文档视界 最新最全的文档下载
当前位置:文档视界 › 高考物理二轮复习考点第十章电磁感应专题电磁感应中的综合问题

高考物理二轮复习考点第十章电磁感应专题电磁感应中的综合问题

高考物理二轮复习考点第十章电磁感应专题电磁感应中的综合问题
高考物理二轮复习考点第十章电磁感应专题电磁感应中的综合问题

专题10.12 电磁感应中的综合问题

一.选择题

1.(2020·山东淄博诊断)如图甲所示,左侧接有定值电阻R=2 Ω的水平粗糙导轨处于垂直纸面向外的匀强磁场中,磁感应强度B=1 T,导轨间距L=1 m。一质量m=2 kg,阻值r=2 Ω的金属棒在水平拉力F作用下由静止开始从CD处沿导轨向右加速运动,金属棒的v-x图象如图乙所示,若金属棒与导轨间动摩擦因数μ=0.25,则从起点发生x=1 m位移的过程中(g=10 m/s2)( )

A.金属棒克服安培力做的功W1=0.5 J

B.金属棒克服摩擦力做的功W2=4 J

C.整个系统产生的总热量Q=4.25 J

D.拉力做的功W=9.25 J

【参考答案】D

2.如图所示,固定在水平面上的光滑平行金属导轨,间距为L,右端接有阻值R的电阻,空间存在方向竖直向上、磁感应强度为B的匀强磁场.质量为m、电阻为r的导体棒ab与固定弹簧相连,放在导轨上.初始时刻,弹簧恰处于自然长度.给导体棒水平向右的初速度v0,导体棒开始沿导轨往复运动,在此过程中,导体棒始终与导轨垂直并保持良好接触.已知导体棒的电阻r与定值电阻R的阻值相等,不计导轨电阻,则下列说法中正确的是( )

A.导体棒开始运动的初始时刻受到的安培力向左

B.导体棒开始运动的初始时刻导体棒两端的电压U=BLv0

C .导体棒开始运动后速度第一次为零时,系统的弹性势能E p =12

mv 2

D .导体棒最终会停在初始位置,在导体棒整个运动过程中,电阻R 上产生的焦耳热Q =14mv 2

【参考答案】AD

二.计算题

1.(2020年11月浙江选考)所图所示,匝数N=100、截面积s=1.0×10-2m 2

、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B 1,其变化率k=0.80T/s 。线圈通过开关S 连接两根相互平行、间距d=0.20m 的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2

kg 的导体棒ab 搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B 2。接通开关S 后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。

(1)求磁感应强度B 2的大小,并指出磁场方向;

(2)断开开关S 后撤去挡条,棒开始下滑,经t=0.25s 后下降了h=0.29m ,求此过程棒上产生的热量。

【名师解析】(1)线圈中产生的感应电动势为E=N

t ?Φ

?=NS 1B t

??

流过导体棒的电流 Iab=

2

2

E

R

r??

+

?

??

导体棒对档条的压力为零,有B2I ab d=mg,

联立解得:B2=

()2

mg R r

Ed

+

=0.50T。

方向垂直纸面向外。

2.(2020·河北邯郸一中一轮)如图所示,两根电阻不计的光滑金属导轨MAC、NBD水平放置,MA、NB间距L=0.4 m,AC、BD的延长线相交于E点且AE=BE,E点到AB的距离d=6 m

,M、N两端与阻值R=2 Ω的电阻相连,虚线右侧存在方向与导轨平面垂直向下的匀强磁场,磁感应强度B=1 T。一根长度也为L=0.4 m、质量m=0.6 kg、电阻不计的金属棒,在外力作用下从AB处以初速度v0=2 m/s沿导轨水平向右运动,棒与导轨接触良好,运动过程中电阻R上消耗的电功率不变,求:

(1)电路中的电流I;

(2)金属棒向右运动

d

2

过程中克服安培力做的功W。

此时金属棒所受安培力为:F =BIL 1=0.16-2x 75(0≤x≤d

2

)

