文档视界 最新最全的文档下载
当前位置:文档视界 › 通信原理实验二 数字调制

通信原理实验二 数字调制

通信原理实验二 数字调制
通信原理实验二 数字调制

实验二 数字调制

20111601310044 陈增贤

一、 实验目的

1、掌握绝对码、相对码概念及它们之间的变换关系。

2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。

3、掌握相对码波形与2PSK 信号波形之间的关系、绝对码波形与2DPSK 信号波形之间的关系。 二、实验内容

1、用示波器观察绝对码波形、相对码波形。

2、用示波器观察2ASK 、2FSK 、2PSK 、2DPSK 信号波形。

3、用频谱仪观察数字基带信号频谱及2ASK 、2FSK 、2DPSK 信号的频谱。 三、基本原理

本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ 码)和位同步信号BS (已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK (NRZ 码)变为相对码BK 、用键控法产生2ASK 、2FSK 、2DPSK 信号。调制模块内部只用+5V 电压。

数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。

晶振

放大器

÷2

(A)

滤波器

2PSK 调制

射随器

CAR

÷2(B)滤波器

2FSK 调制

2ASK 调制

码变换

BK

2ASK

2FSK

NRZ

BS

AK

2DPSK

CAR

CAR/2

图2-1 数字调制方框图

四、实验步骤

本实验使用数字信源单元及数字调制单元。

1、熟悉数字调制单元的工作原理。接好电源线,打开实验箱电源开关,用数字信源单元的FS 信号作为示波器的外同步信号。

2、示波器CH1接信源单元的(NRZ-OUT)AK ,CH2接数字调制单元的BK ,信源单元的K 1、

K2、K3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。

3. 示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。

4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。

五、分析与总结

1、绝对码与相对码变化规律:

(1)绝对码至相对码:“1”变“0”不变,即绝对码的“1”码时相对码发生变化,绝对码的“0”码时相对码不发生变化,这时为信号差分码。

(2)相对码至绝对码:相对码的当前码元与前一码元同时对应的当前绝对码为“0”码,相异时对应的当前绝对码为“1”码。

2、2DPSK信号的相位变化与信息代码的关系:

(1)2DPSK信号的相位变化与绝对码的关系:“1变0不变”,即“1”码对应的2DPSK信号的初相相对于前一码内2DPSK信号的末相变化180度,”0“码对应的2DPSK信号的初相与前一码元内2DPSK信号的末相相同。

(2)2DPSK信号的相位变化与相对码的关系:“异变同不变”,即当前码元与前一码元相异则当前码元内2DPSK信号的初相相对于前一码元内2DPSK信号的末相变化180度,相同时则

码元内2DPSK信号初相相对于前一码元内2DPSK信号的末相无变化。

六、实验报告要求

1、设绝对码为全1、全0或1001 1010,求相对码。

(1)绝对码:全1

相对码:10101

(2)绝对码:全0

相对码:000000

(3)绝对码:1001 1010

相对码:0001 0011

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

常见的调制方式

1. 常见的调制方式 调制方式用途 常规双边带调幅AM 广播 抑制载波双边带调幅DSB 立体声广播 线性调制 单边带调幅SSB 载波通信、无线电台、数传连 残留边带调幅VSB 电视广播、数传、传真 续 频率调制FM 微波中继、卫星通信、广播载非线性调制 相位调制PM 中间调制方式 波 幅度键控ASK 数据传输 调 频率键控FSK 数据传输 制 数字调制相位键控PSK 、DPSK 、QPSK 等数据传输、数字微波、空间 通信 其他高效数字调制QAM 、MSK 等数字微波、空间通信 脉幅调制PAM 中间调制方式、遥测脉冲模拟调制脉宽调制PDM (PWM )中间调制方式 脉脉位调制PPM 遥测、光纤传输 冲脉码调制PCM 市话、卫星、空间通信 调增量调制DM 军用、民用电话 制脉冲数字调制差分脉码调制DPCM 电视电话、图像编码 其他语言编码方式ADPCM 、APC 、中低数字电话 LPC 2. 模拟调制系统

