文档视界 最新最全的文档下载
当前位置:文档视界 › 《多元统计分析》第一章 矩阵代数

《多元统计分析》第一章 矩阵代数

《多元统计分析》第一章  矩阵代数
《多元统计分析》第一章  矩阵代数

线性代数知识点总结

线性代数知识点总结 第一章 行列式 (一)要点 1、二阶、三阶行列式 2、全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义 3、行列式的性质 4、n 阶行列式ij a D =,元素ij a 的余子式和代数余子式,行列式按行(列)展开定理 5、克莱姆法则 (二)基本要求 1、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章 矩阵 (一)要点 1、矩阵的概念 n m ?矩阵n m ij a A ?=)(是一个矩阵表。当n m =时,称A 为n 阶矩阵,此时由A 的元素按原来排列的形式构成的n 阶行列式,称为矩阵A 的行列式,记为A . 注:矩阵和行列式是两个完全不同的两个概念。 2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1)矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。 如果两矩阵A 与B 相乘,有BA AB =,则称矩阵A 与B 可换。 注:矩阵乘积不一定符合交换 (2)方阵的幂:对于n 阶矩阵A 及自然数k , 规定I A =0 ,其中I 为单位阵 .

(3) 设多项式函数k k k k a a a a ++++=--λλλλ?1110)( ,A 为方阵,矩阵A 的 多项式I a A a A a A a A k k k k ++++=--1110)( ?,其中I 为单位阵。 (4)n 阶矩阵A 和B ,则B A AB =. (5)n 阶矩阵A ,则A A n λλ= 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A 可逆,则其逆矩阵是唯一的);矩阵A 的伴随矩阵记为*A , 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如n m A ?,l n B ?,将矩阵B 分块为 ) (21l b b b B =,其中j b (l j 2, ,1=)是矩阵B 的第j 列, 则 又如将n 阶矩阵P 分块为) (21n p p p P =,其中j p (n j 2, ,1=)是矩阵P 的第j 列. (3)设对角分块矩阵

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

数三线性代数必考知识点

线性代数必考知识点 1、行列式 1. 行列式共有个元素,展开后有项,可分解为行列式; 2. 代数余子式的性质: ①、和的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为; 3. 代数余子式和余子式的关系: 4. 设行列式: 将上、下翻转或左右翻转,所得行列式为,则; 将顺时针或逆时针旋转,所得行列式为,则; 将主对角线翻转后(转置),所得行列式为,则; 将主副角线翻转后,所得行列式为,则; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积; ③、上、下三角行列式():主对角元素的乘积; ④、和:副对角元素的乘积; ⑤、拉普拉斯展开式:、 ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于阶行列式,恒有:,其中为阶主子式; 7. 证明的方法:

①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值; 2、矩阵 1. 是阶可逆矩阵: (是非奇异矩阵); (是满秩矩阵) 的行(列)向量组线性无关; 齐次方程组有非零解; ,总有唯一解; 与等价; 可表示成若干个初等矩阵的乘积; 的特征值全不为0; 是正定矩阵; 的行(列)向量组是的一组基; 是中某两组基的过渡矩阵; 2. 对于阶矩阵:无条件恒成立; 3. 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均、可逆:

若,则: Ⅰ、; Ⅱ、; ②、;(主对角分块) ③、;(副对角分块) ④、;(拉普拉斯) ⑤、;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:; 等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵、,若; 2. 行最简形矩阵: ①、只能通过初等行变换获得; ②、每行首个非0元素必须为1; ③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、若,则可逆,且; ②、对矩阵做初等行变化,当变为时,就变成,即:; ③、求解线形方程组:对于个未知数个方程,如果,则可逆,且; 4. 初等矩阵和对角矩阵的概念: ①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素; ③、对调两行或两列,符号,且,例如:;

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关于副对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 ⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111

⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1. 矩阵的定义 由m n ?个数排成的m 行n 列的表1112121 22212n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L M M M L 称为m n ?矩阵.

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

线性代数知识点总结

《线性代数》复习提纲第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0 的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此 即对称矩阵组成(1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间, 只需找出(1) 2 n n +个向量线性无关,并且集合中任何一个向量都可以用这 (1) 2n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 12341231211203x x x x x x x x x x +++++?? ??=????+???? 于是 12341231,2x x x x x x x +++=++= 1210,3x x x +==

矩阵基本知识

信息工程学院主讲人谢宏

《线性代数》 行列式 向量的基本概念和运算 维数、向量加法、数乘、内积 矩阵的基本概念和运算 维数、矩阵加法、数乘、矩阵乘法 方阵、逆矩阵、正交矩阵、对称阵、相似矩阵 特征值与特征向量 线性方程组的解:解空间

