应力,则称这种梁为等强度梁。

100、在平面弯曲的情况下,梁变形后的轴线将成为一条连续而光滑的平面曲线,此曲线被称为挠曲线。梁在平面弯曲变形时的转角,实际上是指梁的横截面绕其中性轴这条线所转动的角度,它近似地等于挠曲线方程)(x f w =对x 的一阶导数。

101、横截面的形心在垂直梁轴线方向的线位移称为该截面的挠度,横截面绕中性轴转动的角位移称为该截面的转角;挠曲线上任意一点处切线的斜率,等于该点处横截面的转角。

102、根据梁的边界条件和变形的连续光滑条件,可以确定梁的挠度和转角的积分常数。

103、梁弯曲时的挠度和转角的符号,按所选的坐标轴而定,与w 轴的正向一致时其挠度为正,若这时挠曲线的斜率为正,则该处截面的转角就为正。

104、梁的挠曲线近似微分方程确立了梁的挠度的二阶导数与弯矩、抗弯刚度之间的关系。梁弯曲时,如果梁的抗弯刚度愈大,则梁的曲率愈小,说明梁愈不容易变形。 105、用积分法求梁的变形在确定积分常数时,应根据梁的边界条件和变形连续光滑条件来确定积分常数。 106、由梁在单独载荷作用下的变形公式可知,变形和载荷的关系是线性的,故可用叠加原理求梁的变形.

107、在集中力作用下的梁,变形后的最大挠度与梁的跨度L 的三次方成正比。 108、均布载荷作用下的简支梁,在梁长l 变为原来的2/l 时,其最大挠度将变为原来1/16。

109、一简支梁分在中点处作用一力偶,则其中点的挠度值为零。

110、受力构件任意一点在各个截面上的应力情况,称为该点处的应力状态,在应力分析时常采用取单元体的研究方法。

111、表示构件一点的应力状态时,首先是围绕该点截取一个边长趋于零的立方体作为分离体,然后给出此分离体各个面上的应力。

112、单元体截面上,若只有切应力而无正应力,则称此情况为纯剪切。

113、切应力等于零的截面称为主平面,主平面上的正应力称为主应力;各个面上只有主应力的单元体称为主单元体。

114、只有一个主应力不等于零的应力状态,称为单向应力状态,有二个主应力不等于零的应力状态,称为二向应力状态,三个主应力均不等于零的应力状态,称为三向应力状态。

115、通常将应力状态分为三类,其中一类,如拉伸或压缩杆件及纯弯曲梁(中性层除外)各点就属于单向应力状态。

116、一铸铁直杆受轴向压缩时,其斜截面上的应力是均匀分布的。

117、在轴向拉伸直杆的斜截面上,有正应力也有切应力,切应力随截面方位不同而不同,而切应力的最大值发生在

与轴线间的夹角为450

的斜截面上;在正应力为最大的截面上切应力为零。

118、通过单元体的两个互相垂直的截面上的切应力,大小相等,方向共同指向或背离公共棱边。

119、用应力圆来寻求单元体斜截面上的应力,这种方法称为图解法。应力圆圆心坐标为

(

,0)2

x y

σσ+

120、材料破坏主要有流动破坏和断裂破坏两种类型。

121、构件在载荷作用下同时发生两种或两种以上的基本变形称为组合变形。

122、圆轴弯曲与扭转的组合变形,在强度计算时通常采用第三或第四强度理论。设M 和T 为危险面上弯矩和扭矩,W

为截面抗弯截面系数,则用第三强度理论表示为

≤[σ]

;第四强度理论表示为

[]σ≤。 123、压杆从稳定平衡状态过渡到不稳定的平衡状态,载荷的临界值称为临界载荷,相应的应力称为临界压力。 124、对于相同材料制成的压杆,其临界应力仅与柔度系数有关。

125、当压杆的应力不超过材料的比例极限时,欧拉公式才能使用。

126、临界应力与工作应力之比,称为压杆的工作稳定安全系数,它应该大于规定的安全系数。故压杆的稳定条件是[]st st n n ≥。

127、两端铰支的细长杆的长度系数为1;一端固支,一端自由的细长杆的长度系数为2。

128、压杆的临界应力随柔度变化的曲线,称为临界应力总图。

129、影响圆截面压杆的柔度系数(长细比)λ的因素有长度、约束形式和截面几何性质。 二、简答题

1、试叙述本课程中对变形固体作出的几个基本假设。 答:本课程中对变形固体作出三个基本假设。 1.连续性假设2.均匀性假设3.各向同性假设 13、应用强度条件可以解决哪三个方面问题? 答:应用强度条件可以解决三个方面的问题,即 1)强度校核:2)设计截面3)确定许可荷载

15、什么叫冷作硬化现象?冷作硬化目的是什么? 答:当应力加载到强化段在的任一点,然后卸载。当再次加载时,其比例极限得到了提高,但塑性变形和伸长率却有所降低,这种现象称为冷作硬化。冷作硬化工艺就是利用金属材料的冷作硬化,达到提高金属材料的强度、硬度、耐磨性的加工方法。这种工艺的使用例子有:喷沙(提高表面硬度、耐磨性)、冷扎(提高板材型材的强度)、冷敦(提高螺栓的强度)等等。

24、受力情况、跨度、横截面积均相同的钢质梁与木质梁,在同一截面上它们的弯矩是否相同?纵向线应变是否相同?为什么?