c 2.1 幅度调制(线性调制)的原理 幅度调制: 用载波信号去控制高频载波的振幅, 使其按照调制信号的规律而变化的过程。 调制信号 v t V cos t 载波信号 v c t V c cos c t 调幅波( AM )信号 S AM t V c K a v t cos c t V c 1 K cos t cos c t V c cos c t 1 KV 2 cos c t 1 KV 2 cos c t 比例系数 -- K a ,调幅指数 -- K 频域表达式 S AM c K a V V c 1 M M 2 2.2 抑制载波双边带( DSB )调制 DSB 信号 S DSB t v t V c cos c t 1 V V c 2 cos c t 1 KV 2 V c cos c 频域表达式 1 S DSB M 2 c M c 2.3 单边带( SSB )调制 SSB 信号,上边带 v SSB 上 t 1 V V c 2 cos c t 频域表达式 1 S SSB 上 M c 2 1 下边带 v SSB 下 t V V c cos c t 2 频域表达式 1 S SSB 下 M c 2 SSB 信 号 上 下 边 带 合 起 来 c c c c

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

数通实验报告二.数字调制

中南大学 通信原理实验报告书 题目:实验二 专业: 姓名: 学号: 时间:2014-12-13

通信原理实验报告(实验二) 实验名称:数字调制 一.实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。 3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。 1、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。 二.实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。 三.实验步骤 本实验使用数字信源单元及数字调制单元。 1、熟悉数字调制单元的工作原理。接通电源,打开实验箱电源开关。将数字调制单元单刀双掷开关K7置于左方N(NRZ)端。 2、用数字信源单元的FS信号作为示波器的外同步信号,示波器CH1接信源单元的(NRZ-OUT)AK(即调制器的输入),CH2接数字调制单元的BK,信源单元的K1、K2、K3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。 3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。注意:2DPSK信号的幅度比较小,要调节示波器的幅度旋钮,而且信号本身幅度可能不一致,但这并不影响信息的正确传输。 4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。 5、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时不进行此项观察)。 四.实验过程及结果: 按实验步骤连接,得到全零码的AK、BK波形如下:

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

基于MATLAB的模拟信号频率调制(FM)与解调分析

课程设计任务书 学生姓名:杨刚专业班级:电信1302 指导教师:工作单位:武汉理工大学 题目:信号分析处理课程设计 -基于MATLAB的模拟信号频率调制(FM)与解调分析 初始条件: 1.Matlab6.5以上版本软件; 2.先修课程:通信原理等; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、利用MATLAB中的simulink工具箱中的模块进行模拟频率(FM)调制与解调,观 察波形变化 2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果(含计算结 果和图表等),并对实验结果进行分析和总结; 3、课程设计说明书按学校统一规范来撰写,具体包括: ⑴目录;⑵理论分析; ⑶程序设计;⑷程序运行结果及图表分析和总结; ⑸课程设计的心得体会(至少800字,必须手写。); ⑹参考文献(不少于5篇)。 时间安排: 周一、周二查阅资料,了解设计内容; 周三、周四程序设计,上机调试程序; 周五、整理实验结果,撰写课程设计说明书。 指导教师签名: 2013 年 7月 2 日 系主任(或责任教师)签名: 2013年 7月 2日

目录 1 Simulink简介 (1) 1.1 Matlab简介······················································错误!未定义书签。 1.2 Simulink介绍 ···················································错误!未定义书签。 2 原理分析 ·····························································错误!未定义书签。 2.1通信系统 ·························································错误!未定义书签。 2.1.1通信系统的一般模型 ···································错误!未定义书签。 2.1.2 模拟通信系统 (3) 2.2 FM调制与解调原理···········································错误!未定义书签。 3 基于Matlab方案设计 (6) 3.1 Matlab代码 (6) 3.2 Matlab仿真 (8) 4 基于Simulink方案设计 (12) 4.1 使用Simulink建模和仿真的过程 (12) 4.1.1 Simulink模块库简介 (12) 4.1.2 调制解调模块库简介 (13) 4.2 FM调制与解调电路及仿真 (14) 4.3 仿真结果分析 (17) 5 心得体会 ·····························································错误!未定义书签。 6 参考文献 (20) 本科生课程设计评定表

