文档视界 最新最全的文档下载
当前位置:文档视界 › 数字图像处理 图像匹配

数字图像处理 图像匹配

数字图像处理 图像匹配
数字图像处理 图像匹配

摘要

图像匹配是图像处理技术中的重要研究内容。文本介绍了图像匹配技术的要素,对匹配算法的分类以及匹配性能评价指标,并且将各方法进行了分析比较,指出其各自的优势与不足。同时,进一步探讨了图像匹配算法中有待研究的方向。图像匹配是将不同时间、不同传感器、不同视角及不同拍摄条件下获取的两幅或多幅图像进行匹配融合。图像匹配是多种图像处理及应用如物体辨识、变化检测、三维建模等的基础。图像匹配的方法有很多种,其中基于图像特征的图像匹配是匹配中最常见的方法。基于特征的图像匹配中,特征主要针对点特征。基于点特征的图像匹配,特征点的提取是图像匹配的关键步骤,从提取效率、算子稳定性、定位准确性、抗噪性、计算效率上对提取算子进行分析比对,用测试图像对各个提取算子进行实验分析,得出实验结论。通过特征点匹配算法需满足的三个原则对基于奇异值分解的角点匹配法进行了分析,得出了实验结论。

关键词:图像匹配;传感器;特征;过特征点匹配

目录

1.设计的要求与目的 ..................................................................................................................................... I I

1.1题目 (1)

1.2 设计要求 (1)

1.3设计目的: (1)

1.4性能、接口: (1)

2.设计原理 (2)

2.1概念解释: (2)

2.2数字图像匹配算法设计 (2)

2.2.1基于灰度的摸版匹配算法 (3)

2.2.2局部灰度特征的编码与计算 (4)

3. 设计方案 (6)

3.1设计思想 (6)

3.2设计流程 (6)

4.应用程序设计 (7)

4.1程序代码 (7)

4.1.1读取原图像过程 (7)

4.1.2取特征点 (8)

4.1.3映射函数 (8)

4.1.4图像匹配 (8)

4.1.5输出匹配后图像 (9)

4.2界面设计 (10)

5.仿真与结果分析 (10)

5.1仿真分析 (10)

5.2结果分析 (10)

结论 (12)

参考文献 (13)

1.设计的要求与目的

1.1题目

用特征匹配算法实现数字图像匹配

1.2 设计要求

所谓图像匹配,就是指图像之间的比较、得到不同图像之间的相似度。基于数字图像,编写对两副数字图像进行匹配的算法及演示程序。

基本要求: (1).进行匹配的两幅图像为JPG格式或BMP格式。(2).能够进行对两幅数字图像的匹配。(3).采用交互式程序对图像进行匹配。

提高要求:能够对数字进行简单处理,例如放大,缩小,翻转,灰度处理,图象二值化。开发环境:MATLAB 7.1 GUI:MATLAB 7.1自带的GUI界面编辑器

1.3设计目的:

通过分析题目的基本要求,我将此软件的基本功能主要分为2大模块:一个是数字图像处理模块,另一个是数字图像匹配模块。在数字图像处理模块中,用户可以对数字图像进行简单的处理,可以对图像进行放大,缩小,翻转,灰度处理。在数字图像匹配模块中,用户可以对两张图像进行匹配并显示匹配结果。

1.4性能、接口:

输入/输出形式:此软件以MATLAB7.1 GUI编辑器开发出的界面作为载体对相映的图像行相应的操作,所以输入输出形式主要是通过MATLAB7.1 GUI编辑器开发出的界面来实现的。

输入形式:输入任何一幅JPG格式或BMP格式的数字图像。

输出形式:将经过相应操作处理后的图片显示出来。

测试数据要求: 任何一幅JPG格式或BMP格式的数字图像。

2.设计原理

2.1概念解释:

①数字图像:数字图像是由被称做像素的小块区域组成的二维像素矩阵。一般把图像分成3种形式:单色图像,灰度图像和彩色图像。

②像素:表示图像颜色的最小单位

③灰度图像:灰度图是指只含亮度信息,不含色彩信息的图像,就像平时看到的黑白照片:亮度由暗到明,变化是连续的。灰度图的每个像素的亮度用一个数值来表示,通常数值范围在0—255之间,即可用一个字节来表示,0表示黑,255表示白,而其他表示灰度。

④点阵图:显示器的屏幕由可以发光的像素点组成. 并且从几何位置看, 所用这些

像素点构成一个矩形的阵列.利用计算机控制各像素点按我们指定的要求发光,就构成了我们需要的图形.这种方式构成的图形我们可称之为点阵图形.

