文档视界 最新最全的文档下载
当前位置:文档视界 › 计算化学总结(1)

计算化学总结(1)

计算化学总结(1)
计算化学总结(1)

计算化学课程纲要

绪论

?什么是计算化学(定义)

计算化学是根据基本的物理化学理论(通常是量子化学)以大量的数值运算方式来探讨化学系统的性质。广义上讲,计算化学是一门涉及多种学科的边缘学科,在更广泛的意义上又可称作“计算机化学”。它是化学、数学、计算机科学等学科交叉的新兴学科。

计算化学是化学的一个分支,但不属于真正意义上的化学,它是利用数学、统计学和计算机科学的方法,进行化学、化工的实验设计、数据与信息的处理、分类、解析和预测。

所以:计算化学是用于化学研究的一种方法学,是一种越来越重要的工具。计算化学这个名词有时也用来表示计算机科学与化学的交叉学科。

?计算化学的地位(整理)

计算化学促进化学界的研究方法和工业界的生产方式不断革新,是绿色化学和绿色化工的基础,是联系化学化工为国民经济可持续性发展服务的桥梁。中科院院士徐光宪先生在其报告中称“理论化学和计算化学的基础及应用研究”是21世纪化学的11个突破口之一。

1998年诺贝尔化学奖授予W.Kohn和J.A.Pople。颁奖公告说:“量子化学已经发展成为广大化学家所使用的工具,将化学带入一个新时代,在这个新时代里实验和理论能够共同协力探讨分子体系的性质。化学不再是纯粹的实验科学了。”

?计算化学的过去、现在和未来(了解)

发展:计算化学是连接化学、化工与数学、统计学、计算机科学、物理学、药物学、材料科学等学科高度交叉、相互渗透的新的生长点,是许多实用技术的基础,并深受当今计算机与网络通讯技术飞速发展的影响,而处在迅速发展和不断演变之中。

以量子化学计算为代表的计算化学发展史

以化工过程计算机控制为代表的化工过程自动化发展史

计算数学与分析化学相结合的发展史

计算机网络技术在化学信息收集方面的应用

计算机模拟技术在化学化工模拟中的应用

?计算化学主要研究内容(方法、过程等概括)

包括化学数据库、化学人工智能、分子结构建模与图像显示、计算机分子模拟(分子力学和分子动力学)和量子化学计算的体系数据和性质的综合分析,从而设计分子和合成路线,数据采集、统计分析及其他应用,化学CAI。

具体过程:

计算方面:遇到化学问题,首先选择合适的物理模型,若没有相应的物理模型,则选择合适的数学模型。之后进行公式算法,编程,对程序进行调试,试算分析,最终输出结果。

分子模拟:遇到化学问题,首先构建分子模型,进行几何优化构象分析,能量优化,然后寻找过渡态方法,试算分析,最后输出结果。

计算化学课程目标(理解)

介绍当前计算化学领域常用的基本方法;

学会使用各种计算化学软件包, 特别是Gaussian03, materials studio,ADF等。

掌握计算化学领域的基础理论和计算方法, 并且使用它们分析和解释一定的化学问题。

计算化学在化学中的应用(包括哪几方面)

化学数据的挖掘化学结构与化学反应的计算机处理技术

计算机辅助合成路线的设计

计算机化学过程综合与开发

计算机辅助分子设计和模拟

第一章理论概述

计算化学的宗旨

首先选用物理模型,不得已才选数学模型。

在运用第一原理的时候,选用适当的模型才能执行计算。必须强调:物理模型比数学模型重要得多,只有在暂时无法构筑物理模型的场合才不得已采用数学模型。

物理学是严密科学(exact science),化学也正步入严密科学。“严”字指机理正确,“密”字指数值准确。

计算化学的研究内容

狭义:量子结构计算——量子化学和结构化学范畴;

物理化学参数的计算——统计热力学范畴

化学过程模拟和化工过程计算等

广义:化学数据挖掘(Data mining);

化学结构与化学反应的计算机处理技术;

计算机辅助分子设计;

计算机辅助合成路线设计;

计算机辅助化学过程综合与开发;

化学中的人工智能方法等。

能量优化方法主要包括(单纯形法、最速下降法、共轭梯度法、Newton-Raphson法)

寻找过渡态的方法(极大-极小逼近法、线性内坐标途径法(LICP))

简述下列各方法的使用对象及各自优缺点、计算过程

适用对象优点缺点计算过程

分子力学原子及其化学键

——十万个原子

左右的大体系,

结构得到分子稳定结

构,计算变形时

的相对能量,计

算成本低

需很多仔细测试

和校准后的经验

参数,只能得到

粗略几何结构,

无法得到电子相

互作用信息、分

子性质和反应性

能的信息,不能

研究包含成键和

断键的反应

把分子用硬球和

弹簧的方式来表

半经验方法原子实和价电子

——中等体系,

粗略性质可对价电子进行

近似的描写,可

以半定量地描写

电子分布, 分子

结构, 性质和相

对能量,计算快

不够准确很多积分用含参

数的经验式子来

近似,通过解简

化Schr?dinger

方程而得到

完全从头算原子核及其电子

——小体系,准得到更精确的电

子分布,可以系

计算成本高使用完全的

Schr?dinger 方

确性质统地进行改进,

直至达到化学精

度,不需要参数,

也不用实验来校

可以准确描写结

构, 性质, 能量

和反应性能

密度泛函电子密度——中

等体系,特别是

含过渡金属体

系,准确性质原理上可以得到

准确的电子分布

,可以很容易达

到很高的精度,

可以描写结构,

性质, 能量和反

应性能,计算成

本中等

无法系统地改进

到化学精度,需

要一些猜测泛函

和参数, 体系的

适用性必须用实

验来校准

使用完全的

Schr?dinger 方

第二章化学软件与网络资源

计算化学常用软件(举例说明分类、应用及各自优缺点)

应用举例

分子结构绘图软件描绘化合物的结构式、化学

反应方程式、化工流程图、

简单的实验装置图等化学

常用的平面图形的绘制

ChemDraw(Chemoffice), ChemWindow,

ISISDraw, ChemSketch,

能够以线图(wire frame), 球

棍(ball and stick), CPK及丝

带(ribbon)等模式显示化合

物的三维结构。

Chem3D (Chemoffice) 、WebLab Viewer Pro,

RasWin、RasMol,ArgusLab,ChemBuilder 3D,

ChemSite, HyperChem等

科学计算和数据处理软件通用型对实验数据进行数学

处理、统计分析、付立叶变

换、t-试验、线性及非线性

拟合;绘制二维及三维图形

如:散点图、条形图、折线

图、饼图、面积图、曲面图、

等高线图等。

Origin、SigmaPlot

核磁数

据处理

处理一维至三维核磁数据,NUTS、MestRe-C、Gifa

色谱及

红外、

Raman

实验数

据的处

色谱及红外、Raman等实验

数据的处理

GRAMS/32

文献管理对文献进行整理,能在文字

处理程序中直接插入参考

文献并生成一定杂志规定

格式的参考文献列表EndNote 4、Reference Manager 9.5, ProCite 5.0

图谱解析核磁图

可以用来估算有机物的1H、

13C化学位移及用线图表示

的相应图谱

ChemNMR、C13 Module for ChemWindow、

gNMR、Sparky

红外图

能对给定的红外图谱数据

自动分析与处理,或对给定

的振动谱带给出可能存在

的功能团

能对给定的红外图谱数据自动分析与处理,

或对给定的振动谱带给出可能存在的功能

质谱MassSpectra Simulator、ChemWindow 6.0

Spectroscopy版本

计算机辅助教学可以使用“逆序法”自动寻

找目标物的合成原料;

有机化合物命名工具命名

软件,给出IUPAC名称,CAS

名称,对立体化学的支持;

虚拟化学实验,交互式地仿

真演示化学实验,FOR

WIN9X。能够仿真大多数化

学实验。CHEMLAB包含的东

西非常多,滴定、反应动力

学,周期表... CHAOS

ChemDraw ultra版,Beilstein公司的AutoNom 4.0版

Chemlab——化学反应模拟软件

量子化学计算半经验分子轨道(AM1, PM3,

MINDO, MNDO/3等)计算程

序,计算出的分子轨道及电

荷密度等可以用三维图形

表示出来WinMOPAC、PC Spartan、HyperChem、Gamess、Gaussian、Jaguar

软件分类(计算原理、研究对象)

网络上的化学资源

化学化工综合网站,例如中国化学化工信息资源:中科院化学所、ChemCenter;美国化学会ACS、ChemWeb等网站;网上数据库,例如Cambridgesoft、ChemFinder、Chemistry WebBook等;化学化工信息源,例如文献CA、SCI,化学化工组织机构国际纯粹与应用化学联合会IUPAC、英国化学会、英国皇家化学会等;网上的免费专利资源,例如IBM知识产权网、欧洲专利局、中国专利摘要数据库等,教育网内免费化学资源,例如Elsevier SPDOS China consortium、CNKI数据库检索系统全文数据库等。

软件背景及主要功能

ss

计算化学通过计算通常可以解决哪些问题?