答:受力情况、跨度、横截面积均相同的钢质梁与木

质梁,在同一截面上它们的弯矩是相同的。因z My

I σ=,

所以同一截面上正应力变化规律相同。因E σε=,钢梁

与木梁的弹性模量不同,所以对应点处的纵向线应变不相同。

27、减少梁变形的主要途径是什么?

答:减少梁变形的主要途径如下: 一.改善结构的形式,减小弯矩的数值

1.改善载荷条件。如采用卸荷装置;使轴上的齿轮、胶带轮等尽可能地靠近支座;将集中力分散成分布力等等。 2.减小跨度。例如车削细长工件时,采用跟刀架,以减小工件的变形,细长的传动轴,采用三支承以提高刚度。 二.选择合理的截面形状

在相同面积的条件下,尽可能增大截面的惯性矩。即使A I

z 尽可能大。

32、什么是强度理论?常用的强度理论有哪几个?如何用公式表示?它们的适用围是什

答:不论是简单应力状态,还是复杂应力状态,只要破坏的类型相同,则都是由同一个特定因素引起的,于是就可以利用轴向拉伸试验所获得的s σ或b σ值建立复杂应力状态下的强度条件。这种假说就称为强度理论。

1、最大拉应力理论(第一强度理论)11[]r σσσ=≤ 脆性材料

2、最大伸长线应变理论(第二强度理论)2123()[]r σσμσσσ=-+≤ 脆性材料

3、最大剪应力理论(第三强度理论)313[]r σσσσ=-≤ 塑性材料

4

、形状改变比能理论(第四强度理论)

4[]r σσ=

塑性材料第三、第四强度理论都在机械制造业中被广泛应用。

33、求解杆件的组合变形问题的具体步骤是什么? 答:

1).将组合变形按各基本变形的条件,分解为几种基本变形,简称为分解;

2).利用基本变形的应力公式,分别计算各点处的正应力和切应力; 3).将分别计算得到的同一截面同一点上的正应力取代数和,得到组合变形下该点处的正应力σ;将分别计算得到的同一截面同一点上的剪应力取几何和,得到组合变形下该点处的剪应力τ;

4).根据危险点的应力状态和构件的材料情况,按强度理论建立强度条件,并进行强度计算。

34、矩形横截面上同时存在两个方向的弯矩,则该截面上的最大正应力为多少?

答:用矢量合成的方法得合力矩矢

2

max 2max z y M M M +=,

由最大弯矩产生的最大拉应力为W

M

=

σ。 三、判断题(对论述正确的在括号画√ ,错误的画×) 1、材料力学研究的主要问题是微小弹性变形问题,因此在研究构件的平衡与运动时,可不计构件的变形。 (√)

2、构件的强度、刚度、稳定性与其所用材料的力学性质有关,而材料的力学性质又是通过试验测定的。 (√)

3、在载荷作用下,构件截面上某点处分布力的集度,称为该点的应力。 (√)

4、在载荷作用下,构件所发生的形状和尺寸改变,均称为变形。 (√)

5、杆件两端受到等值,反向和共线的外力作用时,一定产生轴向拉伸或压缩变形。 (×)

6、若沿杆件轴线方向作用的外力多于两个,则杆件各段横截面上的轴力不尽相同。 (√)

7、轴力图可显示出杆件各段横截面上轴力的大小但并不能反映杆件各段变形是伸长还是缩短。 (×)

8、一端固定的杆,受轴向外力的作用,不必求出约束反力即可画力图。 (√)

9、轴向拉伸或压缩杆件横截面上的力集度----应力一定垂直于横截面。 (√)

10、轴向拉伸或压缩杆件横截面上正应力的正负号规定:正应力方向与横截面外法线方向一致为正,相反时为负,这样的规定和按杆件变形的规定是一致的。 (√) 11、截面上某点处的总应力p 可分解为垂直于该截面的正应力σ和与该截面相切的切应力τ,它们的单位相同。 (√)

14、在强度计算中,塑性材料的极限应力是指比例极限p σ,而脆性材料的极限应力是指强度极限。

(×)