通信原理第三章(模拟调制原理)习题及其答案

第三章(模拟调制原理)习题及其答案【题3-1】已知线性调制信号表示式如下: (1)cos cos c t w t Ω(2)(10.5sin)cos c t w t +Ω 式中, 6 c w=Ω。试分别画出它们的波形图和频谱图。 【答案3-1】 (1)如图所示,分别是cos cos c t w t Ω的波形图和频谱图 设 () M S w是cos cos c t w t Ω的傅立叶变换,有 ()[()() 2 ()()] [(7)(5)(5)(7)] 2 M c c c c S w w w w w w w w w w w w w π δδ δδ π δδδδ =+Ω+++Ω- +-Ω++-Ω- =+Ω+-Ω++Ω+-Ω (2)如图所示分别是(10.5sin)cos c t w t +Ω的波形图和频谱图:

设 () M S w是(10.5sin)cos c t w t +Ω的傅立叶变换,有 ()[()()] [()() 2 ()()] [(6)(6)] [(7)(5) 2 (7)(5)] M c c c c c c S w w w w w j w w w w w w w w w w j w w w w πδδ π δδ δδ πδδ π δδ δδ =++- ++Ω+++Ω- --Ω+--Ω- =+Ω+-Ω ++Ω+-Ω --Ω-+Ω 【题3-2】根据下图所示的调制信号波形,试画出DSB及AM信号的波形图,并比较它们分别通过包络检波器后的波形差别。 t m(t) 【答案3-2】 AM波形如下:

通过低通滤波器后,AM 解调波形如下: DSB 波形如下: 通过低通滤波器后,DSB 解调波形如下: 由图形可知,DSB 采用包络检波法时产生了失真。 【题3-3】已知调制信号()cos(2000)cos(4000)m t t t ππ=+载波为 4cos10t π,进行单边带调制,试确定单边带信号的表达式,并画出频谱图。 【答案3-3】 可写出上边带的时域表示式

实验二 数字调制

实验二数字调制 一、实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。 3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。 1、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。 三、基本原理 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。 图2-1 数字调制方框图 本单元有以下测试点及输入输出点: ? CAR 2DPSK信号载波测试点 ? BK 相对码测试点 ? 2DPSK 2DPSK信号测试点/输出点,V P-P>0.5V ? 2FSK 2FSK信号测试点/输出点,V P-P>0.5V ? 2ASK 2ASK信号测试点,V P-P>0.5V 用2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对应关系如下: ?÷2(A)U8:双D触发器74LS74 ?÷2(B)U9:双D触发器74LS74

?滤波器A V6:三极管9013,调谐回路 ?滤波器B V1:三极管9013,调谐回路 ?码变换U18:双D触发器74LS74;U19:异或门74LS86 ? 2ASK调制U22:三路二选一模拟开关4053 ? 2FSK调制U22:三路二选一模拟开关4053 ? 2PSK调制U21:八选一模拟开关4051 ?放大器V5:三极管9013 ?射随器V3:三极管9013 将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。 下面重点介绍2PSK、2DPSK。2PSK、2DPSK波形与信息代码的关系如图2-3所示。 图2-3 2PSK、2DPSK波形 图中假设码元宽度等于载波周期的1.5倍。2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180?,相同时2PSK信号相位不变,可简称为“异变同不变”。2DPSK信号的相位与信息代码的关系是:码元为“1”时,2DPSK信号的相位变化180?。码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。 应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。实际工程中,2PSK或2DPSK 信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。但不管是那种关系,上述结论总是成立的。 本单元用码变换——2PSK调制方法产生2DPSK信号,原理框图及波形图如图2-4所示。相对于绝对码AK、2PSK调制器的输出就是2DPSK信号,相对于相对码、2PSK调制器的输出是2PSK信号。图中设码元宽度等于载波周期,已调信号的相位变化与AK、BK的关系当然也是符合上述规律的,即对于AK来说是“1变0不变”关系,对于BK来说是“异变同不变”关系,由AK到BK的变换也符合“1变0不变”规律。 图2-4中调制后的信号波形也可能具有相反的相位,BK也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。 2DPSK通信系统可以克服上述2PSK系统的相位模糊现象,故实际通信中采用2DPSK而不用2PSK(多进制下亦如此,采用多进制差分相位调制MDPSK),此问题将在数字解调实验中再详细介绍。