分子模拟研究一般包括哪几个过程?

分子模拟软件的一般功能?

分子结构数据主要来源途径?

实验获得数据。

第三章分子力学

计算化学中模拟计算的整个过程主要包括的步骤及个步骤的主要内容和注意事项

1、文献调研:当前的研究状况,包括实验和理论研究现状、已解决和尚未解决的问题

2、确定计算目的:采用理论方法要解决的问题

3、计算模型的构造:化合物构型的确定,具体途径包括:利用实验测定结果、或者采

用软件进行构造等

4、计算方法和程序的选取:根据现有的计算条件、模型的大小以及所要解决的问题,

选择可行的计算方法和相应程序

5、计算结果的分析和整理:对计算结果进行加工和提取有用的信息,一般包括构型描

述、能量分析、轨道组成、电荷和成键分析等,并与实验

结果比较

当确定了一种计算模型和方法后,最好对其进行验证,以保证计算结果的可靠性。

描述分子构型的方法(每个方法的比较)

有三种描述分子构型的方法:直角坐标系方法、内坐标方法、直角坐标和内坐标混合输入方法。

格式说明

直角坐标系方法元素符号x y z 1)元素符号大小写均

可,也可直接采用原

子序数;2)有时为了

便于区别,可在元素

符号后加一整数

3)x,y,z数值必须以小

数格式输入4)g03的

数据输入均为自由格

式,即除了用空格来

分隔数据外,也可用

逗号或混合使用;适用于全自由度构型优化情况

内坐标方法(内坐标与直角坐标之间的区别在于,它侧重于从原子之间的键连角度来描述原子间的相对位置)原子1,原子2,键长,

原子3,键角,原子4,

二面角

1、参数为键长、键角、

二面角2、对同一构

型,内坐标的表示并

不唯一3、有时为了

保证所描述的构型符

合特定的点群,利用

虚原子便于做到这一

点。虚原子的符号为

X。4、根据需要,有

时可同时用到多个虚

原子;5、在大多数场

合,虚原子通常取在

对称元素所处位置或

它们相交处;

构型的局部优化

直角坐标和内坐标混合输入方法只需在采用直角坐标方法输入的原子的元素符号后加一个整数0即可

分子构型的输入准确性是保证计算结果可靠性的前提,对于复杂体系,在计算前均需对所输构型进行检查。

分子力学的定义

分子力学,又叫力场方法(force field method),目前广泛地用于计算分子的构象和能量。分子力学从本质上说上是能量最小值方法,即在原子间相互作用势的作用下, 通过改变粒子分布的几何位型, 以能量最小为判据, 从而获得体系的最佳结构。

分子力场

分子力场根据量子力学的波恩-奥本海默近似,一个分子的能量可以近似看作构成分子的各个原子的空间坐标的函数,简单地讲就是分子的能量随分子构型的变化而变化,而描述这种分子能量和分子结构之间关系的就是分子力场函数。

力场的构成

一般而言,分子力场函数由以下几个部分构成:

键伸缩能:构成分子的各个化学键在键轴方向上的伸缩运动所引起的能量变化

键角弯曲能:键角变化引起的分子能量变化

二面角扭曲能:单键旋转引起分子骨架扭曲所产生的能量变化

非键相互作用:包括范德华力、静电相互作用等与能量有关的非键相互作用

交叉能量项:上述作用之间耦合引起的能量变化

构成一套力场函数体系需要有一套联系分子能量和构型的函数,还需要给出各种不同原子在不同成键状况下的物理参数,比如正常的键长、键角、二面角等,这些力场参数多来自实验或者量子化学计算。

常用力场的函数和分类(三类、举例说明各自的特点)

分为传统力场、第二代力场、通用力场

传统力场主要包括四种,AMBER力场:由Kollman课题组开发的力场,是目前使用比较广泛的一种力场,适合处理生物大分子。

CHARMM力场:由Karplus课题组开发,对小分子体系到溶剂化的大分子体系都有很好的拟合。

CVFF力场:CVFF力场是一个可以用于无机体系计算的力场

MMX力场:MMX力场包括MM2和MM3,是目前应用最为广泛的一种力场,主要针对有机小分子。

第二代的势能函数形式比传统力场要更加复杂,涉及的力场参数更多,计算量也更大,当然也相应地更加准确。

CFF力场CFF力场是一个力场家族,包括了CFF91、PCFF、CFF95等很多力场,可以进行从有机小分子、生物大分子到分子筛等诸多体系的计算

COMPASS力场由MSI公司开发的力场,擅长进行高分子体系的计算

MMF94力场Hagler开发的力场,是目前最准确的力场之一

通用力场也叫基于规则的力场,它所应用的力场参数是基于原子性质计算所得,用户可以通过自主设定一系列分子作为训练集来生成合用的力场参数

ESFF力场MSI公司开发的力场,可以进行有机、无机分子的计算

UFF力场可以计算周期表上所有元素的参数

Dreiding力场适用于有机小分子、大分子、主族元素的计算

分子力学的基本思想

在分子内部,化学键都有“自然”的键长值和键角值。分子要调整它的几何形状(构象),以使其键长值和键角值尽可能接近自然值,同时也使非键作用(van der Waals 力)处于最小的状态,给出原子核位置的最佳排布。在某些有张力的分子体系中,分子的张力可以计算出来。

分子力学中如何表示分子的空间能

分子的空间能Es可表示为:

Es=Ec+Eb+Et+Enb+…

其中Ec是键的伸缩能,Eb是键角弯曲能,Et是键的二面角扭转能,Enb是非键作用能,它包括van der Waals作用能,偶极(电荷)作用能、氢键作用能等等。

力场的参数化(即力场各参数如何获得)

分子力学力场的性能即它的计算结果的准确性和可靠性主要取决于势能函数和结构参数。这些有关力常数,结构参数的“本征值”的置定过程称为力场的参数化。参数化的过程要在大量的热力学、光谱学实验数据的基础上进行,有时也需要由量子化学计算的结果提供数据。

各类键长、键角的“本征值”一般取自晶体学、电子衍射或其他的谱学数据,键伸缩和角变力常数主要由振动光谱数据确定,扭转力常数经常要从分子内旋转位垒来推算。对于不同的力场不仅力场参数不同,函数形式也可能不同。因此,在将一个力场中的参数应用于另一个力场时应十分小心。一个好的力场不仅能重现已被研究过的实验观察结果,而且能有一定的广泛性,能用于解决未被实验测定过的分子的结构和性质。

力场所存在的问题和发展趋势

两个相互作用原子间的诱导偶极的作用会受到其它原子的影响;

非键作用势中假定原子为球形,实际上非键作用受原子形状影响,还需考虑孤对电子;

谐振势函数不能精确拟合实验数据

对于静电作用的处理过于简化。

采用分子力学方法进行分子结构优化的过程

力场的发展趋势

考虑原子极化率

取用高次项

发展含金属的力场

能量极小化算法比较

最速下降法:

方向变化大,收敛慢,优化辐度大

共轭梯度法

收敛快,易陷入局部势阱,对初始结构偏离不大

Newton-Raphson法

计算量较大,当微商小时收敛快

分子力学的特点、分子力学与量子化学计算比较(各自的优缺点)

特点:

1.概念清楚,便于理解及应用

概念简明易于接受。分子力学中的总“能量”被分解成键的伸缩、键角弯曲、键的扭曲和非键作用等,比起量子化学计算中的Fock矩阵等概念来要直观易懂。

2.计算速度快

量子化学从头算的计算量随原子轨道数目的增加,按4次方的速度上升,而分子力学的计算量仅与原子数目的平方成正比。

计算时间- MM正比于原子数m的平方m2

QM正比于轨道数n的n4或n3

3.与量子化学计算相辅相成

对于化合物的电子结构、光谱性质、反应能力等涉及电子运动的研究,则应使用量子化学计算的方法。然而,在许多情况下,将量子化学计算和分子力学计算结合使用能取得较好的效果。分子力学计算结果可提供量子化学计算所需的分子构象

坐标,而量子化学计算结果又给出了分子力学所不能给出的分子的电子性质。

对于化合物的电子结构、光谱性质、反应能力等涉及电子运动的研究,则应使用量子化学计算的方法。然而,在许多情况下,将量子化学计算和分子力学计算结合使用能取得较好的效果。分子力学计算结果可提供量子化学计算所需的分子构象坐标,而量子化学计算结果又给出了分子力学所不能给出的分子的电子性质。

分子力学与量子化学计算的区别

分子力学是经典模型,以原子为“粒子”,按经典力学运动,而量子化学则主要处理对象为电子,其运动服从量子力学规律;

量子化学中,电子或原子核间的相互作用服从库仑定律,而分子力学中每对原子之间有一特定的作用势函数,原子不同或者原子虽然相同但所处环境不同,则势函数不同,即使对同一对原子,也无法给出准确的普适势函数。

第四章分子动力学

一、分子动力学定义

分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系综中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质

二、系综(常用系综)

系综(ensemble)代表一大群相类似的体系的集合。对一类相同性质的体系,其微观状态(比如每个粒子的位置和速度)仍然可以大不相同。(实际上,对于一个宏观体系,所有可能的微观状态数是天文数字。)统计物理的一个基本假设(各态历经假设)是:对于一个处于平衡的体系,物理量的时间平均,等于对对应系综里所有体系进行平均的结果。体系的平衡态的物理性质可以对不同的微观状态求和来得到。系综的概念是由约西亚·威拉德·吉布斯(J. Willard Gibbs)在1878年提出的。

微正则系综正则系综巨正则系综等温等压系综

微正则系综(microcanonical ensemble):系综里的每个体系具有相同的能量(通常每个体系的粒子数和体积也是相同的)。

正则系综(canonical ensemble):系综里的每个体系都可以和其他体系交换能量(每个体系的粒子数和体积仍然是固定且相同的),但是系综里所有体系的能量总和是固定的。系综内各体系有相同的温度。

巨正则系综(grand canonical ensemble):正则系综的推广,每个体系都可以和其他体系交换能量和粒子,但系综内各体系的能量总和以及粒子数总和都是固定的。(系综内各体系的体积相同。)系综内各个体系有相同的温度和化学势。

等温等压系综(isothermal-isobaric ensemble):正则系综的推广,体系间可交换能量和体积,但能量总和以及体积总和都是固定的。(系综内各体系有相同的粒子数。)正如它的名字,系综内各个体系有相同的温度和压强。

三、分子动力学基本原理

用牛顿经典力学计算许多分子在相空间中的轨迹

求解系统中的分子或原子间作用势能和系统外加约束共同作用的分子或原子的牛顿方程。

模拟系统随时间推进的微观过程。

通过统计方法得到系统的平衡参数或输运性质

计算程序较为复杂,占用较多内存

四、分子动力学主要步骤

选取要研究的系统及其边界,选取系统内粒子间的作用势能模型

设定系统中粒子的初始位置和初始动量

建立模拟算法,计算粒子间作用力及各粒子的速度和位置

当体系达到平衡后,依据相关的统计公式,获得各宏观参数和输运性质

五、分子力学和分子动力学的模型算法和应用

分子力学:把分子用硬球和弹簧的方式来表示

分子动力学:该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系综中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质

MM、MD方法的应用:

领域:高分子、生命科学、药物设计、催化、半导体其它功能材料、结构材料等

分子力学是用计算机在原子水平上模拟给定分子模型的结构与性质,进而得到分子的各种物理性质与化学性质,如结构参数、振动频率、构象能量、相互作用能量、偶极矩、密度、摩尔体积、汽化焓等

分子动力学方法能实时将分子的动态行为显示到计算机屏幕上, 便于直观了解体系在一定条件下的演变过程MD含温度与时间, 因此还可得到如材料的玻璃化转变温度、热容、晶体结晶过程、输送过程、膨胀过程、动态弛豫(relax)以及体系在外场作用下的变化过程等

第五章量子化学计算方法

一、量子化学计算定义

量子化学计算的基础就是解电子运动的Schr?dinger方程,通过对原子和分子的核外电子运动的了解,进一步了解分子的结构、电荷分布,原子间结合能,结构与性质的关系,一直到反应途径(核运动规律)的研究。

量子化学计算建立在三个近似基础上:

1、非相对论近似

由于电子运动(包括核)速度相对于光速来讲是慢得多,所以用非相对论近似讨论,即质量用静止质量,且不考虑时间影响。

2、伯恩奥本海默近似

B-O近似认为核的质量比电子大得多,所以速度要慢得多(化学变化主要涉及价电子,而价电子速度约1/100光速)

3、单电子近似

单电子独立近似,也称为轨道近似。状态波函数用单电子波函数乘积Slater行列式。

最后得单电子运动方程

二、量子化学计算方法简介(优点、应用领域、不足)

1.从头计算

1)对于分子体系不同,不能象原子体系那样用类氢轨道(或Slater轨道)直接代入H-F方程

求解,而分子轨道要用原子轨道(或某些基组)展开,这就形成了Hartree-Fock-Roothaan 方程。建立在仅仅包含三个近似(非相对论近似,B-O近似,轨道近似)的Hartree-Fock-Roothaan方程基础上的严格的量子化学计算,称为从头计算法.对分子体系进行从头计算时,分子轨道要用一套基函数(基组)展开,这里就存在基函数的选择问题,常用有二种基组。(STO、GTO)

2)从头计算的应用

由于从头计算的精度高,误差分析容易,自六十年代以来,它的应用范围不断扩大,从小分子到大分子,从静态性质到动态性质,从分子内到分子间相互作用,它广泛应用于研究分子的电子结构的各方面性质,平衡几何构型,电荷密度分布,键级分析、偶极矩、内旋转和翻转势垒、力常数、位能面、电离势及各种能谱等等。

3)从头计算的误差、以及解决误差

由于精确计算,所以就目前计算机水平来说,体系不宜太大(当然这个限制可随着计算机能力和水平提高而克服的),其次是由于所采用的三个基本近似也会带来一定误差。

相对论误差

轨道近似的误差

相对论误差部分往往在反应物和产物中,变化不大而抵消,所以人们普遍关心的是相关能的部分,这部分主要是轨道近似引起的,最彻底改进方法是引入双电子函数,或多电子函数代替单电子函数,这一方法在双原子分子中效果很好.