作出F -x 图象,由图象可得运动d

2过程中克服安培力所做的功为:

W =F -

x =0.16+0.082×3 J=0.36 J 。

【参考答案】 (1)0.4 A (2)0.36 J

3.(2020·陕西西工大附中模拟)如图所示,用水平绝缘传送带输送一正方形单匝闭合铜线框,在输送中让线框随传送带通过一固定的匀强磁场区域,铜线框在进入磁场前与传送带的速度相同,穿过磁场的过程中将相对于传送带滑动。已知传送带以恒定速度v 0运动,当线框的右边框刚刚到达边界PQ 时速度又恰好等于v 0。若磁场边界MN 、PQ 与传送带运动方向垂直,MN 与PQ 的距离为d ,磁场的磁感应强度为B ,铜线框质量为m ,电阻均为R ,边长为L(L

(1)线框的右边框刚进入磁场时所受安培力的大小;

(2)线框在进入磁场的过程中运动加速度的最大值以及速度的最小值;

(3)从线框右边框刚进入磁场到穿出磁场后又相对传送带静止的过程中,传送带对闭合铜线框做的功。 【参考答案】(1)B 2L 2

v 0

R

(2)B 2L 2

v 0mR

-μg

v 2

0-2μg(d -L ) (3)2μmgd

【名师解析】(1)闭合铜线框右侧边刚进入磁场时产生的电动势 E =BLv 0

产生的电流I =E R =BLv 0

R

右侧边所受安培力F =BIL =B 2L 2

v 0

R

(3)线框从右边框进入磁场到运动至磁场边界PQ 的过程中线框一直受摩擦力f =μmg 由功的公式W f1=fd 得摩擦力做功W f1=μmgd

闭合线框穿出磁场与进入磁场的受力情况相同,则完全穿出磁场的瞬间速度亦为最小速度v ,然后速度均匀增加到v 0,产生的位移一定为x =d -L(和在磁场中速度v 由增加v 0到的位移相同)闭合线框在右边框出磁场到与传送带共速的过程中位移x′=x +L =d 。 在此过程中摩擦力再做功W f2=μmgd

因此,闭合铜线框从刚进入磁场到穿出磁场后又相对传送带静止的过程中,传送带对闭合铜线框做的功W = W f1+W f2=2μmgd

4.(宁夏银川一中2020届高三第三次模拟考试理科综合试题)(18分) 如图所示,宽L=2m 、足够长的金属导轨MN 和M ′N ′放在倾角为θ=30°的斜面上,在N 和N ′之间连接一个R=2.0Ω的定值电阻,在AA ′处放置一根与导轨垂直、质量m=0.8kg 、电阻r=2.0Ω的金属杆,杆和导轨间的动摩擦因数3

,导轨电阻不计,导轨处于磁感应强度B=1.0T 、方向垂直于导轨平面的匀强磁场中。用轻绳通过定滑轮将电动小车与杆的中点相连,滑轮与杆之间的连线平行于斜面,开始时小车位于滑轮正下方水平面上的P 处(小车可视为质点),滑轮离小车的高度H=4.0m 。启动电动小车,使之沿PS 方向以v=5.0m/s 的速度匀速前进,当杆滑到OO ′位置时的加速度a=3.2m/s 2

,AA ′与OO ′之间的距离d=1m ,求: (1)该过程中,通过电阻R 的电量q ; (2)杆通过OO ′时的速度大小; (3)杆在OO ′时,轻绳的拉力大小;

α

B

M

M ′ O

O ′

A ′

A

N ′

N θ R P

S

v

H

d

L

(3)杆受的摩擦力cos 3f F mg N μθ==

杆受的安培力221

()

B L F BIL R r ==+安v 代入数据,可得3F N =安

根据牛顿第二定律:sin =T f F mg F F ma θ---安 解得:12.56T F N =

(4)根据动能定理:2

11sin 2

f W W mgd F mv θ+--=安 解出 2.4W J =-安,电路产生总的电热 2.4Q J =总 那么,R 上的电热 1.2R Q J = 此过程所用的时间cot 0.6H t s v