数字调制概述

3.4.1数字调制概述 1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。 1.数字调制概述 数字信号的载波调制是信道编码的一部分,之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。由于传输信道的频带资源总是有限的,因此在充分得利用现有资源的前提下,提高传输效率就是通信系统所追求的最重要指标之一。 模拟通信很难控制传输效率,最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。由于数字信号只有―0‖和―1‖两种状态,所以数字调制完全可以理解为像报务员用开关键控制载波的过程,因此数字信号的调制方式一般均为较简单的键控方式。 常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。 2.映射 信息与表示、承载它的信号之间存在着对应关系,这种关系称为―映射‖。接收端正是根据事先约定的映射关系从接收信号中提取发射端发送的信息的。信息与信号间的映射方式可以有很多种,不同的通信技术就在于它们所采用的映射方式不同。实际上,数字调制的主要目的在于控制传输效率,不同的数字调制技术正是由其映射方式区分的,其性能也是由映射方式决定的。 一个数字调制过程实际上是由两个独立的步骤实现的:映射和调制,这一点与模拟调制不同。映射将多个二元比特转换为一个多元符号,这种多元符号可以是实数信号(在ASK调制中),也可以是二维的复信号(在PSK和QAM调制中)。例如在QPSK调制的映射中,每两比特被转换为一个四进制的符号,对应着调制信号的4种载波。多元符号的元数就等于调制星座的容量。在这种多到一的转换过程中,实现了频带压缩。 3.4.2 调制方式 数字调制就是将数字符号变成适合于信道传输的波形。所用载波一般是余弦信号,调制信号为数字基带信号。利用基带信号去控制载波的某个参数,就完成了调制。 调制的方法主要是通过改变余弦波的幅度、相位或频率来传送信息。其基本原理是把数据信号寄生在载波的上述三个参数中的一个上,即用数据信号来进行幅度调制、频率调制或相位

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

数字调制技术

数字调制技术 一般情况下,信道不能直接传输由信息源产生的原始信号,信息源产生的信号需要变换成适合信号,才能在信道中传输。将信息源产生的信号变换成适合于信道传输的信号的过程称为调制。在调制电路中,调制信号是数字信号,因此这种调制称为数字调制。数字调制是现代通信的重要方法,它与模拟调制相比有许多优点:数字调制具有更好的抗干扰性能、更强的抗信道损耗及更高的安全性。在数字调制中,调制信号可以表示为符号或脉冲的时间序列,其中每个符号可以有m种有限状态,而每个符号又可采用n比特来表示。主要的数字调制方式包括幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、多电平正交调幅(multi level quadrature amplitude modulation,mQAM)、多相相移键控(multiphase shift keying,mPSK),也包括近期发展起来的网格编码调制(trellis coded modulation,TCM)、残留边带(vestigial sideband,VSB)调制、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制等。 1.幅移键控 幅移键控就是用数字信号控制高频振荡的幅度,可以通过乘法器和开关电路来实现。幅移键控载波在数字信号1或0的控制下通或断。在信号为1的状态下,载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么,在接收端就可以根据载波的有无还原出数字信号1和0。移动通信要求调制方式抗干扰能力强、误码性能好、频谱利用率高。二进制幅移键控的抗干扰能力和抗衰落能力差,误码率高于其他调制方式,因此一般不在移动通信中使用。 2. 频移键控 频移键控或称数字频率控制,是数字通信中较早使用的一种调制方式。频移键控广泛应用于低速数据传输设备中。它的调制方法简单、易于实现,解调不需要回复本地载波,可以异步传输,抗噪声和抗衰落能力强。因此,频移键控成为在模拟电话网上传输数据的低速、低成本异步调制解调器的一种主要调制方式。频移键控是用载波的频率来传送数字消息的,即用所传送的数字消息控制载波的