非限制性Roothaan方程(UHF)

组态相互作用法(CI)

2.半经验近似计算方法

①为什么产生半经验计算方法、精密定性背景、半经验近似计算方法有关应用

由于从头计算对较大的分子体系计算时,随着体系增大,则基组增大,而要增加的积分数目是与N4(N是电子数)成正比(或基组数),所以要化大量时间去计算这种多中心积分,而难于在计算机实施(即化大量机时和大量外存硬盘),因此希望能用一种近似方法来实施这种自洽场分子轨道法对大分子电子结构的计算,A. Pople认为这种近似方法,至少要有精密的定性背景,主要有:

1)方法必须足够简单,以便应用于较大分子,而无需作过多计算。

2)即使引进必须的近似,这些近似不应超越限度,以抵消或改变决定结构的原始物理作

用力。

3)近似方法应使种种结果仍然能细致地得到解释,并进行定性讨论。

4)近似方法不许暗中加入从习惯的定性讨论中导出的预见(如引入一对电子成键等价

键的概念)。

5)近似方法应是足够普通地考虑所有化学上有效的电子,一般而且必须考虑全部价

电子。

应用:价电子近似、近似自洽场方法、简单分子轨道方法

3.密度泛函理论

由于从头计算对大体系的局限性,要求人们总千方百计找到一种方法,既简单又能得到精确结果的计算方法,包括各种相关效应,其中X

只处理价电子,且波函数又常取平面散射波形式,加上势函数形式也较简单,所以只适合处理简单的高对称性固体和原子簇等。而密度泛函理论就是在这个基础上发展起来的,它处理全部电子类似解Hartree-Fock-Roothaan方程,但是势函数部分(包括库仑和交换势),不是用双电子多中心积分去具体计算而是用以电子密度(包括轨道和自旋)的函数代替其中J 和K 算子。这样就不出现三中心,四中心积分,最多只是双中心的。由于目前已发展了各种类型的近似势函数,所以使DFT解得很理想计算结果,而且又节约了计算时间,特别是这种势函数中又发展了包含库仑和交换相关的影响,所以比单组态HFR方法有更多优越性,能得到一定比例的相关能,所以目前已发展成为一种非常有吸引力的量子化学计算方法。

它具有和从头算几乎相似的应用范围,特别是较大的分子体系,其功能:如总能量,轨道能,电荷分布,平衡几何构型,激发能,电离势等。

上机实验:气体小分子在聚合物中扩散系数

如何进行气体小分子扩散系数的计算,计算过程,各步骤目的

1、建立初始结构:构建并优化氧分子和PDMS 聚合物,构建无定形原胞

2、建一个无定形的晶胞:建立一个有聚PDMS 和个氧分子的周期性晶胞。

3、晶胞的弛豫:进行能量最小化来优化晶胞,进行分子动力学NVT模拟来平衡晶胞。

4、分子动力学的运行和分析:用NVE运行得的氧原子的均方位移(MSD)随时间变化的曲线

5、输出数据并计算扩散系数:由D = a/6给出扩散系数

一、计算化学主要与哪几门学科密切相关,阐述计算化学的类型和作用(20)

计算化学主要与化学、计算机科学、数学等学科密切相关。

计算化学的类型:

1. 以计算机体系为主的计算化学

2. 以计算数学为主要体系的计算化学和化工

3. 以化学应用为主的计算化学

4. 以介绍应用程序为主的计算化学

5. 以介绍在化学分析仪器中使用电子计算机为主的计算化学

计算化学的作用:

1.促进了理论化学的发展

2.测试仪器的改进

3.化学情报的检索

4.数据库的建立

5.智能模型的发展

6.实验室成果的工业化

7.化学教学的应用

8.实验数据的处理

二、阐述分子力学、半经验方法、完全从头算、密度泛函上述四种计算方法主要研究体系及性质的不同。

三、分子力场函数由哪几部分构成。

四、阐述分子动力学方法的基本原理及MD的主要运算步骤,并说明MD积分算法的优劣的判据是什么。

分子动力学中一个好的积分算法的判据主要包括:

①计算速度快;

②需要较小的计算机内存;

③允许使用较长的时间步长;

④表现出较好的能量守恒。

五、化学中常用的软件主要分为几类,分别说明其主要用途(20)

1计算化学概述

1计算化学概述 计算化学在最近十年中可以说是发展最快的化学研究领域之一。究竟什么是计算化学呢?由于其目前在各种化学研究中广泛的应用, 我们并不容易给它一个很明确的定义。简单的来说, 计算化学是根据基本的物理化学理论通常指量子化学、统计热力学及经典力学及大量的数值运算方式研究分子、团簇的性质及化学反应的一门科学。最常见到的例子是以量子化学理论和计算、分子反应动力学理论和计算、分子力学及分子动力学理论和计算等等来解释实验中各种化学现象,帮助化学家以较具体的概念来了解、分析观察到的结果。对于未知或不易观测的化学系统, 计算化学还常扮演着预测的角色, 提供进一步研究的方向。除此之外, 计算化学也常被用来验证、测试、修正、或发展较高层次的化学理论。同时准确或有效率计算方法的开发创新也是计算化学领域中非常重要的一部分。简言之, 计算化学是一门应用计算机技术, 通过理论计算研究化学反应的机制和速率, 总结和预见化学物质结构和性能关系的规律的学科。如果说物理化学是化学和物理学相互交叉融合的产物, 那么计算化学则是化学、计算机科学、物理学、生命科学、材料科学以及药学等多学科交叉融合的产物, 而化学则是其中的核心学科。近二十年来, 计算机技术的飞速发展和理论方法的进步使理论与计算化学逐渐成为一门新兴的学科。今天、理论化学计算和实验研究的紧密结合大大改变了化学作为纯实验科学的传统印象, 有力地推动了化学各个分支学科的发展。而且, 理论与计算化学的发展也对相关的学科如纳米科学和分子生物学的发展起到了巨大的推动作用。 2计算化学的产生、发展、现状和未来 2.1计算化学的产生 计算化学是随着量子化学理论的产生而发展起来的, 有着悠久历史的一门新兴学科。自上个世纪年代量子力学理论建立以来, 许多科学家曾尝试以各种数值计算方法来深人了解原子与分子之各种化学性质。然而在数值计算机广泛使用之前, 此类的计算由于其复杂性而只能应用在简单的系统与高度简化的理论模型之中, 所以, 即使是在此后的数十年里, 计算化学仍是一门需具有高度量子力学与数值分析素养的人从事的研究, 而且由于其庞大的计算量, 绝大部分的

精题分解化学实验及计算典型例题

[精题分解]化学实验及计算 典型例题 (一)化学实验 [例1] 在一定条件下用普通铁粉和水蒸气反应,可以得到铁的氧化物,该氧化物又可以经过此反应的逆反应,生成颗粒很细的铁粉,这种铁粉具有很高的反应活性,在空气中受撞击或受热时会燃烧,所以俗称“引火铁”,请分别用下图中示意的两套仪器装置,制取上速铁的氧化物和“引火铁”,实验中必须使用普通铁粉、6molL-1盐酸,其它试剂自选(装置中必要的铁架台、铁夹、铁圈、石棉网、加热设备等在图中均已略去)。 填写下列空白: (1)实验进行时试管A 中应加入的试剂是 烧瓶B 的作用是 ; 烧瓶C 的作用是 在试管D 中收集得到的是 (2)实验时,U 型管G 中应加入的试剂是 分液漏斗H 中应加入 (3)两套装置中,在实验时需要加热的仪器是(填该仪器对应字母) (4)烧瓶I 中发生的反应有时要加入少量硫酸铜溶液,其目的是 (5)试管E 中发生反应的化学方程式是 (6)为了安全,在E 管中的反应发生前,在F 出口处必须 ;E 管中反应开始后,在F 出口处应 [解析] 这是一这典型的功能性信息给予实验题,①题给新信息是制取‘引火铁”的反应原理需同学们推理写出②“引火铁”的特性③两套未曾见过的新装置。解答中首先阅读题干“在一定条件下用普通铁粉和水蒸气反应,可以得到铁的氧化物。”联想学过的反应: ()2 432443H O Fe O H Fe ++高温气 (普通铁粉) 由此反应推知制取“引火铁”的新反应为