α

== R 上的平均电功率 1.2W 2.0W 0.6R Q P t =

==

考点:法拉第电磁感应定律;牛顿第二定律;动能定理

【名师点睛】本题是一道电磁感应与力学、电学相结合的综合体,考查了求加速度、电阻产生的热量,分析清楚滑杆的运动过程,应用运动的合成与分解、E=BLv 、欧姆定律、安培力公式、牛顿第二定律、平衡条件、能量守恒定律即可正确解题;求R 产生的热量时要注意,系统产生的总热量为R 与r 产生的热量之和.

5.(14分)如图所示,一面积为S 的单匝圆形金属线圈与阻值为R 的电阻连接成闭合电路,不计圆形金属线圈及导线的电阻.线圈内存在一个方向垂直纸面向里、磁感应强度大小均匀增加且变化率为k 的磁场B.电阻R 两端并联一对平行金属板M 、N ,两板间距为d ,N 板右侧xOy 坐标系(坐标原点O 在N 板的下端)的第一象限内,有垂直纸面向外的匀强磁场,磁场边界OA 和y 轴的夹角∠AOy=45°,AOx 区域为无场区.在

靠近M 板处的P 点由静止释放一质量为m 、带电荷量为+q 的粒子(不计重力),经过N 板的小孔,从点Q(0,l)垂直y 轴进入第一象限,经OA 上某点离开磁场,最后垂直x 轴离开第一象限.求:

(1)平行金属板M 、N 获得的电压U ; (2)yOA 区域内匀强磁场的磁感应强度B ; (3)粒子从P 点射出至到达x 轴的时间.

【参考答案】(1)kS (2)

2

l

2mkS q (3)(2d +π+2

4

l) m

2qkS

带电粒子进入磁场区域的运动轨迹如图所示,有qvB =m v

2

r

由几何关系可得r +r

cot 45°

=l⑤

联立②③④⑤得B =2

l

2mkS

q

(3)粒子在电场中,有d =12at 2

1⑥

q U

d

=ma⑦ 粒子在磁场中,有T =2πr

v ⑧

t 2=14

T⑨

粒子在第一象限的无场区中,有s =vt 3⑩ 由几何关系得s =r ?

粒子从P 点射出至到达x 轴的时间为t =t 1+t 2+t 3?

联立⑥⑦⑧⑨⑩??式可得t =(2d +π+2

4

l)

m 2qkS

6.(天津市河北区2020学年度高三年级总复习质量检测(三)理科综合试卷·物理部分)如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L ,导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B 。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab 有指向棒cd 的初速度0v ,若两导体棒在运动中始终不接触,求:

(1)在运动中产生的焦耳热Q 最多是多少?

(2)当ab 棒的速度变为初速度的4/3时,cd 棒的加速度a 是多少?

【参考答案】(1)2

014Q mv =;(2)2204B L v F a m mR

==

(2)设ab 棒的速度变为3v 0/4,cd 棒的速度为v ’,由动量守恒定律,

003

'4

mv mv mv =

+, 解得:v ’= v 0/4。 此时回路中感应电动势E=

034BLv -014BLv =01

2

BLv , 回路中电流I=E/2R=

4BLv R

, 此时cd 棒所受的安培力F=BIL=220

4B L v R ,

由牛顿第二定律,cd 棒的加速度a=F/m=220

4B L v mR

考点:动量守恒定律;闭合电路的欧姆定律;导体切割磁感线时的感应电动势

【名师点睛】本题主要考查了动量守恒定律、闭合电路的欧姆定律、导体切割磁感线时的感应电动势。分根据动量守恒定律确定两棒最后的末速度是本题的关键,分析这类电磁感应现象中的能量转化较易:系统减少的动能转化为回路的焦耳热;本题涉及到动生电动势、动量守恒定律、牛顿第二定律及闭合电路欧姆定律综合的力电综合问题,故本题属于难度较大的题。