《线性代数》 向量空间与线性变换 线性无关、基底、欧式空间、线性变换 二次型 多元二次函数、标准形、二次型的对角化

矩阵(Matrix ) 矩阵是数域F 上的m ×n 个数构成的数表: 称为F 上m 行、n 列的矩阵,记为A 称为A 的第i 行、第j 列元素,记为(A )ij mn m m n n a a a a a a a a a 212222111211F a ij ∈i = 1, …, m , j = 1, …, n ij ij a A =)(

continue ) 数域F 上的一切m 行、n 列的矩阵的集合,记为: 若 ,,则称矩阵A 与B 同型 数域(Field ) 若数集F 含有数1且对四则运算封闭,则称F 为数域 映射(Mapping ) 若 ,,若存在一个对应关系(或对应法则): ,有Y 中的唯一的一个元素y 与之对应,就称给出了一个从X 到Y 的一个 映射f ,记作:f :X →Y ,或y =f (x ) 映射是函数概念的推广,它与函数、算子、变换表示的是同一个概 念 特别地,当Y 为数集(实数集R 或复数集C )时,称f 为定义在集合X 上 的泛函(functional ) n m F ?n m F A ?∈n m F B ?∈φ≠X φ≠Y X x ∈?

continue ) 直积集 设A ,B 是给定的集合,称 为A 与B 的直积集,简称积集、直积 举例: ,,那么表示XOY 平面上矩形中点的集合 表示XOY 平面上所有点的集合 A × B 中的元素被称为有序对,即当时, 直积集的概念可被推广到两个以上给定的集合: {} B y A x y x ∈∈,:),(B A ?R b a A ∈=],[R d c B ∈=],[],[],[d c b a B A ?=?2 R R R =?2 1212211,),(),(y y x x y x y x ==?=y x ≠) ,(),(x y y x ≠{} n n n n A x A x A x x x x A A A ∈∈∈=???,,,:),,(22112121 ∏=n i i A 1 记为:

矩阵分析几何意义的整理

矩阵分析几何意义和透彻理解PCA的一些整理这是几篇很不错的文章集合在一起的一篇文章,有些内容来自blog,有些来自文献和教程,解决了我遇到很多疑问,感谢把它推荐给我的人。前四部分来自早期几篇blog,把空间描述的形象且易懂,适合我们这些非数学专业的人搞明白一些抽象的问题。 一、矩阵的特征值概述:矩阵特征值要讲清楚需要从线性变换入手,把一个矩阵当做一个线性变换在某一组基下的矩阵,最简单的是数乘变换,求特征值的目的就是看看一个线性变换对一些非零向量的作用是否能够相当于一个数乘变换,特征值就是这个数乘变换的变换比。这样的一些向量就是特征向量,其实我们更关心的是特征向量,希望把原先的线性空间分解成一些向量相关的子空间的直和,这样我们的研究就可以分别限定在这些子空间上来进行,这和物理中研究运动的时候将运动分解成水平方向和垂直方向的做法是一个道理。 自相关矩阵最大特征值和特征向量并没有和原来的哪个信号一一对应,而且特征分解本身的含义相当于对原来的信号做了这样的正交分解。使得各个分量之间相互不相关,也就是K—L展开,每一个特征值相当于原来各个信号导向矢量的线性组合,因此不能仅仅从某个特征矢量中直接对应原来某个信号的特征。 二、线性空间和矩阵的几个核心概念: 空间(space):空间的数学定义是一个集合,在这个集合上定义某某概念,然后满足某些性质,就可以被称为空间。 我们所生活的空间是一个三维欧几里德空间,我们所生活空间的特点: (1)有很多(实际上是无穷多个)位置点组成 (2)这些点之间存在着相对关系。 (3)可以咋空间中定义长度、角度。 (4)这个空间可以容纳运动(从一个点到一个点的移动,而不是微积分意义上的“连续”性运动) 第(4)点是空间的本质特征,(1)、(2)两点是空间的基础而非性质,第(3)点在其他空间也行并不具备,自然更不是关键的性质。只有第(4)点是空间的本质。 把三维空间的认识拓展到其他空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规律的运动(变换)。我们会发现,在某种空间中往往会存在一种相对应的变换,比如:拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间允许的运动形式而已。 例1.最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中每一个对象是一个多项式。如果我们以X0,X1,X2,…..,Xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分离ai其实就是多项式Xi-1项系数。