15、低碳钢在常温静载下拉伸,若应力不超过屈服极限s σ,则正应力σ与线应变ε成正比,称这一关系为拉伸(或压缩)的胡克定律。 (×) 16、当应力不超过比例极限时,直杆的轴向变形与其轴力、杆的原长成正比;而与横截面面积成反比。 (√)

17、铸铁试件压缩时破坏断面与轴线大致成o 45,这是由压应力引起的缘故。 (×)

18、低碳钢拉伸时,当进入屈服阶段时,试件表面上出现与轴线成o 45的滑移线,这是由最大切应力max τ引起的,但拉断时截面仍为横截面,这是由最大拉应力max σ引起的。 (√)

19、杆件在拉伸或压缩时,任意截面上的切应力均为零。 (×)

20、EA 称为材料的截面抗拉(或抗压)刚度。

(√)

21、解决超静定问题的关键是建立补充方程,而要建立的补充方程就必须研究构件的变形几何关系,称这种关系为变形协调关系。 (√) 22、因截面的骤然改变而使最小横截面上的应力有局部陡增的现象,称为应力集中。 (√)

23、对于剪切变形,在工程计算常只计算切应力,并假设切应力在剪切面是均匀分布的。 (×)

24、挤压力是构件之间的相互作用力,它和轴力、剪力等力在性质上是不同的。 (√) 25、挤压的实用计算,其挤压面积一定等于实际接触面积。 (×)

26、若在构件上作用有两个大小相等、方向相反、相互平行的外力,则此构件一定产生剪切变形。 ( )

27、用剪刀剪的纸和用刀切的菜,均受到了剪切破坏。 (√)

28、计算名义剪应力有公式=P /A ,说明实际构件剪切面上的剪应力是均匀分布的。 ( )

29、在构件上有多个面积相同的剪切面,当材料一定时,若校核该构件的剪切强度,则只对剪力较大的剪切面进行校核即可。 (√)

30、两钢板用螺栓联接后,在螺栓和钢板相互接触的侧面将发生局部承压现象,这种现象称挤压。当挤压力过大时,可能引起螺栓压扁或钢板孔缘压皱,从而导致连接松动而失效。 (√)

31、进行挤压实用计算时,所取的挤压面面积就是挤压接触面的正投影面积。 (√)

32、在挤压实用计算中,只要取构件的实际接触面面积来计算挤压应力,其结果就和构件的实际挤压应力情况符合。 ( )

33、一般情况下,挤压常伴随着剪切同时发生,但须指出,

挤压应力与剪应力是有区别的,它并非构件部单位面积上的力。 (√) 34、螺栓这类圆柱状联接件与钢板联接时,由于两者接触面上的挤压力沿圆柱面分布很复杂,故采用实用计算得到的平均应力与接触面中点处(在与挤压力作用线平行的截面上)的最论挤压应力最大值相近。 (√) 35、构件剪切变形时,围绕某一点截取的微小正六面体将变成平行六面体,相对的面要错动, 说明其中一面的剪应力大于另一面的剪应力。 ( ) 36、纯剪切只产生剪应变,所以所取的微小正六面体的边长不会伸长或缩短。 (√) 37、圆轴扭转时,各横截面绕其轴线发生相对转动。 (√)

38、只要在杆件的两端作用两个大小相等、方向相反的外力偶,杆件就会发生扭转变形。( ) 39、传递一定功率的传动轴的转速越高,其横截面上所受的扭矩也就越大。 ( )

40、受扭杆件横截面上扭矩的大小,不仅与杆件所受外力偶的力偶矩大小有关,而且与杆件横截面的形状、尺寸也有关。 ( )

41、扭矩就是受扭杆件某一横截面左、右两部分在该横截面上相互作用的分布力系合力偶矩。 (√) 42、只要知道了作用在受扭杆件某横截面以左部分或以右部分所有外力偶矩的代数和,就可以确定该横截面上的扭矩。 (√)

43、扭矩的正负号可按如下方法来规定:运用右手螺旋法则,四指表示扭矩的转向,当拇指指向与截面外法线方向相同时规定扭矩为正;反之,规定扭矩为负。 (√)

44、一空心圆轴在产生扭转变形时,其危险截面外缘处具有全轴的最大切应力,而危险截面缘处的切应力为零。 ( )

45、粗细和长短相同的二圆轴,一为钢轴,另一为铝轴,当受到相同的外力偶作用产生弹性扭转变形时,其横截面上最大切应力是相同的。 (√)