⑤点阵图形的坐标系统:各像素点有一个坐标唯一指定了它的位置.如果点阵图形的大小是N×M, 那么它的点阵共有M行N 列, 每个像素点的位置就由它所在的行和列的位置所唯一确定. 这个行和列的位置就给出了点阵图形的坐标系统. 按照前面的顺序, 第m行, 第n列的像素点顺序数就是m+(n-1)N.反之, 顺序数为s的像素点在第s Mod N行, 第Int(s/N ) + 1列, 这里的s Mod N是s除以N后的余数, Int( s/N ) 是s/N的整数部分.需要注意的是第m行, 第n列的像素点的坐标可能不是(m; n), 而是(m-1; n-1). 这是因为有时为了在计算机中处理的方便, 像素点的行列的排序不是从1, 而是从0开始的.

我们常用的显示器的像素坐标就是如此.

2.2数字图像匹配算法设计

在此软件中我采用了两种图像匹配算法:①基于灰度的模板匹配算法②基于灰度的快速匹配算法。由于各种各样的原因如(成象条件的差异)图象预处理,引入的误差等,参与图象匹配的模板与潜在的匹配子图象间通常存在着程度不同的不一致,因此根据模

板在一幅陌生图象中检测出潜在的匹配对象并得出它在图象中的位置是一件复杂的工作。

2.2.1基于灰度的摸版匹配算法

模板匹配是指用一个较小的图像,即模板与源图像进行比较,以确定在源图像中是否存在与该模板相同或相似的区域,若该区域存在,还可确定其位置并提取该区域。 模板匹配常用的一种测度为模手术台与源图像对应区域的误差平方和。设f(x,y)为M ×N 的源图像,t(j,k)为J ×K(J ≤M,K ≤N)的模板图像,则误差平方和测度定义为: 11

200(,)[(,)(,)]J K j k D x y f x j y k t j k --===++-∑∑ (2.1)

由上式展开可得:

111111

2

20000(,)[(,)]2(,)(,)[(,)]J K J K J K j k j k j k D x y f x j y k t j k f x j y k t j k ------=====++-?+++∑∑∑∑∑∑ (2.2)

11

200(,)[(,)]J K j k DS x y f x j y k --===++∑∑ (2.3)

11

00(,)2[(,)(,)]J K j k DST x y t j k f x j y k --===?++∑∑ (2.4)

11

200(,)[(,)]J K j k DT x y t j k --===∑∑ (2.5)

DS (x ,y )称为源图像中与模板对应区域的能量,它与像素位置(x ,y )有关,但随像素位置(x ,y )的变化,DS (x ,y )变化缓慢。DST (x ,y )模板与源图像对应区域的互相关,它随像素位置(x ,y )的变化而变化,当模板t(j ,k)和源图像中对应区域相匹配时取最大值。DT (x ,y )称为模板的能量,它与图像像素位置(x ,y )无关,只用一次计算便可。显然,计算误差平方和测度可以减少计算量。

基于上述分析,若设DS (x ,y )也为常数,则用DST (x ,y )便可进行图像匹配,当DST (x ,y )取最大值时,便可认为模板与图像是匹配的。但假设DS (x ,y )为常数会产生误差,严重时将无法下确匹配,因此可用归一化互相关作为误差平方和测度,其定义为:

11

(,)(,)

(,)J K t j k f x j y k R x y --?++=∑∑ (2.6) 下图给出了模板匹配的示意图,其中假设源图像f(x,y)和模板图像t(k,l)的原点都在左上角。对任何一个f(x,y)中的(x,y),根据上式都可以算得一个R(x,y).当x 和y 变化时,t(j,k)在源图像区域中移动并得出R(x,y)所有值。R(x,y)的最大值指出了与t(j,k)匹配的最佳位置,若从该位置开始在源图像中取出与模板大小相同的一个区域,便可得到匹配图像。

2-1匹配图像

⑵基于灰度的快速匹配算法

2.2.2局部灰度特征的编码与计算

首先将整幅图像划分为k ×k 尺寸且互不重叠的方块,k 可根据问题任意选择,称该方块为R-块.如果图像的边长不是k 的整数倍,则将最底部与最右边剩余的几行、几列裁剪掉(下文将说明这并不影响最终的匹配结果).对边长为H 的图像,共可得到 H 2/k 2

个R-块.对于R-块R i ,S(R i )表示R i 所包含像素的灰度值之和.