7.在生产线框的流水线上,为了检测出个别不合格的未闭合线框,让线框随传送带通过一固定匀强磁场区域(磁场方向垂直于传送带平面向下),观察线框进入磁场后是否相对传送带滑动就能够检测出未闭合的不合格线框。其物理情景简化如下:如图所示,通过绝缘传送带输送完全相同的正方形单匝纯电阻铜线框,传送带与水平方向夹角为

,以恒定速度v 0斜向上运动。已知磁场边界MN 、PQ 与传送带运动方向垂

直,MN 与PQ 间的距离为d ,磁场的磁感应强度为B 。线框质量为m ,电阻为R ,边长为L (),线

框与传送带间的动摩擦因数为

,重力加速度为

。闭合线框在进入磁场前相对传送带静止,线框刚进入

磁场的瞬间,和传送带发生相对滑动,线框运动过程中上边始终平行于MN ,当闭合线框的上边经过边界PQ 时又恰好与传送带的速度相同。设传送带足够长,且线框在传送带上始终保持上边平行于磁场边界。求

(1)闭合线框的上边刚进入磁场时所受安培力F 安的大小; (2)从闭合线框上边刚进入磁场至刚要出磁场所用的时间t ;

(3)从闭合线框上边刚进入磁场到穿出磁场后又相对传送带静止的过程中,电动机多消耗的电能E 。

(2)线框刚进入磁场至线框刚要出磁场的过程, 根据动量定理:mgsinα?t+ Ft ′

-μmgcosα?t=0…⑤ 根据安培力公式得:F=BIL …⑥ 根据闭合电路欧姆定律得:I=E/R …⑦ 根据法拉第电磁感应定律得:E=BLv …⑧ 根据运动学公式得:L=vt …⑨ 由⑤⑥⑦⑧⑨得:t=

()

cos sin BL

mgR μαα-=10s…⑩

电磁感应中的“双杆问题”

电磁感应中的“双杆问题”(10-12-29) 命题人:杨立山 审题人:刘海宝 学生姓名: 学号: 习题评价 (难、较难、适中、简单) 教学目标: 综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法 学习难点:电磁感应等电学知识和力学知识的综合应用,主要有 1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 重点知识及方法点拨: 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 3.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 4感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。在时间△t 内安培力的冲量R BL BLq t BLI t F ?Φ ==?=?,式中q 是通过导体截面的电量。利用该公式解答问题十分简便。 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题 1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b = 3 4 m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少? (3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少? 2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3.如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

电磁感应动力学问题归纳.doc

电磁感应动力学问题归纳 重、难点解析: (一)电磁感应中的动力学问题 电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。 1.动态分析:求解电磁感应中的力学问题时,要抓好受力 分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零, 导体达到稳定运动状态。此时 a=0,而速度 v 通过加速达到最大值,做匀速直线运动;或通过减速达到稳定值,做匀速直线运动 . 2.两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析 . 3.常见的力学模型分析: 类型“电—动—电”型 示 意 图 棒 ab 长为 L,质量 m,电阻 R,导轨光 滑,电阻不计 BLE F S 闭合,棒 ab 受安培力R ,此时 BLE “动—电—动”型 棒 ab 长 L ,质量 m,电阻 R;导轨光滑,电阻不计 棒 ab 释放后下滑,此时 a g sin ,棒ab 速度 v↑→感应电动势E=BLv ↑→电 分 a mR ,棒ab速度v↑→感应电动势I E 析 BLv ↑→电流 I ↓→安培力 F=BIL ↓→ 加速度 a↓,当安培力F=0 时, a=0, v 最大。 运动 变加速运动 形式 最终 v m E 状态BL 匀速运动流 R ↑→安培力F=BIL↑→加速度a↓,当安培力 F mg sin 时, a=0, v 最大。 变加速运动 mgR sin v m 2 L2 匀速运动 B 4.解决此类问题的基本步骤: (1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向(2)依据全电路欧姆定律,求出回路中的电流强度. ( 3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向). ( 4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解。