PSK调制解调实验报告范文

PSK调制解调实验报告范文 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一)PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关 A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关 B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

模拟调制和数字调制的区别

1、模拟调制与数字调制的区别,不同点和相同点?168 相同点:调制原理相同,调制目的相同,未调载波(正弦波相同); 不同点:调制信号不同(前者为数字基带信号s(t);后者为模拟基 带信号m(t)),已调载波的参量取值不同(前者离散取值,后者连续 取值). 2、AM 、PSB、SSB、DSB带宽大小调试 AM:优点是接收设备简单;缺点是功率利用率低,抗干扰能力差。主 要用在中波和短波调幅广播。 DSB调制:优点是功率利用率高,且带宽与AM相同,但设备较复杂。 应用较少,一般用于点对点专用通信。 SSB调制:优点是功率利用率和频带利用率都较高,抗干扰能力和抗 选择性衰落能力均优于AM,而带宽只有AM的一半;缺点是发送和接收 设备都复杂。SSB常用于频分多路复用系统中。 VSB调制:抗噪声性能和频带利用率与SSB相当。在电视广播、数传等 系统中得到了广泛应用。 FM: FM的抗干扰能力强,广泛应用于长距离高质量的通信系统中。 缺点是频带利用率低,存在门限效应。 3、什么是线性、非线性调制? 在波形上,已调信号的幅度随基带信号的规律而正比地变化;在频谱 结构上,它的频谱完全是基带信号频谱在频域内的简单搬移(精确到 常数因子)。由于这种搬移是线性的,因此,幅度调制通常又 称为线性调制。

角度调制:频率调制和相位调制的总称。已调信号频谱不再是原调制信号频谱的线性搬移,而是频谱的非线性变换,会产生与频谱搬移不同的新的频率成分,故又称为非线性调制。 4、什么是基带传输?114频带传输?误码率大小? 基带传输又叫数字传输,是指把要传输的数据转换为数字信号,使用固定的频率在信道上传输。基带传输是由发送滤波器、信道、接收滤波器和抽样判决其组成。 频带传输又叫模拟传输,是指信号在电话线等这样的普通线路上以正弦波形式传输的方式。 误码率是衡量一个数字通信系统性能的重要指标,其取决于解调器输入信噪比,表达方式取决于调制方式。 5、几种常用的传输码型 原则不含直流,且低频分量尽量少; 应含有丰富的定时信息,以便于从接收码流中提取定时信号; 功率谱主瓣宽度窄,以节省传输频带; 不受信息源统计特性的影响,即能适应于信息源的变化; 具有内在的检错能力,即码型应具有一定规律性,以便利用这一规律性进行宏观监测。 编译码简单,以降低通信延时和成本。 AMI码:传号交替反转码 HDB3码:3阶高密度双极性码 双相码:又称曼彻斯特(Manchester)码差分双相码 密勒码:又称延迟调制码 CMI码:CMI码是传号反转码的简称。

实验九 QPSK调制与解调实验报告

实验九QPSK/OQPSK 调制与解调实验 一、实验目的 1、了解用CPLD 进行电路设计的基本方法。 2、掌握QPSK 调制与解调的原理。 3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。 二、实验内容 1、观察QPSK 调制的各种波形。 2、观察QPSK 解调的各种波形。 三、实验器材 1、信号源模块 一块 2、⑤号模块 一块 3、20M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)QPSK 调制解调原理 1、QPSK 调制 QPSK 信号的产生方法可分为调相法和相位选择法。 用调相法产生QPSK 信号的组成方框图如图12-1(a )所示。图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。设两个序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b )中虚线矢量。将两路输出叠加,即得如图12-1(b )中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。 (a ) a(0)b(0) b(1) a(1) (b ) 图12-1 QPSK 调制 /并变换。串/并变换器将输入的二进制序列分为两个并行的双极性序列110010*********和