46、实心轴和空心轴的材料、长度相同,在扭转强度相等的情况下,空心轴的重量轻,故采用空习圆轴合理。空心圆轴壁厚越薄,材料的利用率越高。但空心圆轴壁太薄容易产生局部皱折,使承载能力显著降低。 (√) 47、圆轴横截面上的扭矩为T ,按强度条件算得直径为d ,若该横截面上的扭矩变为T 5.0,则按强度条件可算得相应的直径d 5.0。 ( )

48、一径为d ,外径为D 的空心圆轴截面轴,其极惯性矩可由式)(1.044d D I P -≈计算,而抗扭截面系数则相应

地可由式)(2.033d D I t -≈计算。 ( ) 49、直径相同的两根实心轴,横截面上的扭矩也相等,当两轴的材料不同时,其单位长度扭转角也不同。 (√) 50、实心圆轴材料和所承受的载荷情况都不改变,若使轴的直径增大一倍,则其单位长度扭转角将减小为原来的16/1。 (√) 51、两根实心圆轴在产生扭转变形时,其材料、直径及所受外力偶之矩均相同,但由于两轴的长度不同,所以短轴的单位长度扭转角要大一些。

( )

52、薄壁圆筒扭转时,其横截面上切应力均匀分布,方向垂直半径。 (√)

53、空心圆截面的外径为D ,径为d ,则抗扭截面系数为16

163

3d D W t ππ-

=

( ) 54、由扭转试验可知,铸铁试样扭转破坏的断面与试样轴线成45°的倾角,而扭转断裂破坏的原因,是由于断裂面上的剪应力过大而引起的。 ( )

55、铸铁圆杆在扭转和轴向拉伸时,都将在最大拉应力的作用面发生断裂。 (√) 56、静矩是对一定的轴而言的,同一截面对不同的坐标轴,静矩是不相同的,并且它们可以为正,可以为负,亦可以为零。 (√)

57、截面对某一轴的静矩为零,则该轴一定通过截面的形心,反之亦然。 (√)

58、截面对任意一对正交轴的惯性矩之和,等于该截面对此两轴交点的极惯性矩,即p z y I I I =+。 (√)

59、同一截面对于不同的坐标轴惯性矩是不同的,但它们的值衡为正值。 (√) 60、组合截面对任一轴的惯性矩等于其各部分面积对同一轴惯性矩之和。 (√)

61、惯性半径是一个与截面形状、尺寸、材料的特性及外力有关的量。 ( )

62、平面图形对于其形心主轴的静矩和惯性积均为零,但极惯性矩和惯性矩一定不等于零。(√)

63、有对称轴的截面其形心必在此对称轴上,故该对称轴就是形心主轴。 (√)

64、梁平面弯曲时,各截面绕其中性轴z 发生相对转动。 (√)

65、在集中力作用处,剪力值发生突变,其突变值等于此集中力;而弯矩图在此处发生转折。(√) 66、在集中力偶作用处,剪力值不变;而弯矩图发生突变,其突变值等于此集中力偶矩。(√)

67、中性轴是通过截面形心,且与截面对称轴垂直的形心主轴。 (√)

68、以弯曲为主要变形的杆件,只要外力均作用在过轴的纵向平面,杆件就有可能发生平面弯曲。 ( )

69、一正方形截面的梁,当外力作用在通过梁轴线的任一方位纵向平面时,梁都将发生平面弯曲。 (√)

70、梁横截面上的剪力,在数值上等于作用在此截面任一侧(左侧或右侧)梁上所有外力的代数和。 (√)

71、用截面法确定梁横截面的剪力或弯矩时,若分别取截面以左或以右为研究对象,则所得到的剪力或弯矩的符号通常是相反的。

( )

72、研究梁横截面上的力时,沿横截面假想地把梁横截为左段梁或右段两部份,由于原来的梁处于平衡状态,所以作用于左段或右段上的外力垂直于梁轴线方向的投影之和为零,即各外力对截面形心之矩可相互抵消。 ( ) 73、简支梁若仅作用一个集中力P ,则梁的最大剪力值不会超过P 值。 (√)

74、在梁上作用的向下的均布载荷,即q 为负值,则梁的剪力F s (x )也必为负值。 ( )

76、梁的弯矩图上某一点的弯矩值为零,该点所对应的剪力图上的剪力值也一定为零。( )

77、在梁上的剪力为零的地方,所对应的弯矩图的斜率也为零;反过来,若梁的弯矩图斜率为零,则所对应的梁上的剪力也为零。 (√)

78、承受均布载荷的悬臂梁,其弯矩图为一条向上凸的二次抛物线,此曲线的顶点一定是在位于悬臂梁的自由端所对应的点处。 (√)

79、从左向右检查所绘剪力图的正误时,可以看出,凡集中力作用处,剪力图发生突变,突变值的大小与方向和集中力相同,若集中力向上,则剪力图向上突变,突变值为集中力大小。