()气高温O H Fe H O Fe 2243434++(引火铁) 即题中涉及铁的氧化物是Fe3O4(不是Fe2O3,也不是FeO ),一定条件是指高温。 然后.仔细观察两套实验装置,可发现左边装置有用排水法收集反应生成气体(D 试管)一定是H2,由此确认左边装置为制取铁的氧化物,而右边装置用于制取“引火铁”,这是本题解题的突破口,然后综合运用有关实验的知识和技能,结合对装置图的观察加工,即可解题如下: (1)A 中应加入普通铁粉,B 是作为水蒸气发生器,因反应产生的H 2可能不连续,C 瓶为防止水槽中的水倒吸而作缓冲瓶(较难),D 中收集到的是H 2。 (2)右边的装置气流是从右到左,烧瓶I 和分液漏斗H 的组合一定是H 2发生装置,所用试剂自然是普通铁粉和6mol 、L -1 盐酸,所以制得的H 2中含有HCl 气体和H 2O (气),在制取“引火铁”之前必须净化、干燥,由此U 形管G 中应加入固体碱性干燥剂NaOH 或碱石灰。 (3)根据题给两个反应的条件都是“高温”和要制取水蒸气的要求,可知实验时需要加热的仪器为A 、 B 、E 。 .(4)联想到课本习题(《化学选修第三册》P62第4题),在Zn 和稀H 2SO 4反应制取H 2时加入少量CuSO 4溶液能使制取H 2的反应加快,可知,在I 中加入少量CuSO4溶液,其目的是加快H 2的生成速度,原因是形成了无数微小的Fe-Cu 原电池,加快了反应(析氢腐蚀)的进行。 (5) 试管E 中的反应自然是制取“引火铁”的反应。其关键在于反应物是Fe 3O 4而不是铁的其它氧化物。 (6)结合初中H 2还原CuO 的实验可知,H 2在加热或点燃前一定要先验纯,所不同的是,本实验还要尽可能避免空气进入试管E ,使制取的高活性的“引火铁”受热燃烧、所以要加带导管F 的橡皮塞。此外E 管反应后,为了防止F 出口处的水蒸气凝结,堵塞出气口或回流到试管E 将其炸裂,因此E 管反应后,F 出口处应点燃H 2。 [答案] (1)普通铁粉;作为水蒸气发生器;防止水倒吸;氢气。 (2)固体NaOH (或碱石灰、CaO 等碱性固体干燥剂;6mol ·L -1HCl ) (3)A 、B 、E (4)加快氢气产生的速度 (5)O H Fe H O Fe 2243434++高温 (6)检验氢气的纯度;点燃氢气 [评述] 本题以化学实报实销验为依托全面考查了观察、实验、思维、自学等诸多能力。其特点是:①题给新信息尽管很隐蔽,但仍源于课本;所给装置是由常用仪器装置重新组合而成的新颖、非常规装置。②设计仪器装置、选用药品时都打破常规,体现创新精神。如用烧瓶C 作安全瓶;制取“引火铁”的装置

计算化学学习指南

计算化学学习指南 计算化学学习基本要求: 在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。 计算化学学习的难点: 学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。 计算化学的研究方法: 传统意义上的计算化学要完成的任务一般包括以下几个方面: 1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴; 2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴; 3.化学过程模拟和化工过程计算等。 但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);

2.化学结构与化学反应的计算机处理技术; 3.计算机辅助分子设计; 4.计算机辅助合成路线设计; 5.计算机辅助化学过程综合与开发; 6.化学中的人工智能方法等。 无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。 本课程主要学习利用用计算机解化学中的数值计算问题,一般包括以下几个步骤: 1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法; 问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。在进行数值计算时要量纲明确,保证计算步骤分解准确。采用的数学理论正确、计算方法合理有效。 2.写出解决问题的程序框图 根据分析结果给出程序框图是编写程序的基础和关键。写出清晰、流畅、准确的程序框图是任何计算机语言编写程序的必要步骤。程序框图的绘制要根据计算机运算的特点和编写代码程序的需要。 3.代码程序的编写 选择一种合适的计算机语言,运用该种语言将上述程序框图写成计算机程序(高级程序)。由于一种计算机语言往往有不同版本,适合于不同的编译平台,彩的程序代码要符合该编译平台的规范。 4.程序的调试和编译 一个计算机程序编写完成后,一般需要通过编译、调试和修改步骤,构成计算机可以识别的代码集,并找出问题,加以完善。编译和高度的方法依据不同的程序编译平台会略有不同。 5.试算分析,输出结果 调试得到执行程序后,用已知的算例去试算检查,分析结果正确无误码,才能用于未知的算例。

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

化学实验六大解题技巧有哪些

化学实验六大解题技巧有哪些 实验综合题是高考的热点问题,高考再现率为100%。要想快速而准确的解决实验综合题,不仅要掌握实验基本操作技能,而且要理解实验原理。为了帮助同学们在化学实验方 面的应考能力有质的飞跃,归纳总结了以下几个步骤供学习参考。 一、导气管的连接 一般应遵循装置的排列顺序。对于吸收装置,若为洗气瓶则应“长”进利于杂质的充 分吸收“短”出利于气体导出;若为盛有碱石灰的干燥管吸收水分和,则应“粗”进同样 利用和水蒸气的充分吸收“细”出利于余气的导出;若为了排水量气时,应“短”进“长”出,被排出水的体积即为生成气体的体积。 二、仪器的连接 根据实验原理选择仪器和试剂,根据实验的目的决定仪器的排列组装顺序,一般遵循 气体制取→除杂→干燥→主体实验→实验产品的保护与尾气处理。其中除杂与干燥的顺序,若采用溶液除杂则应先净化后干燥。尾气处理一般用溶液吸收或将气体点燃。 三、气密性的检查 制气装置一般都存在气密性检查问题。关键是何时进行气密性检查?如何进行气密性 检查?显然应在仪器连接完之后,添加药品之前进行气密性检查。气密性检查的方法虽多 种多样,但总的原则是堵死一头,另一头通过导管插入水中,再微热用掌心或酒精灯容积 较大的玻璃容器,若水中有气泡逸出,停止加热后导管中有一段水柱上升,则表示气密性 良好,否则须重新组装与调试。 四、防倒吸 用溶液吸收气体或排水集气的实验中都要防倒吸。防倒吸一般可分为两种方法:一是 在装置中防倒吸如在装置中加安全瓶或用倒扣的漏斗吸收气体等;二是在加热制气并用排 水集气或用溶液洗气的实验中,实验结束时,应先取出插在溶液中的导管,后熄灭酒精灯 以防倒吸。 五、实验方案的评价 对实验方案的评价应遵循以下原则:①能否达到目的;②所用原料是否常见易得、廉价;③原料的利用率高低;④过程是否简捷优化;⑤有无对环境污染;⑥ 实验的误差大小等等。能达到上述六点要求的实验方案应该说不失为最优实验方案。最优方案的设计应遵循 上述实验方案评价的六原则。方案确定后,为确保实验目的实现,必须选择简捷而正确的 操作程序。

现代分子理论与计算化学导论作业

《现代分子理论与计算化学导论》 ——课程大作业班级:xxxxxxx 姓名:小签牛学号:xxxxxxxxxx 题目:在T*=1.5条件下,分别用分子模拟方法和微扰理论方法计算ρ*=0.02和0.85的体系的压力,并比较两种方法计算 的结果。 Ⅰ.当T*=1.5、ρ*=0.02时的情况 ①由Monte Carlo模拟获得体系的内能、径向分布函数和压力,流 体参数及模拟条件见contrifile文件; 此时的contrifile文件为: ---------------ENTER THE FOLLOWING IN LENNARD-JONES UNITS-------------------- 0.02 # Enter The Density 1.5 # Enter The Temperature 8.0 # Enter The Potential Cutoff Distance 108 # Enter The Intial Molecular Number ---------------ENTER THE SIMULATION STEP CONTROLLING PARAMETES--------------- 200000 # Enter Number Of Cycles 400 # Enter Number Of Steps Between Output Lines 400 # Enter Number Of Steps Between Data Saves 400 # Enter Interval For Update Of Max. Displ. .False. # Whether Read config. From Old Simulation Run config.dat # Enter The Configuration File Name ---------------ENTER THE RADIAL DISTRIBUTION FUNCTION PARAMETES-------------- .True. # Whether Calculate The Radial Distribution Function 0.01 # Enter The Radial Distribution Distance 100000 # Enter Number Of Cycles Of Start Calculating The Radial Distribution gr0.02.dat # Enter The Radial Distribution File Name (运行程序见附件1) 所得“result.dat”文件中的结果为: A VERAGES = -0.149649

= 0.028542

计算化学学习指南

《计算化学》课程学习指南 计算化学学习基本要求: 在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。 计算化学学习的难点: 学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。坚持一定会有收获! 计算化学的研究方法: 传统意义上的计算化学要完成的任务一般包括以下几个方面: 1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴; 2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴; 3.化学过程模拟和化工过程计算等。 但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);