111101*********。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。 2、QPSK 解调 图12-2 QPSK 相干解调器 由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图12-2所示。图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。 (二)OQPSK 调制解调原理 OQPSK 又叫偏移四相相移键控,它是基于QPSK 的改进型,为了克服QPSK 中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。若将QPSK 中并行的I ,Q 两路码元错开时间(如半个码元),称这类QPSK 为偏移QPSK 或OQPSK 。通过I ,Q 路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。 下面通过一个具体的例子说明某个带宽波形序列的I 路,Q 路波形,以及经载波调制以后相位变化情况。 若给定基带信号序列为1 -1 -1 1 1 1 1 -1 -1 1 1 -1 对应的QPSK 与OQPSK 发送波形如图12-3所示。 1-1-11111-1-111-1111-11-111-11-1-111-11-1 基基基基I 基基Q P S K ,O Q P S K Q 基基 Q P S K Q 基基O Q P S K -1 图12-3 QPSK,OQPSK 发送信号波形 图12-3中,I 信道为U (t )的奇数数据单元,Q 信道为U (t )的偶数数据单元,而OQPSK 的Q 信道与其I 信道错开(延时)半个码元。 QPSK ,OQPSK 载波相位变化公式为 {}()33arctan ,,,()44 44j i j i Q t I t ππ?ππ? ????? =--???? ?????? ?@ QPSK 数据码元对应的相位变化如图12-4所示,OQPSK 数据码元对应相位变化如图 12-5所示

数字调制解调实验

武汉大学教学实验报告 电子信息学院 ** 专业 2016 年 ** 月 ** 日 实验名称数字调制解调实验指导教师 *** 姓名 *** 年级 14级学号 20143012***** 成绩 图1 FSK调制电路原理框图

代表信号载波的恒定偏移。 FSK 的信号频谱如图2 所示。 图2 FSK 的信号频谱 公式给出:,其中B 为数字基带信号的带宽。假设信号带宽限制在主 FSK 的传输带宽变为:。 图3 FSK锁相环解调器原理示意图 锁相解调的工作原理是十分简单的,只要在设计锁相环时, 此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。FSK锁相环解调器原理图如图3所示。FSK 。其中,压控振荡器的频率是由5C2.5R3.5R4.5U3等元件参数确定,中心频率设计在 电位器进行微调。当输入信号为32KHz时,环路锁定,经形成电路后,输出高电平;当输入信号为 失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

图4 PSK、DPSK调制电路原理框图 ,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成 解调器电路采用科斯塔斯环(Constas环)解调,其原理如图5所示。 图5 解调器原理方框图 输入电路由射随器和比较器组成,射随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。比较电路是将正弦信号转换为脉冲信号,目的是便于控制科斯塔斯特环中的乘法器。由于跟随器电源电压已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。 )科斯塔斯环提取载波原理(原理中标号参见原理图) 采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6所示。 图6 科斯塔斯特环电路方框原理如图 解调输入电路的输出信号被加到模拟门5U6C和5U6D构成的乘法器,前者为正交载波乘法器,相当于图 ,后者为同相载波乘法器,相当于框图中乘法器1。5U7A,5U7B周边电路为低通滤波器。 的作用是将低通滤波后的信号整形,变成方波信号。PSK解调信号从5U8的7脚经5U11B.C ,若5U10A两输入信号分别为A和B,因(A、B同为 5E2用来稳压,以便提高VCO的频率稳定度。VCO信号从7脚经5C21输出至移相90o90o移