(√)

80、在梁上集中力偶作用处,其弯矩图有突变,而所对应的剪力图为水平线,并由正值变为负值或由负值变为正值,但其绝对值是相同的。 ( ) 81、梁弯曲变形时,其中性层的曲率半径ρ与z EI 成正比。 (√)

82、纯弯曲时,梁的正应力沿截面高度是线性分布的,即离中性轴愈远,其值愈大;而沿截面宽度是均匀分布的。 (√)

83、计算梁弯曲变形时,允许应用叠加法的条件是:变形必须是载荷的线性齐次函数。(√) 84、叠加法只适用求梁的变形问题,不适用求其它力学量。 ( )

85、合理布置支座的位置可以减小梁的最大弯矩,因而达到提高梁的强度和刚度的目的。(√)

86、单元体中最大正应力(或最小正应力)的截面与最大切应力(或最小切应力)的截面成o 90 ( )

87、单元体中最大正应力(或最小正应力)的截面上的切应力必然为零。 (√)

88、单元体中最大切应力(或最小切应力)的截面上的正应力一定为零。 ( )

89、圆截面铸铁试件扭转时,表面各点的主平面联成的倾角为o 45的螺旋面拉伸后将首先发生断裂破坏。 (√)

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

材料力学复习提纲

材料力学复习提纲(二) 弯曲变形的基本理论: 一、弯曲力 1、基本概念:平面弯曲、纯弯曲、横力弯曲、中性层、中性轴、惯性矩、极惯性矩、主轴、主矩、形心主轴、形心主矩、抗弯截面模 2、弯曲力:剪力方程、弯矩方程、剪力图、弯矩图。 符号规定 3、剪力方程、弯矩方程 1、首先求出支反力,并按实际方向标注结构图中。 2、根据受力情况分成若干段。 3、在段任取一截面,设该截面到坐标原点的距离为x ,则截面一侧所有竖向外力的代数和即为该截面的剪力方程,截面左侧向上的外力为正,向下的外力为负,右侧反之。 4、在段任取一截面,设该截面到坐标原点的距离为x ,则截面一侧所有竖向外力对该截面形心之矩的代数和即为该截面的弯矩方程,截面左侧顺时针的力偶为正,逆时针的力偶为负,右侧反之。 对所有各段均应写出剪力方程和弯矩方程 4、作剪力图和弯矩图 1、根据剪力方程和弯矩方程作图。剪力正值在坐标轴的上侧,弯矩正值在坐标轴的下侧,要逐段画出。 2、利用微积分关系画图。 二、弯曲应力 1、正应力及其分布规律 ()() max max max 3 2 4 3 41 1-12 6 64 32 z z Z z z z z z z I M E M M M y y y W EI I I W y bh bh d d I W I W σσσρ ρ ππα== = = === = = = ?抗弯截面模量矩形 圆形 空心

2、剪应力及其分布规律 一般公式 z z QS EI τ* = 3、强度有条件 正应力强度条件 [][][] max z z z M M M W W W σσσσ= ≤≤≥ 剪应力强度条件 [] max max max z maz z QS Q I EI E S τττ** ≤= = 工字型 4、提高强度和刚度的措施 1、改变载荷作用方式,降低追大弯矩。 2、选择合理截面,尽量提高 z W A 的比值。 3、减少中性轴附近的材料。 4、采用变截面梁或等强度两。 三、弯曲变形 1、挠曲线近似微分方程: ()EIy M x ''=- 掌握边界条件和连续条件的确定法 2、叠加法计算梁的变形 掌握六种常用挠度和转角的数据 3、梁的刚度条件 ; []max y f l ≤ max 1.5 Q A τ= max 43Q A τ= max 2 Q A =max max z z QS EI *=

材料力学必备知识点

材料力学必备知识点 1、材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、低碳钢:含碳量在0.3%以下的碳素钢。 5、低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料:<5%的材料称为脆性材料 8、失效:断裂和出现塑性变形统称为失效 9、应变能:弹性固体在外力作用下,因变形而储存的能量

10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

(完整版)材料力学必备知识点

材料力学必备知识点 1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 低碳钢:含碳量在0.3%以下的碳素钢。 5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料: <5%的材料称为脆性材料 8、 失效:断裂和出现塑性变形统称为失效 9、 应变能:弹性固体在外力作用下,因变形而储存的能量 10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。 12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。 20、组合图形对某一轴的静矩等于(各组成图形对同一轴静矩)的代数和。 21、图形对于若干相互平行轴的惯性矩中,其中数值最小的是对( 距形心最近的)轴的惯性矩。 22、当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在(集中力作用面的一侧)。 23、应用公式z My I σ=时,必须满足的两个条件是(各向同性的线弹性材料)和小变形。 24、一点的应力状态是该点(所有截面上的应力情况)。 在平面应力状态下,单元体相互垂直平面上的正应力之和等于(常数)。 25、强度理论是(关于材料破坏原因)的假说。 在复杂应力状态下,应根据(危险点的应力状态和材料性质等因素)选择合适的强度理论。 26、强度是指构件抵抗 破坏 的能力;刚度是指构件抵抗 变形 的能力;稳定性是指构件维持其原有的 平衡状态 的能力。 27、弹性模量E 是衡量材料抵抗弹性变形能力的指标。 28、使材料丧失正常工作能力的应力,称为极限应力