2.化学结构与化学反应的计算机处理技术; 3.计算机辅助分子设计; 4.计算机辅助合成路线设计; 5.计算机辅助化学过程综合与开发; 6.化学中的人工智能方法等。 无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。 本课程主要学习利用计算机解化学中的数值计算问题,一般包括以下几个步骤: 1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法; 问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。在进行数值计算时要量纲明确,保证计算步骤分解准确。采用的数学理论正确、计算方法合理有效。 2.写出解决问题的程序框图 根据分析结果给出程序框图是编写程序的基础和关键。写出清晰、流畅、准确的程序框图是任何计算机语言编写程序的必要步骤。程序框图的绘制要根据计算机运算的特点和编写代码程序的需要。 3.代码程序的编写 选择一种合适的计算机语言,运用该种语言将上述程序框图写成计算机程序(高级程序)。由于一种计算机语言往往有不同版本,适合于不同的编译平台,彩的程序代码要符合该编译平台的规范。 4.程序的调试和编译 一个计算机程序编写完成后,一般需要通过编译、调试和修改步骤,构成计算机可以识别的代码集,并找出问题,加以完善。编译和高度的方法依据不同的程序编译平台会略有不同。 5.试算分析,输出结果 调试得到执行程序后,用已知的算例去试算检查,分析结果正确无误码,才能用于未知的算例。

量子化学计算实验详解

量子化学计算方法及应用 吴景恒 实验目的: (1)掌握Gaussian03W的基本操作 (2)掌握 Gaussian03W进行小分子计算的方法,比较不同方法与基组对计算结果的影响,并比较同分异构体的稳定性(3)通过运用量子力学方法计算分子的总电子密度,自旋密度,分子轨道及静电势 实验注意: (1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格 (2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作 (3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片 (4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备! (5)HyperChem里面截图时候可以用工具栏以下几个工具调整视图: Rotate out-of-plane:平面外旋转工具,转换视角用 Mgnify/Shrink:放大镜工具,转换视角用 Gaussian03W使用介绍:(注意,下面只是界面示意图,实验時切勿按下图设置) 输入文件:Gaussian输入文件,以GJF为文件后缀名 联系命令行:设定中间信息文件(以CHK为后缀名)存放的位置、计算所需的内存、CPU数量等 作业行:指定计算的方法,基组,工作类型,如:#P HF/6-31G(d) Scf=tight Opt Pop=full #作业行开始标记 P 计算结果显示方式为详细, 选择还有T(简单)和 N(常规,默认) HF/6-31G(d) 方法/基组 Opt对分子做几何优化 Pop=full进行轨道布居分析,详尽输出轨道信息和能量 电荷 多重态:分子总电荷及自旋多重态(2S+1, S=n/2, n为成单电子数) 分子结构的表示 1、直角坐标:元素符号X坐标Y坐标Z坐标(如上图所示) 2、Z矩阵(参考后附内容):元素符号(原子一)原子二键长原子三键角原子四二面角

化学计算方法与技巧

化学计算与技巧专题 考点1 守恒法 守恒法就是化学变化过程中存在的某些守恒关系,如: 1.化学反应前后质量守恒、元素守恒、得失电子守恒、能量守恒、电荷守恒。 2.化合物中元素正负化合价总数绝对值相等(化合价守恒)、电解质溶液中阳离子所带正电荷总数与阴离子所带负电荷总数守恒。 方法点击 化学计算中,“守恒”无处不在,运用守恒法可以提高解题的速率,又可以提高解题的准确性,所以只要看到化学计算,就想到守恒。例: 1.质量守恒法 例:0.1 mol 某烃与1 mol 过量氧气混合,充分燃烧后通过足量的Na 2O 2固体,固体增重15 g ,从Na 2O 2中逸出的全部气体在标准状况下为16.8 L 。求烃的化学式。 解析:设烃的化学式为C x H y ,摩尔质量为a g·mol -1,因为最后逸出的气体不仅包括反应剩余的O 2,也包括烃燃烧产物CO 2和水蒸气与Na 2O 2反应放出的O 2。 烃的质量+m(O 2)=Na 2O 2的增重+m(逸出气体) 0.1 mol×a g·mol -1+32 g·mol -1×1 mol=15 g+32 g·mol -1×16.8 L/22.4 L·mol -1 解得a=70,烃的式量为70, 1270=5余10,烃的化学式为C 5H 10。 2.原子(或离子)守恒 例:用含1.0 mol NaOH 的溶液吸收0.8 mol CO 2,所得溶液中的-23CO 和-3HCO 的物质的量之比为( ) A.1∶3 B.2∶1 C.2∶3 D.3∶2 解析:设生成Na 2CO 3、NaHCO 3物质的量为x 、y ,由反应前后C 原子和Na +守恒可知,可得方程组: [???=+=+mol y x mol y x 8.028.0 解得???==mol y mol x 6.02.0 即所得溶液中-23CO 和-3HCO 的物质的量之比为1∶3。 3.电子守恒 例:在一定条件下,PbO 2与Cr 3+反应,产物为-272O Cr 和Pb 2+,则与1.0 mol Cr 3+反应所需的PbO 2物质的 量为____________。 解析:考查氧化还原反应。解题的关键是抓住电子守恒进行计算:1.0 mol×(6-3)=x×(4-2),得x=1.5 mol 。 4.电荷守恒 例如:在硫酸铝和硫酸钾、明矾的混合物中,若c(-24SO )=0.2 mol·L -1,当加入等体积的0.2 mol· L -1 KOH 溶液时,生成的沉淀又恰好溶解为止,则原溶液中K +的物质的量浓度(mol·L -1)是( ) A.0.2 B.0.25 C.0.3 D.0.45 解析:方法1:原混合液中含有的阳离子是K +、Al 3+,阴离子是-24SO ,加入KOH 溶液后发生的反应是Al 3++4OH -====-2AlO +2H 2O ,所以原溶液中c(Al 3+)=c(K +)= 41×0.2 mol·L -1=0.05 mol·L -1 方法2:根据电荷守恒有:3c(Al 3+)+c(K +)=2c(-24SO ) 推出:c(K +)=2c(-24SO )-3c(Al 3+)=0.25 mol·L -1 考点2 差量法 差量法是根据化学反应前后物质的某些物理量发生的变化,这个差量可以是质量、气体物质的体积、压强、物质的量、反应过程中热量的变化等。该差量的大小与参与反应的物质的量成正比。差量法就是借

化学实验数据分析计算题(二)

实验数据分析计算题(二) 例1. 为测定某NaCl 、Na 2CO 3固体混合物的组成,小明同学取16g 该混合物放入烧杯中,分五次加入稀盐酸(每次加入稀盐酸的质量为25g ),待反应完全后,得到下面的质量关系。 加入稀盐酸的次数 第一次 第二次 第三次 第四次 第五次 烧杯及反应后混合 物的总质量/g 122.2 146.1 170.0 193.9 218.9 请分析以上数据后计算: (1)原固体混合物中32CO Na 的质量。 (2)当加入稀盐酸至固体混合物恰好完全反应时,所得溶液的溶质质量分数。(计算结果精确到0.1) 例2.某化学兴趣小组同学为测定某石灰石样品中碳酸钙的质量分数,取用2.0g 石灰石样品,把25.0g 稀盐酸分五次加入样品中(样品中杂质既不与盐酸反应也不溶于水),每次充分反应后都经过过滤、干燥、称量,的实验数据如下: (1)石灰石样品中碳酸钙的质量分数为 ____; (2)计算最后反应生成溶液中氯化钙的质量分数(计算过程和结果均保留一位小数)。 (3) 计算稀盐酸的质量分数。 实验次数 1 2 3 4 5 稀盐酸的累计加入量/g 5.0 10.0 15.0 20.0 25.0 剩余固体的质量/g 1.5 1.0 0.5 0.3 0.3

例3: 混合物全部溶于水,将得到的溶液等分为4分,然后分别加入一定量未知质量分数的氯化钡溶液,实验数据见下表: 第一份第二份第三份第四份 加入氯化钡溶液质量/g 15 20 25 30 反应得到沉淀的质量/g 1.40 1.86 2.33 2.33 若有关的化学反应为:Na2SO4 + BaCl2 === BaSO4↓+ 2NaCl。请计算:(计算结果精确到0.01) (1)未知氯化钡溶液的溶质质量分数; (2)原混合物中硫酸钠的质量分数 例4(2010江西南昌)24.(6分) 今年全国人大和政协会议使用了一种含碳酸钙的“石头纸”:为测定其中碳酸钙的含量,课外活动小组的同学称取50g碎纸样品。分别在5只烧杯中进行了实验,实验数据见下表(假设纸张其他成分既不溶于水,也不与水反应): 烧杯①烧杯②烧杯③烧杯④烧杯⑤ 加入样品的质量/g1010101010 加入稀盐酸质量/g1020304050 充分反应后生成气 0.881.76X3.523.52体的质量/g (1)表中X的值为; (2)求样品中碳酸钙的质量分数; (3)烧杯④中物质充分反应后所得溶液的质量。