高中物理电磁感应综合问题讲课教案

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化 →……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图, 抓住 a =0时,速度v 达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径. 【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin( l x B B 20π=。一光滑导体棒AB 与短边平行且与长边接触良好,电 阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))() ( sin v l t R l vt v l B F 203222220≤≤= π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

电磁感应综合练习题

电磁感应综合练习 1.关于电磁感应,下列说法中正确的是( ) A.穿过线圈的磁通量越大,感应电动势越大; B.穿过线圈的磁通量为零,感应电动势一定为零; C.穿过线圈的磁通量变化越大,感应电动势越大; D.穿过线圈的磁通量变化越快,感应电动势越大 2.对楞次定律的理解下面说法中不正确的是( ) A.应用楞次定律本身只能确定感应电流的磁场方向 B.应用楞次定律确定感应电流的磁场方向后,再由安培定则确定感应电流的方向 C.楞次定律所说的“阻碍”是指阻碍原磁场的变化,因而感应电流的磁场方向也可能与原磁场方向相同 D.楞次定律中“阻碍”二字的含义是指感应电流的磁场与原磁场的方向相反 3.在电磁感应现象中,以下说法正确的是( ) A.当回路不闭合时,若有磁场穿过,一定不产生感应电流,但一定有感应电动势 B.闭会回路无感应电流时,此回路可能有感应电动势 C.闭会回路无感应电流时,此回路一定没有感应电动势,但局部可能存在电势 D.若将回路闭合就有感应电流,则没闭合时一定有感应电动势 4.与x 轴夹角为30°的匀强磁场磁感强度为B(图1),一根长L 的金属棒在此磁场中运动时始终与z 轴平行,以下哪些情况可在棒中得到方向相同、大小为BLv 的电动势( ) A.以2v 速率向+x 轴方向运动 B.以速率v 垂直磁场方向运动 C.以速率32v/3沿+y 轴方向运动 D. .以速率32v/3沿-y 轴方向运动 5.如图5所示,导线框abcd 与导线在同一平面内,直导线通有恒定电流I,当线框由左向右匀速通过直导线时,线框中感应电流的方向是( ) A.先abcd,后dcba,再abcd B.先abcd,后dcba C.始终dcba D.先dcba,后abcd,再dcba 6.如图所示,用力将线圈abcd 匀速拉出匀强磁场,下列说法正确的是( ) A.拉力所做的功等于线圈所产生的热量 B.当速度一定时,线圈电阻越大,所需拉力越小 C.对同一线圈,消耗的功率与运动速度成正比 D.在拉出全过程中,导线横截面积所通过的电量与快拉、慢拉无关 7.如图6所示,RQRS 为一正方形导线框,它以恒定速度向右进入以MN 为边界的匀强磁场,磁场方向垂直线框平面,MN 线与线框的边成45°角,E 、F 分别为PS 和PQ 的中点,关于线框中的感应电流( ) A.当E 点经过边界MN 时,感应电流最大 B.当P 点经过边界MN 时,感应电流最大

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

电磁感应中的综合问题

电磁感应中的综合问题 1.电磁感应中的力学问题 电磁感应中通过导体的感应电①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; 流,在磁场中将受到安培力的作用.②求回路中电流; ;电磁感应问题往往和力学问题联系在③分析导体受力情况 一起,解决这类问题的基本方法是:④列出动力学方程或平衡方程并求解. 电磁感应中的力学问题,常常以导体棒在滑轨上运动的形式出现一种是滑轨上仅一个导体棒的运 动.这种情况有两种类型:①“电一动一电”类型 如图所示,水平放置的光滑平行导轨MN、PQ放有长为l、电阻为R、质量为m的金属棒ab.导轨左端接内电阻不计、电动势为E的电源形成回路,整个装置放在竖直向上的匀强磁场B之中.导轨电阻不计且足够长,并与开关S串接.当刚闭合开关时,棒ab因电而动,其受安培力FBlab有最大加速度amaxE,方向向右,此时ab具RBlabE.然而,ab 一旦具有了速度,则因动而电,立即产生了电动势.因为速度决mR定感应电动势,而感应电动势与电池的电动势反接