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

材料力学复习资料(同名5782)

材料力学复习资料 一、填空题 1、为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度;同时要求他们有足够的抵抗变形的能力,即要求它们有足够的刚度;另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的 稳定性。 2、材料力学是研究构件强度、刚度、稳定性的学科。 3、强度是指构件抵抗破坏的能力;刚度是指构件抵抗变形的能力;稳定性是指构件维持其原有的平衡状态的能力。 4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。 5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 6、截面法是计算内力的基本方法。 7、应力是分析构件强度问题的重要依据。 8、线应变和切应变是分析构件变形程度的基本量。 9、轴向尺寸远大于横向尺寸,称此构件为杆。 10、构件每单位长度的伸长或缩短,称为线应变。 11、单元体上相互垂直的两根棱边夹角的改变量,称为切应变。 12、轴向拉伸与压缩时直杆横截面上的内力,称为轴力。 13、应力与应变保持线性关系时的最大应力,称为比例极限。 14、材料只产生弹性变形的最大应力,称为弹性极根;材料能承受的最大应力,称为强度极限。 15、弹性模量E是衡量材料抵抗弹性变形能力的指标。 16、延伸率δ是衡量材料的塑性指标。δ≥5%的材料称为塑性材料;δ<5%的材料称为脆性材料。 17、应力变化不大,而应变显著增加的现象,称为屈服或流动。 18、材料在卸载过程中,应力与应变成线性关系。 19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化。 20、使材料丧失正常工作能力的应力,称为极限应力。 21、在工程计算中允许材料承受的最大应力,称为许用应力。 22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比。 23、胡克定律的应力适用范围是应力不超过材料的比例极限。 24、杆件的弹性模量E表征了杆件材料抵抗弹性变形的能力,这说明在相同力作用下,杆件材料的弹性模量E值越大,其变形就越小。 25、在国际单位制中,弹性模量E的单位为GPa。 26、低碳钢试样拉伸时,在初始阶段应力和应变成线性关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为弹性极限的时候。 27、在低碳钢的应力—应变图上,开始的一段直线与横坐标夹角为,由此可知其正切tg在数值上相当于低碳钢拉压弹性模量E的值。 28、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成45o角的系统条纹,此条纹称为滑移线。 29、使材料试样受拉达到强化阶段,然后卸载,再重新加载时,其在弹性范围内所能达到的最大荷载将提高,而且断裂后的延伸率会降低,此即材料的冷作硬化现象。30、铸铁试样压缩时,其破坏断面的法线与轴线大致成45o的倾角。 31、铸铁材料具有抗压强度高的力学性能,而且耐磨,价廉,故常用于制造机器底座,床身和缸体等。 32、铸铁压缩时的延伸率值比拉伸时大。 33、混凝土这种脆性材料常通过加钢筋来提高混凝土构件的抗拉能力。 34、混凝土,石料等脆性材料的抗压强度远高于它的抗拉强度。 35、为了保证构件安全,可靠地工作,在工程设计时通常把许用应力作为构件实际工作应力的最高限度。 36、安全系数取值大于1的目的是为了使工程构件具有足够的强度储备。 37、设计构件时,若片面地强调安全而采用过大的安全系数,则不仅浪费材料而且会使所设计的结构物笨重。38、约束反力和轴力都能通过静力平衡方程求出,称这类问题为静定问题;反之则称为超静定问题;未知力多于平衡方程的数目称为几次超静定。 39、构件因强行装配而引起的内力称为装配内力,与之相应的应力称为装配应力。 40、材料力学中研究的杆件基本变形的形式有拉伸或压缩、剪切、扭转和弯曲。 41、吊车起吊重物时,钢丝绳的变形是拉伸变形;汽车行驶时,传动轴的变形是扭转变形;教室中大梁的变形是弯曲变形;建筑物的立柱受压缩变形;铰制孔螺栓连接中的螺杆受剪切变形。 42、通常把应力分解成垂直于截面和切于截面的两个分量,其中垂直于截面的分量称为正应力,用符号σ表示,切于截面的分量称为剪应力,用符号τ表示。 43、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相重合。 44、杆件轴向拉伸或压缩时,其横截面上的正应力是均匀分布的。 45、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面形心。 46、在轴向拉伸或压缩杆件的横截面上的正应力相等是由平面假设认为杆件各纵向纤维的变形大小都相等而推断的。 47、正方形截而的低碳钢直拉杆,其轴向向拉力3600N,若许用应力为100Mp a,由此拉杆横截面边长至少应为 6mm。 48、求解截面上内力的截面法可以归纳为“截代平”,其中“截”是指沿某一平面假想将杆 截断分成两部分;“代”是指用内力代替去除部分对保留部分的作用;“平”是指对保留部分建立平衡方程。 49、剪切的实用计算中,假设了剪应力在剪切面上是均匀分布的。 50、钢板厚为t,冲床冲头直径为d,今在钢板上冲出一个直径d为的圆孔,其剪切面面积为πdt。 51、用剪子剪断钢丝时,钢丝发生剪切变形的同时还会发