高考化学实验题大归纳

实验习题选摘 1.(6分)下列有关实验的叙述,正确的是(填序号)(少一个扣一分,多一个倒扣一分,扣完为止) 。 (A)配制500mL某物质的量浓度的溶液,可用两只250mL的容量瓶 (B)用渗析法分离淀粉中混有的NaCl杂质 (C)无法用分液漏斗将甘油和水的混合液体分离 (D)用酸式滴定管量取20.00mL高锰酸钾溶液 (E)为了测定某溶液的pH,将经水润湿的pH试纸浸入到待测溶液,过一会取出,及标准比色卡进行对比 (F)用浓氨水洗涤做过银镜反应的试管 (G)配制银氨溶液时,将稀氨水慢慢滴加到硝酸银溶液中,产生沉淀后继续滴加到沉淀刚好溶解为止 (H)配制一定浓度的溶液时,若定容时不小心加水超过容量瓶的刻度线,应立即用滴管吸去多余的部分。 (J)在氢氧化铁胶体中加少量硫酸会产生沉淀 (K)用结晶法可以除去硝酸钾中混有的少量氯化钠 答案、(6分)(BCDGJK)(少一个扣一分,多一个倒扣一分,扣完为止) 2、(8分)指出在使用下列仪器(已经洗涤干净)或用品时的第一步操作: (1)石蕊试纸(检验气体):。 (2)容量瓶:。 (3)酸式滴定管:。 (4)集气瓶(收集氯化氢):。

答案、(8分,每空2分) (1)把试纸用蒸馏水湿润(2)检查容量瓶是否漏水 (3)用已给酸液润洗滴定管2~3次(4)干燥集气瓶 3(5分).下列有关实验的说法正确的是_________。 A.配制100g10%的硫酸铜溶液时,称取10g硫酸铜晶体溶解于90g水中 B.鉴别溴乙烷:先加NaOH溶液,微热,在加稀HNO3酸化后,再加AgNO3溶液 C.制乙烯时,温度计应插入反应混合液中 D.用3mL乙醇、2mLH2SO4、2mL冰醋酸制乙酸乙酯,为增大反应速率,现改用6mL乙醇、4mLH2SO4、4mL冰醋酸 E.将一定量CuSO4和NaOH溶液混合后加入甲醛溶液,加热至沸腾,产生黑色沉淀,原因可能是NaOH量太少 答案. BCE(共5分,错选得0分,漏选得2分). 4、(4分)下列有关化学实验的操作或说法中,正确的是(填写字母代号) A、实验室制取肥皂时,将适量植物油、乙醇和NaOH溶液混合,并不断搅拌、加热, 直到混合物变稠,即可得到肥皂 B、进行中和热测定实验时,需要测出反应前盐酸及NaOH溶液的各自温度及反应后溶液 的最高温度 C、检验红砖中的氧化铁成分时,向红砖粉末中加入盐酸,放置到充分沉淀后,取上层 清液于试管中,滴加KSCN溶液2~3滴即可 D、制备硫酸亚铁晶体时,向稀硫酸中加入废铁屑至有少量气泡发生时,过滤,然后加 热蒸发滤液即可得到硫酸亚铁晶体 E、进行纤维素水解实验时,把一小团脱脂棉放入试管中,滴入少量90%的浓硫酸搅拌, 使脱脂棉变成糊状,再加入一定量的水,加热至溶液呈亮棕色,然后加入新制的Cu (OH)2加热至沸腾即可 答案。BC 5.(6分)下列操作或说法合理的是 A.用10毫升的量筒量取4.80毫升的浓硫酸 B.金属钠着火,用泡沫灭火器扑灭 C.用胶头滴管向试管滴液体时,滴管尖端及试管内壁一般不应接触

《计算化学》教学大纲

《计算化学》教学大纲 一、课程基本信息 二、课程教育目标 本课程的教育目标在于在计算化学多学科交叉(化学、数学、计算机科学)内容的优化与整合上,突出课程内容的基础性与前沿性;充分利用现代信息技术,用现代化教学理念指导教学全过程,使学生全面

掌握应用计算机解决化学、化工相关问题的基本思路、基本原理、基本方法和基本技能,培养学生学习能力、实践能力与创新能力。 通过本课程的学习,使学生达到: ——掌握如下计算方法及其在化学中的应用: ?Newton-Raphson迭代法、二分法求解一元N次(N>2)方程; ?消去法、Gauss-Seidel迭代法解线性方程组; ?线性回归分析方法; ?Lagrange插值法和差商; ?Simpson法求数值积分; ?Euler法解常微分方程。 ——理解如下计算方法及其在化学中的应用: ?非线性回归分析,多项式回归分析; ?Gauss 法求数值积分; ?Runge-Kutta法解常微分方程。 ——了解如下计算方法及其在化学中的应用: ?样条函数插值法; ?Jacobi方法、QL方法求本征值; ?单纯形优化; ?化工调优; ?化学化工中常用的计算机软件与网络资源; ?分子动力学模拟;Monte Carlo模拟法。 三、理论教学内容与要求 1.前言(1学时)什么计算化学;计算机在化学中的应用;计算化学的过去、现在和将来;学习方法。 2.代数方程及代数方程组的求解在化学中的应用(5学时)二分法;Newton-Raphson迭代法;Gauss消去法;Gauss-Seidel迭代法。 3.插值法和回归分析——实验数据的拟合及模型参数的确定(5学时)线性插值;Lagrange插值;中心差商;一元线性回归分析;一元非线性回归;多元回归;多项式回归分析(自学)。 4.数值积分与常微分方程的数值解法(4学时)梯形法;Simpson法;离散点数据的求积;Gauss法(自学);Euler法及其改进;Runge-Kutta法。 5.本征值和本征向量(1.5学时)Jacobi方法;QL方法(自学)。 6.化学化工中常用的软件及网络资源简介(1.5学时)结构式绘图软件;科学数据处理软件;化学化工重要网站;化工信息源。 7.化学化工中的最优化方法简介(1.5学时)单纯形法优化;化工调优。 8.化学化工过程计算机模拟简介(1.5学时)分子动力学模拟;Monte Carlo法;化工过程模拟;课程小结。 9.拓展课堂(1学时)上机实践主讲教师作计算化学相关的研究报告。 或外请专家作计算化学相关的专题报告。 10.学生讨论课(2学时)学生根据自查资料,写出课程报告并进行课堂讨论。

大学化学综合实验

\ 化学实验报告 实验项目名称安息香的合成及表征 专业班级生物工程112 班 同组人员钟坤徐再鸿何德维刘洪念熊泽雨 学号1108110391 1108110375 1108110384 1108110379 1108110389 指导老师郭妤老师 实验时间:2013年12月5日

安息香的合成及表征 前言 1943年Ukai等发现噻唑盐具有和氰负离子相同的催化性能,同样可以用作安息香缩合反应的催化剂,维生素B1(VB1)在碱性条件下可生成噻唑盐,因此容易获得的VB1可作为催化剂用来进行安息香缩合反应。但在实际操作中发现,VB1催化反应产率低且不稳定,重复性差。何强芳通过探讨反应时间、反应温度、溶液pH值、VB1用量、反应物料加入方式对糠偶姻合成的影响,改进了VB1催化糠醛缩合生成糠偶姻的反应条件: 常温下糠醛与VB1的质量比为20∶1-15∶1,滴加2.5mol/L NaOH使溶液pH 值为8-9,然后65-75℃回流反应60-90 min,产率可达74.16% -76.19%。 安息香缩合反应一般采用氰化钾(钠)作催化剂,是在碳负离子作用下,两分子苯甲醛缩合生成二苯羟乙酮。但氰化物是剧毒品,易对人体危害,操作困难,且“三废”处理困难。20世纪70年代后,开始采用具有生物活性的辅酶维生素B1代替氰化物作催化剂进行缩合反应.以维生素B1作催化剂具有操作简单,节省原料,耗时短,污染轻等特点。 芳香醛在氰化钠(氰化钾)作用下,分子间发生缩合反应生成α-羟酮,称为安息香缩合反应。氰离子几乎是专一的催化剂。反应共同使用的溶剂是醇的水溶液。使用氰化四丁基铵作催化剂,则反应可在水中顺利进行。