又导致电流减小,从而使安培力变小,故加速度减小,不难分析ab导体的运动是一种复杂的变加速运动.当FA=0,ab 速度将达最大值,故ab运动的收尾状态为匀速运动,且达到的最大速度为vmax= E. Bl ②“动一电一动”类型. 如图所示,型平行滑轨PQ、MN与水平方向成α角.长度l、质量m,电阻为R的导体ab紧贴在滑轨并与PM平行、滑轨电阻不计.整个装置处于 与滑轨平面正交、磁感应强度为B的匀强磁场中,滑轨足够长.导体ab静止 释放后,于重力作用下滑,此时具有最大加速度amax=gsinα.ab一旦运动。 则因动而生电,产生感应电动势,在PMba回路中产生电流,磁场对此电流作用力刚好与下滑力方向反向,随着a 棒下滑速度不断增大. E=Blv,IE,则电路 R中电流随之变大,安培阻力 B2l2F变大,直到与下 R滑力的合力为零,即加速度为零,以vmax= mgRsin的 22Bl最大速度收尾.此过程中,重力势能转化为ab棒的动能与回路中电阻 2耗散的热能之和.电磁感应中的力学问题,另一种是滑轨上有两个导体棒的运动情况,这种情况下两棒的运动特点可用右表进行

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

2020届高考物理二轮复习 专题四 电路与电磁感应 提升训练15 电磁感应的综合问题

提升训练15 电磁感应的综合问题 1.一实验小组想要探究电磁刹车的效果。在遥控小车底面安装宽为L、长为 2.5L的N匝矩形线框,线框电阻为R,面积可认为与小车底面相同,其平面与水平地面平行,小车总质量为m。其俯视图如图所示,小车在磁场外行驶时的功率保持P不变,且在进入磁场前已达到最大速度,当车头刚要进入磁场时立即撤去牵引力,完全进入磁场时速度恰好为零。已知有界磁场PQ和MN间的距离为2.5L,磁感应强度大小为B,方向竖直向上,在行驶过程中小车受到地面阻力恒为F f。求: (1)小车车头刚进入磁场时,线框的感应电动势E; (2)电磁刹车过程中产生的焦耳热Q; (3)若只改变小车功率,使小车刚出磁场边界MN时的速度恰好为零,假设小车两次与磁场作用时间相同,求小车的功率P'。 2.(2017浙江义乌高三模拟)如图所示,固定在上、下两层水平面上的平行金属导轨MN、M'N'和OP、O'P'间距都是l,二者之间固定有两组竖直半圆形轨道PQM和P'Q'M',它们是用绝缘材料制成的,两轨道间距也均为l,且PQM和P'Q'M'的竖直高度均为4R,两组半圆形轨道的半径均为R。轨道的QQ'端、MM'端的对接狭缝宽度可忽略不计,图中的虚线为绝缘材料制成的固定支架。下层金属导轨接有电源,当将一金属杆沿垂直导轨方向搭接在两导轨上时,将有电流从电源正极流出,经过导轨和金属杆流回电源负极。此时金属杆将受到导轨中电流所形成磁场的安培力作用而运动。运动过程中金属杆始终与导轨垂直,且接触良好。当金属杆由静止开始向右运动4R到达水平导轨末端PP'位置时其速度大小v P=4。已知金属杆质量为m,两轨道间的磁场可视为匀强磁场,其磁感应强度与电流的关系为B=kI(k为已知常量),金属杆在下层导轨的运动可视为匀加速运动,运动中金属杆所受的摩擦阻力、金属杆和导轨的电阻均可忽略不计。 (1)求金属杆在下层导轨运动过程中通过它的电流大小。

电磁感应中的各种题型(习题,答案)