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版) 1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。 2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。 3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。构 4.件应当满足以下要求:强度要求、刚度要求、稳定性要求 5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。任何固体在外力作用下都会发生形状和尺寸的改变——即变形。因此,这些材料统称为变形固体。 第二章:内力、截面法和应力概念 1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。按照外力作用方式的不同,外力又可分为分布力和集中力。 2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。 已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。 首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。因为整个杆件是平衡的,

所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。由平衡条件就可以确定内力。例如在左段杆上由平衡方程 N-F=0 可得N=F 3.综上所述,截面法可归纳为以下三个步骤: 1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。 2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。 3、平衡求力对留下部分建立平衡方程,求解内力。 4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。例如,有同样材料而截面面积大小不等的两根杆件,若它们所受的外力相同,那么横截面上的内力也是相同的。但是,从经验知道,当外力增大时,面积小的杆件一定先破坏。这是因为截面面积小,其上内力分布的密集程度大的缘故。 如图所示,在杆件横截面m-m上围绕一点K取微小面积,并设上分布内力的合力为。的大小和方向与所取K点的位置和面积有关。 将与的比值称为微小面积上的平均应力,用表示,即: 称为截面m-m上一点K处的应力。应力的方向与内力N的极限方向相同,通常,它既不与截面垂直也不与截面相切。将应力分解为垂直于截面的分量σ和相切于截面的分量τ,其中σ称为正应力,τ称为切应力。在国际单位制中,应力单位是帕斯卡,简称帕(Pa)。工程上常用兆帕(MPa),有时也用吉帕(GPa)。 5.杆件变形的基本形式:在机器或结构物中,构件的形状是多种多样的。如果构件的纵向(长度方向)尺寸较横向(垂直于长度方向)尺寸大得多,这样的构件称为杆件。

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

(完整word版)复试材料力学重点知识点总结(二轮主要)

复试面试材力重点总结 一. 材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用 方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用 截面、作用位置(点)、作用方向、和符号规定。 正应力? ??拉应力压应力

应变:反映杆件的变形程度? ??角应变线应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: ?????==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点: b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶 段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V E G += 12 塑性材料与脆性材料的比较: 6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经 济性矛盾的关键。过小,使构件安全性下降;过大,浪

材料力学知识点

第六章弯曲变形知识要点 1、弯曲变形的概念 1)、挠曲线 弯曲变形后梁的轴线变为挠曲线。平面弯曲时,挠曲线为外力作用平面内的平面曲线。 2)、平面弯曲时的变形 在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系 3)、平面弯曲时的位移 1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。 2》转角——横截面绕其中性轴旋转的角位移,以表示。 挠度和转角的正负号由所选坐标系的正方向来确定。沿y轴正方向的挠度为正。转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。 4)、挠曲线近似微分方程 5)、受弯曲构件的刚度条件, 2、积分法求梁的挠度和转角 由 积分常数C、D由边界条件和连续性条件确定。对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。因此除了用边界条件外,还要用连续性条件确定所有的积分常数。 边界条件:支座对梁的位移(挠度和转角)的约束条件。 连续条件:挠曲线的光滑连续条件。 悬臂梁 边界条件:固定端挠度为0,转角为0 连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等 简支梁 边界条件:固定绞支座或滑动绞支座处挠度为0 连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等 连接铰链处,左右两端挠度相等,转角不等 3、叠加原理求梁的挠度和转角 1)、叠加原理 各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。 2)、叠加原理的限制 叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求: 1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料 2》曲率与挠度成线性关系,这就要求梁变形为小变形 4、弯曲时的超静定问题——超静定梁 1)、超静定梁 约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。 2)、求解简单超静定梁的变形比较法 1》多与约束——超静定梁中多于维持其静力平衡所必须的约束 2》基本系统——超静定梁解除多余约束后的静定系统