各种数字调制方法对比

调制是所有无线通信的基础,调制是一个将数据传送到无线电载波上用于发射的过程。如今的大多数无线传输都是数字过程,并且可用的频谱有限,因此调制方式变得前所未有地重要。 如今的调制的主要目的是将尽可能多的数据压缩到最少的频谱中。此目标被称为频谱效率,量度数据在分配的带宽中传输的速度。此度量的单位是比特每秒每赫兹(b/s/Hz)。现在已现出现了多种用来实现和提高频谱效率的技术。 幅移键控(ASK)和频移键控(FSK) 调制正弦无线电载波有三种基本方法:更改振幅、频率或相位。比较先进的方法则通过整合两个或者更多这些方法的变体来提高频谱效率。如今,这些基本的调制方式仍在数字信号领域中使用。 图1显示了二进制零的基本串行数字信号和用于发射的信号以及经过调制后的相应AM和FM信号。有两种AM信号:开关调制(OOK)和幅移键控(ASK)。在图1a中 ,载波振幅在两个振幅级之间变化,从而产生ASK调制。在图1b中,二进制信号关断和导通载波,从而产生OOK调制。 图1:三种基本的数字调制方式仍在低数据速率短距离无线应用中相当流行: 幅移键控(a)、开关键控(b)和频移键控(c)。在载波零交叉点发生二进制状态变化时,这些波形是相 干的。 AM在与调制信号的最高频率含量相等的载波频率之上和之下产生边带。所需的带宽是最高频率含量的两倍,包括二进制脉冲调制信号的谐波。 频移键控(FSK)使载波在两个不同的频率(称为标记频率和空间频率,即fm和fs)之间变换(图1c)。FM会在载波频率之上和之下产生多个边带频率。产生的带宽是最高调制频率(包含谐波和调制指数)的函数,即: m = Δf(T) Δf是标记频率与空间频率之间的频率偏移,或者: Δf = fs –fm T是数据的时间间隔或者数据速率的倒数(1/bit/s)。

2.数字调制 - 通信原理实验报告

计算机与信息工程学院验证性实验报告 一、实验目的 1、掌握绝对码(AK)、相对码(BK)的概念以及它们之间的关系。 2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。 3、掌握BK 与2PSK 信号波形之间的关系、AK 与2DPSK 信号波形之间的关系。 4、了解2ASK 、2FSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。 二、实验原理及方法 数字调制分为二进制调制和多进制调制,二进制调制是多进制调制的基础。在HUST TX 系列实验设备中只包含二进制数字调制,多进制调制实验由仿真软件实现,需要仿真软件的读者可以向作者索取,当然也可以使用有关商业软件或自己开发。 本实验使用数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号和位定时信号。调制模块将输入的绝对码AK (NRZ 码)变为相对码BK 、用键控法产生2ASK 、2FSK 、2DPSK 信号。调制模块内部使用+5V 电源。 数字调制模块的原理方框图如图2.1所示,电原理图如图2.2所示。图中CLK-IN 接信源模块晶振的输出信号CLK ,NRZ-IN(AK)接信源模块的输出信号NRZ-OUT (AK ),BS-IN 接信源模块的输出位定时信号BS-OUT ,它们已在印刷电路板上连通。 图2.1 数字调制方框图 数字调制模块上有以下信号测试点: CAR 2DPSK 和2ASK 的载波信号测试点

? BK 相对码测试点 ? 2DPSK 2DPSK信号测试点,V P-P>0.5V ? 2FSK 2FSK信号测试点,V P-P>0.5V ? 2ASK 2ASK信号测试点,V P-P>0.5V 图2.2 数字调制模块电原理图 图2.1中各单元与图2.2中元器件的对应关系如下: ?÷2(A)U18B:双D触发器74LS74 ?÷2(B)U9B:双D触发器74HC74 ?滤波器A V1:三极管9013,电感L1,电容C7 ?滤波器B V6:三极管9013,电感L2,电容C2 ?码变换器U18A:双D触发器74LS74;U19A:异或门74LS86 ? 2ASK调制器U22:三路二选一模拟开关4053 ? 2FSK调制器U22:三路二选一模拟开关4053 ? 2PSK调制器U21:八选一模拟开关4051 ?放大器V5:三极管9013 ?射随器V3:三极管9013

相关文档