矩阵代数

第一章矩阵代数 §1.1特征值和特征向量 定义1.1.1 设A 是p 阶方阵,若对于一个数λ,存在一个p 维非零向量X ,使得 X X λ=A (1.1.1) 则称λ为A 的一个特征值(根),X 为A 的属于特征值λ的特征向量. 0)(=-X I A λ (1.1.2) 于是有 0||=-I A λ (1.1.3) 特征多项式 (1.1.3)式有p 个根(可能有重根),记作λλλ,,,21p .X i 为A 的属于特征值λi 的特征向量,一般取X i 为单位向量(满足1=X X 'i i ). 性质: (1)A 与A ' 有相同的特征值; (2)A 和B 分别为q p ?和p q ?矩阵,则AB 和BA 有相同的非零特征值; 特别:A 和B 为两个p p ?矩阵,则AB 和BA 有完全相同的特征值; (3)若A 为实对称矩阵,则A 的特征值全为实数,p 个特征值按从大到小依次表示为λλλ≥≥≥p 21.若λλj i ≠,则相应的特征向量 X i 和X j 必正交,0=X X ' j i . (4)若A =),,,(2211a a a diag pp ,则a a a pp ,,,2211 为A 的p 个特征值,相应的特征向量为 )0,,0,1(' 1 =e ,)0,,1,0(' 2 =e ,…,)1,,0,0(' =e p . (5)|A |=∏=p i i 1 λ A 为非退化矩阵?A 的特征值均不为零 A 为退化矩阵?A 至少有一个特征值为零 (6)A 为p 阶对称矩阵,则存在正交阵 T 及对角阵 ),,,(21λλλp diag =Λ使得

A =T T ' Λ 记)t ,,t ,t (21p =T A =T T 'Λ=?????? ????????????????????t t t 00)t ,,t ,t (''2' 121 21p p p λλλ=t t '1i i p i i ∑=λ(1.1.4) (4)式称为A 的谱分解. 例1.1.1(教材p16例1.6.5) A =???? ??????122212221 已求得特征值 121-==λλ,53=λ 与121-==λλ相应的特征向量为 )21,0,21('1-=t ,)6 1,62,61(' 2-=t 与53=λ相应的特征向量为)3 1,31,31( ' 3=t 于是A 的谱分解为 ???? ? ?????122212221=(-1)]2 1,0,21[21021-?????? ????????- +(-1)]6162,61[616261-????????????????-+5]3131,31[313131????? ?? ? ? ???? ???

矩阵代数基本知识

附录I 矩阵代数基本知识 矩阵和行列式是研究多元统计分析的重要工具,这里针对本书的需要,对有关矩阵代数的基本知识作回顾性的介绍,其中有些内容是过去教学计划中没有涉及到的。 一、 向量矩阵的定义 将n p ?个实数111212122212,,,,,,,,,,,,p p n n np a a a a a a a a a 排成如下形式的矩形数表,记为A 111212122212p p n n np a a a a a a a a a ?? ??? ?=???????? A 则称A 为n p ?阶矩阵,一般记为()ij n p a ?=A ,称ij a 为矩阵A 的元素。当 n p =时,称A 为n 阶方阵;若1p =,A 只有一列,称其为n 维列向量, 记为 1121 1n a a a ???????????? 若1n =,A 只有一行,称其为 p 维行向量,记为 () 11121,,,p a a a

当A 为n 阶方阵,称1122,,,nn a a a 为A 的对角线元素,其它元素称为非对角元素。若方阵A 的非对角元素全为0,称A 为对角阵,记为 11221122(,,,)nn nn a a diag a a a a ??????==???????? A 进一步,若11221nn a a a ==== ,称A 为n 阶单位阵,记为n I 或 =A I 。 如果将n p ?阶矩阵A 的行与列彼此交换,得到的新矩阵是p n ?的矩阵,记为 112111222212n n p p np a a a a a a a a a ????? ?'=???????? A 称其为矩阵A 的转置矩阵。 若A 是方阵,且'= A A ,则称A 为对称阵; 若方阵()ij n n A a ?=,当 对一切i j <元素0ij a =,则称 112122 12 n n nn a a a a a a ???? ??=??????A 为下三角阵;若'A 为下三角阵,则称A 为上三角阵。

附录1统计学、矩阵代数知识简介

附录2 统计学、矩阵代数知识简介 求和算子定义:对于T个观测值,x1, x2, …, x T,求和可以简化地表示为 其中称作求和算子。求和算子的运算规则如下: (1) 变量观测值倍数的和等于变量观测值和的倍数。 (2) 两个变量观测值和的总和等于它们分别求总和后再求和。 (3) T个常数求和等于该常数的T倍。 其中k是常数。利用求和算子定义,样本平均数可表示为 (4) 变量观测值对于其平均数的离差和等于零。 利用规则(2),(3)和样本平均数定义即可推导出上述结果。 (5) 随机变量的方差等于其平方的均值减去其均值的平方 证明:

(6) 两个随机变量的协方差等于它们乘积的均值减去它们均值的乘积。 与规则(5)的证明类似,即可证明上述结果。定义双重求和为 (7) 两个变量和的双重求和等于它们各自双重求和的和。 (8) 两个不同单下标变量积的双重求和等于它们各自求和的乘积。 2.2.1 随机变量的数学期望 随机变量定义:按一定的概率取不同实数值的变量称为随机变量,用x, y等表示。 若随机变量x可能取的值为有限个或可列个,则称x为离散型随机变量。离散型随机变量的一切可能取值及其取值的相应概率称作离散型随机变量的概率分布。 若随机变量x可能取的值是整个数轴,或数轴上的某个区间,则称x为连续型随机变量。连续型随机变量的概率分布是通过随机变量在一切可能区域内取值的概率定义的。最常用和最简便的形式是通过概率密度函数表示。

对于随机变量x,若存在非负可积函数f (x),(- ∞ < x < ∞),使对任意实数a, b, (a < b)有 则称x为连续型随机变量。f(x)为x的概率密度函数(简称概率密度或密度)。由上式知f(x)在[a, b]区间上的积分等于随机变量x在[a, b]区间取值的概率。 对于离散型随机变量x,若有概率分布 P{x = x i} = p, (i= 1, 2, …, ),则称 为x的数学期望,简称为期望或均值。记作E(x)。 对于连续型随机变量x,若密度函数为f (x),则称 为x的数学期望。记作E(x)。 期望属于位置特征。用来描述随机变量取值的集中位置。体现了随机变量取值的平均大小。期望就是随机变量取一切可能值的加权平均。其中的权数就是概率值。 数学期望的性质如下: (1) 常量的期望就是这个常量本身。 E(k) = k (2) 常量与随机变量和的期望等于这个随机变量的期望与这个常量的和。 E(x + k) = E(x) + k (3) 常量与随机变量乘积的期望等于这个常量与随机变量期望的乘积。 E(k x) = k E(x) (4) 随机变量的线性函数的期望等于这个随机变量期望的同一线性函数。 E(k x + k) = k E(x) + k (5) 两个随机变量和(或差)的期望等于这两个随机变量期望的和(或差)。 E(x± y) = E(x) ± E(y) (6) 两个相互独立随机变量乘积的期望等于这两个随机变量期望的乘积。 E(x y) = E(x) E(y) 2.2.2 随机变量的方差、标准差

几何与代数各章知识点概述

几代复习指导 目录 第一部分行列式 第二部分矩阵的运算 第三部分矩阵的初等变换和矩阵的秩 第四部分向量组的线性相关性和向量组的秩第五部分线性方程组 第六部分相似矩阵和矩阵的特征值、特征向量第七部分实对称矩阵和二次型 第八部分空间解析几何

第一部分 行列式 一.定义 1.定义 设() ij n n A a ?=,则121212(,)12,(1)n n n i i i i i ni i i i A a a a τ= -∑ 是!n 项代数和;不同行,不同列;正、负号。 【例1】 32241342a a a a 是不是4阶行列式中展开式中的项,正、负号是什么? 不是 【例2】 512312 123122x x x x x x 中34,x x 的系数。345,10x x - 2.注:(1). 对角线法则一般地不再成立。举例。 (2). 记住上、下三角阵的行列式。 二.性质 1. 性质 (1) 行列式的基本性质; (2) 按行(列)展开; (3) 乘法定理。 2. 需记住的结果: (1) Vandermonde 行列式; (2) 分块上、下三角阵的行列式。 3. 例: 【例3】 已 知 () 33 1 2 A α α α ?=,()33122323232B αααααα?=+-+,2A =,求B 。 1232312321327277714B A αααααααααααα=+-+=+-=-== 【例4】已知120200561,350350461A B ???? ? ?== ? ? ? ????? 。求31 A B -。 4. 注:

(1) 矩阵的加法、数乘之后的行列式; (2) 容易出现的错误: 11 03 27253721 2--r r ; * 0* 07/2,7253722 112r r r r --; (3) 分块矩阵的行列式. 三.计算 1. 典型方法: (1) 化成低阶行列式; (2) 化成三角形行列式。 2. 注:很少直接用定义计算;应先化简,后计算。 3. 例 【例5】 1314 1516 ; 【例6】 201331 21023123 1 4 -; 【例7】 1 23 4 11 1 1111111111 1 1 1λλλλ++++,1234,,,λλλλ均不为零; 【例8】 11 1 222 a a n n n a +++ ; 【例9】 1231122 11132345122 3 4 1 n n n n n n n n n n ------ ;

相关文档
相关文档 最新文档