材料力学知识点总结.doc

一、基本变形 轴向拉压材料力学总结 扭转弯曲 外外力合力作用线沿杆轴 力线 内轴力: N 规定: 力拉为“ +” 压为“-” 几 变形现象: 何 平面假设: 应 方应变规律: 面 d l 常数 dx 力 应 力 N 公 A 式 力偶作用在垂直于轴 的平面内 扭转: T 规定: 矩矢离开截面为“ +” 反之为“ - ” 变形现象: 平面假设: 应变规律: d dx T T I P max W t 外力作用线垂直杆轴,或外力偶作用 在杆轴平面 剪力: Q 规定:左上右下为“ +” 弯矩: M 规定:左顺右逆为“ +” 微分关系: dQ ; dM q Q dx dx 弯曲正应力 变形现象: 平面假设:弯曲剪应力 应变规律: y My QS*z I Z I z b M QS max max max W Z I z b

应 力 分 布 应 等直杆 用 外力合力作用条 线沿杆轴线 件 应力-应 E 变 (单向应力状态)关系 强N max 度 A max u 条 n 件塑材:u s 脆材:u b 圆轴平面弯曲 应力在比例极限内应力在比例极限内 G (纯剪应力状态) 弯曲正应力 T 1.t c max 弯曲剪应力W t max max 2. t c Q max S max max I z b t max t cmac c 轴向拉压扭转弯曲刚 度T 180 0 y max y max GI P 条注意:单位统一max 件 d l N ; L NL d T 1 M ( x) EA 变dx EA dx GI Z ( x) EI TL y '' M (x) GI P EI EA—抗拉压刚度GI p—抗扭刚度EI —抗弯刚度

材料力学复习总结

1、 应力 全应力正应力切应力线应变 外力偶矩 当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为 m).(N 9549e n P M = 当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为 m).(N 7024e n P M = 拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N F A σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。 正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件: (1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角0 20α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3) 切应力1 sin 22 ατα= (3-4) 式中σ为横截面上的应力。 正负号规定: α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 ασ 拉应力为正,压应力为负。 ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论: (1)当0 0α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0 90时,即纵截面上,ασ=0 90=0。 (2)当0 45α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αα τ= 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形 1l l l ?=- 轴向线应变 l l ε?= 横向变形 1b b b ?=- 横向线应变 b b ε?'= 正负号规定 伸长为正,缩短为负。 (2)胡克定律 当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5) 或用轴力及杆件的变形量表示为 N F l l EA ?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。 公式(3-6)的适用条件: (a)材料在线弹性范围内工作,即p σσ?; (b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即 1 n i i i i i N l l E A =?=∑ (3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。即 ενε ' = (3-8) 表1-1 低碳钢拉伸过程的四个阶段

材料力学复习总结

1、 应力 全应力正应力切应力线应变 外力偶矩 当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为 m).(N 9549e n P M = 当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为 m).(N 7024e n P M = 拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N F A σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。 正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件: (1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角0 20α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2) 正应力 2 cos ασσα=(3-3) 切应力1 sin 22 ατα= (3-4) 式中σ为横截面上的应力。 正负号规定: α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 ασ 拉应力为正,压应力为负。 ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。 两点结论: (1)当0 0α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0 90时,即纵截面上,ασ=0 90=0。

(2)当045α=时,即与杆轴成0 45的斜截面上,ατ达到最大值,即max ()2 αα τ= 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形 1l l l ?=- 轴向线应变 l l ε?= 横向变形 1b b b ?=- 横向线应变 b b ε?'= 正负号规定 伸长为正,缩短为负。 (2)胡克定律 当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5) 或用轴力及杆件的变形量表示为 N F l l EA ?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。 公式(3-6)的适用条件: (a)材料在线弹性范围内工作,即p σσ?; (b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即 1 n i i i i i N l l E A =?=∑ (3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。即 ενε ' = (3-8) 表1-1 低碳钢拉伸过程的四个阶段 阶 段 图1-5中线段 特征点 说 明 弹性阶段 oab 比例极限p σ 弹性极限e σ p σ为应力与应变成正比的最高应力 e σ为不产生残余变形的最高应力 屈服阶段 bc 屈服极限s σ s σ为应力变化不大而变形显著增加时的最低 应力 强化阶段 ce 抗拉强度b σ b σ为材料在断裂前所能承受的最大名义应力 局部形变阶段 ef 产生颈缩现象到试件断裂 性能 性能指标 说明 弹性性能 弹性模量E 当p E σσσε ≤= 时, 强度性能 屈服极限s σ 材料出现显著的塑性变形 抗拉强度b σ 材料的最大承载能力

相关文档