计算化学在化学中的应用

计算化学在化学方面的应用 摘要:计算化学在最近十年中是发展最快的化学研究领域之一,通过对具体的分子系统进行理论分析和计算,能比较准确地回答有关稳定性、反应机理等基本化学问题。如今计算化学已被广泛用于材料、催化和生物化学等研究领域。本文主要就计算化学的背景、计算化学常用的方法及其在化学化工中的应用等几个方面作一简单介绍。 关键词计算化学材料催化应用 Abstract: Computational chemistry is one of the fastest growing areas of chemical research in the last decade.Through theoretical analysis and calculations to a specific molecular system, one can accurately answer the basic chemical problems, for example, the stability and the reaction mechanism, etc. Today, computational chemistry has been widely used in materials, catalysis and biochemistry research. In this paper, the background of computational chemistry, the commonly used methods in computational chemistry and its application in chemistry and chemical industry have been briefed respectively. Key words:Computational chemistry; Materials; Catalysis; Application 1、计算化学的背景介绍 计算化学(Computational Chemistry)在最近10年是发展最快的化学研究领域之一。它是根据基本的物理化学理论(通常是量子化学)以大量的数值运算方式来探讨化学系统的性质。最常见的例子是以量子化学计算来解释实验上的各种化学现象,帮助化学家以较具体的概念来了解、分析观察到的结果。除此之外,对于未知或不易观测的化学系统,计算化学还常扮演着预测的角色,提供进一步研究的方向。另外,计算化学也常被用来验证、测试、修正或发展较高层次的化学理论。同时,更为准确或高效的计算方法的开发创新也是计算化学领域中非常重要的一部分。 量子化学,作为量子力学的一个分支,是将量子力学的基本原理和方法,应用于研究化学问题的一门基础科学,其核心问题就是通过一系列近似,求解薛

计算化学

计算化学实验三异构体和构象的计算 一、实验目的 1.掌握异构体的计算 2.掌握过渡态的优化 3.学会计算单分子反应速度常数 二、实验原理 1.在有机化学当中,很多的同分异构体可以进行构型之间的相互转化,例如电子互变异构体,烯醇和酮式结构就可以进行互变异构,在结构比较简单的情况下,酮式结构能量更低,更加稳定,是主要构型。但是,很多构象异构在较高的温度(例如室温)当中可以很快的自由转换,主要是它们之间的能量差别不大,室温足以提供这种异构体相互转化的能量。虽然他们在室温下可以相互转化,但是我们依然可以通过计算化学方法模拟得到他们的能量差,并且比较他们之间的相同和不同点。 2.过渡态的形象表示方法(马鞍点):过渡态的力常数矩阵有且仅有一个小于0 的本征值(即将矩阵完成对角化之后,其对角线上的所有数值当中只有一个为负)。势能等值线曲线上,势能值是相等的。此图很像一幅山区地图,在两边陡峭的山间有一条小路,称为最小能途径,因为它是能量最低点的连线。在反应物区和产物区的最小能途径之间有一小的凸起区,称为势垒,势垒的顶点称为鞍点,此处的势能图呈马鞍形。沿最小能途径走向反应物区和产物区,势能均急剧下降;沿着最小能途径的垂直方向,则势能急剧上升。过渡态则处于马鞍的中心,如图: 3.过渡态的寻找方法: 可以使用逐点优化法或者估计一个可能接近的几何构型,进行优化。 4.反应速率常数的计算 当n=1 的时候,这个公式代表的结果表示单分子反应速率常数; 当n=2 的时候,这个公式代表的结果表示双分子反应速率常数。

5.单分子反应速率常数 如上述公式所示,取n=1, 式中, k B为波尔兹曼常数,其值为1.381*10?23 J/K ;h为普朗克常数,其值为6.626*10-34 J·s。 三、实验内容 1.打开电脑当中的G09W 软件,新建任务。 2.建设任务,进行计算方法(route section)、标题、分子所带电荷及自旋多重度、分子坐标的输入,然后保存为输入文件。 3.从本次实验开始,分子的左边逐渐比较难以书写,可以使用CHEMCRAFT 软件将几何构型画出,使用此软件获得该分子的坐标。 4.选择RUN 并保存输出文件的位置。 5.等待计算完成后,打开输出文件,分析所得到的数据。 6.可以使用CHEMCRAFT 软件读取OUT 文件,获得相关数据。 四、实验结果 1. 反式1,3-丁二烯和顺式1,3-丁二烯结构的优化 (1)反式1,3-丁二烯 输入信息: % Section: %MEM = 300MB Route section: #p b3lyp/6-31G** freq opt=z-matrix scfcon=7 optcyc=200 标题: fanshi 静电荷&自旋度: 0 1 分子坐标 6 6 1 R12 6 2 R23 1 A123 6 3 R34 2 A234 1 D1234 0 1 1 R15 2 A215 3 D3215 0 1 1 R16 2 A216 3 D3216 0

计算化学复习题

计算化学复习题 第一章 1.请列举计算化学的基本任务 答:几何结构优化,电子结构分析,频率计算,蛋白质的计算,电子和电荷分布的计算,势能面搜索,化学反应速率常数的计算,热力学计算。 2.量子力学、量子化学、分子力学、分子动力学模拟的英文 答:Quantum Mechanics Quantum Chemistry Molecular Mechanics Molecular Dynamics Modelling 3.计算化学的基本方法有哪些 答:(1)ab initio methods从头算方法:是量子力学非参数化分子轨道处理方法。它建立在非相对论近似、Born-oppenheimer近似、轨道近似的基础上,采用原子轨道线性组合和Hartree-Fock自洽场方法,方法中的全部积分均做精确的计算,不使用任何计算方法的任何实验资料。包括HF,MP2(MPX),DFT。 (2)Semi-empirical techniques半经验方法:应用来自于实验或半经验的近似值作为数学计算 模型的初始参数。 (3)Molecular mechanics 分子力学方法:是应用经典物理去解释和说明原子和分子的行为 (4)QM和MM的混合方法—QM/MM:QM/MM方法是将系统分成两个区域,对需了解详细化学过程的区域用量子力学(QM)方法处理,其他区域用分子力学(MM)方法处理。 4.简要描述计算化学的基本过程 答:构建分子结构模型,选择计算方法,几何结构优化,性质计算,结果分析。 第二章和第三章 5.分子力场方法中,请写出分子体系的势能的一般表达方式。 答:E FF=E str+E bend+E tor+E vdw+E el+E cross 6.分子力学的基本思想 答:在分子内部,化学键都有“自然”的键长值和键角值。分子要调整它的几何形状(构像),以使其键长值键角值尽可能接近自然值,同时也使非键作用处于最小的状态吗,给出原子核位置的最佳排布。 7.分子力学的基本假设 答:(1)Born-oppenheimer近似:原子核的运动和电子的运动可以看成是独立的。 (2)体系中原子和分子的运动服从经典力学,即服从牛顿运动定律而不是薛定谔方程。8.力场是什么? 答:势能函数以及它的有关参数、常数和表达式通常称为力场。由于分子内部的作用力比较复杂,作用类型也较多;对于不同类型的体系作用力的情况也有差别。力场的完备与否决定计算的正确程度。 9.了解分子力学的主要应用和局限性。 答:应用:分子力学宜用于对大分子进行构象分析、研究与空间效应密切相关的有机反应机理、反应活性、有机物的稳定性及生物活性分子的构象与活性的关系。 局限性:当研究对象与所用的分子力学力场参数化基于的分子集合相差甚远时不宜使用,当然也不能用于人们感兴趣但没有足够多的实验数据的新类型的分子。对于化合物的电子结构、光谱性质、反应能力等涉及电子运动的研究,不能用分子力学的计算方法。 10.了解分子动力学的方法原理。了解常用的系综及应用:

相关文档
相关文档 最新文档