电磁感应中的各种题型 一.电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等 1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。 [例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。(1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。 2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。 [例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少? 3. “双杆”中两杆都做同方向上的加速运动。:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 [例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少? 4.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

2020高考物理专题十 电磁感应

专题十电磁感应 挖命题 【考情探究】 分析解读导体棒切割磁感线的计算限于导线方向与磁场方向、运动方向垂直的情况。本专题主要研究电磁感应现象的描述、感应电流的方向的判断(楞次定律、右手定则)、感应电动势的大小的计算、自感现象和涡流现象等。这部分是高考考查的重点内容,近几年多放在第一道计算题考查。在高考中电磁感应现象多

与磁场、电路、力学、能量等知识结合,综合性较高,因此在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路,要研究与实际生活、生产科技相结合的实际应用问题。命题趋势:(1)楞次定律、右手定则、左手定则的应用。(2)与图像结合考查电磁感应现象。(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用。 【真题典例】 破考点 【考点集训】 考点一电磁感应现象、楞次定律 1.(2018江苏海安高级中学阶段检测,8)(多选)如图所示,A为一固定的圆环,条形磁铁B从左侧无穷远处以初速度v0沿圆环轴线移向圆环,穿过后移到右侧无穷远处。下列说法中正确的是( )

A.若圆环A是电阻为R的线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 B.若圆环A是一超导线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 C.若圆环A是电阻为R的线圈,磁铁的中点通过环面时,圆环中电流为零 D.若圆环A是一超导线圈,磁铁的中点通过环面时,圆环中电流为零 答案AC 2.(2018江苏泰州、宜兴能力测试,3)如图所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管。下列说法正确的是( ) A.电流计中的电流先由a到b,后由b到a B.a点的电势始终低于b点的电势 C.磁铁减少的重力势能等于回路中产生的热量 D.磁铁刚离开螺线管时的加速度小于重力加速度 答案D 3.(2017江苏扬州中学月考,7)(多选)一个水平固定的金属大圆环A,通有恒定的电流,方向如图所示,现有一小金属环B自A环上方落下并穿过A环,B环在下落过程中保持水平,并与A环共轴,那么在B环下落过程中( )

电磁感应综合问题(解析版)

构建知识网络: 考情分析: 楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。 重点知识梳理: 一、感应电流 1.产生条件???? ? 闭合电路的部分导体在磁场内做切割磁感线运动 穿过闭合电路的磁通量发生变化 2.方向判断? ???? 右手定则:常用于切割类 楞次定律:常用于闭合电路磁通量变化类 3.“阻碍”的表现???? ? 阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留 阻碍原电流的变化自感现象 二、电动势大小的计算

三、电磁感应问题中安培力、电荷量、热量的计算 1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E =Blv ,I =E R ,F =BIl ,可得F =B 2l 2v /R . 2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E =ΔΦΔt ,I =E R ,q = I Δt 则q =ΔΦ/R ,若线圈匝数为n ,则q =nΔΦ/R . 3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算. 四、自感现象与涡流 自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L 。线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。线圈的横截面积越大,匝数越多,它的自感系数就越大。带有铁芯的线圈其自感系数比没有铁芯的大得多。 【名师提醒】 典型例题剖析: 考点一:楞次定律和法拉第电磁感应定律 【典型例题1】 (2016·浙江高考)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( ) A .两线圈内产生顺时针方向的感应电流 B .a 、b 线圈中感应电动势之比为9∶1 C .a 、b 线圈中感应电流之比为3∶4

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合及答案解析

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合及答案解析一、电磁感应现象的两类情况 1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求: (1)金属棒pq到达圆弧的底端时,对圆弧底端的压力; (2)金属棒pq运动到时,金属棒gh的速度大小; (3)金属棒gh产生的最大热量。 【答案】(1) (2) (3) 【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量; 解:(1)金属棒pq下滑过程中,根据机械能守恒有: 在圆弧底端有 根据牛顿第三定律,对圆弧底端的压力有 联立解得 (2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有 对于金属棒pq有 对于金属棒gh有

相关文档
相关文档 最新文档