定义1. R-块(如图2-2中的R 5所示)与其周围8个相邻的R-块(如图2中的

R 1,R 2,R 3,R 4,R 6,R 7,R 8,R 9所示)组成R-块的邻域.将R-块的邻域分为4个部分,分别为

D 1,D

2

,D

3

,D

4

(如图2-2所示),称为R-块的D-邻域.R-块R

5

分别属于4个D-邻域,即D

1

=R

1

∪R

2

R 4∪R

5

;D

2

=R

4

∪R

5

∪R

7

∪R

8

;D

3

=R

5

∪R

6

∪R

8

∪R

9

;D

4

=R

2

∪R

3

∪R

5

∪R

6

.

对于每个D-邻域中的4个R-块,可规定一个顺序(如图2-3中所取的逆时针序).对D

j

包含的4个R-块的像素灰度值之和S(R

j1),S(R

j2

),S(R

j3

),S(R

j4

)做排序,显然共有4!=24种

可能,每种排序结果可以用5位的二进制编码来表示,记作P(D

j

)∈{00000,00001,…,10111}.

图2-2划分

2-3划分后的区域

将R-块R

i 所在的4个D-块的P(D

j

)做位串拼接,得到F(R

i

)=P(D

1

)P(D

2

)P(D

3

)P(D

4

),即

F(R

i

)=(P(D

1

)<<15)+(P(D

2

)<<10)+(P(D

3

)<<5)+P(D

4

).

其中,P(D

j )为R

i

所在的邻域D

j

的二进编码,<<为移位操作,其后面的数字表示移位位

数.

定义2. F(R

i )为R

i

块的20位二进制编码特征表示,简称R

i

块的编码.

对一幅图像,提取它所有R

i 块的编码,需要计算各个R-块的灰度值和S(R

i

)、计算各个

D-邻域的编码P(D

j )、计算各个R

i

块的编码F(R

i

)等共3步.图像最外一圈的R

i

块的编码无定

义.对于边长为H的图像,上述运算的时间复杂度为O(H2).

显然,F(R

i )表示R-块R

i

的灰度与相邻8个R-块灰度的分布(序)关系,体现了图像灰度

的相对值,因此对整体灰度值的变化具有相对的稳定性.通过对R-块尺寸k的选择,可以

改变图像处理粒度的大小,以改变抵抗不同频率噪声的能力.

3. 设计方案

3.1设计思想

定义3. 在待搜索图S上以模板T的长、宽为横向、纵向步长,从S的左上角开始按模板T的大小划分S得到的子图称为限制块,记作C i, j,其中(i,j)为限制块左上角顶点在搜索图S上的坐标.这样划分后,如果在搜索图S的右侧或底部有剩余部分,则相应地从S的最右侧开始向左,或从最底部开始向上划分出一列或一行限制块,使得全部限制块可以完全覆盖搜索图S.这样得到的图S上的限制块的数量为M2/H2。

定义4. 限制块C i,j与模板T都是尺寸为N×N的图像,各自的R-块特征集合用(N/k)阶方阵A(C i,j)与A(T)表示,称为特征编码矩阵,这里k为R-块的边长.在C i,j与T作特征比较时,即比较A(T)每一个元素与A(C i,j)中每一个元素是否相等,如果相等,则记下矩阵A(C i,j)中的行号、列号.

3.2设计流程

设计流程图如图所示。

输入/输出形式:此软件以MATLAB7.1 GUI编辑器开发出的界面作为载体对相映的图像行相应的操作,所以输入输出形式主要是通过MATLAB7.1 GUI编辑器开发出的界面来实现的。

输入形式:输入任何一幅JPG格式或BMP格式的数字图像。

设计方案图

4.应用程序设计

4.1程序代码

4.1.1读取原图像过程

clear;

clc;

reference_img=imread('D:\optical1.jpg');%提取原始图片作为基准

target_img=imread('D:\optical2.jpg');%要求进行匹配的图像

subplot(2,3,1);%显示原始图像

imshow(reference_img);

title('原始图像');

subplot(2,3,2);%显示进行匹配的图像

imshow(target_img);

title('目标图像');

4.1.2取特征点

[Ix,Iy]=size(target_img);%取出图片大小

x=[160,103,102,209];%自己选定的特征点

y=[116,246,160,299];

u=[87,35,34,141];

v=[21,151,66,204];

4.1.3映射函数

Px=polyfit(x,u,1);%映射函数求解

Py=polyfit(y,v,1);

for i=1:Ix

for j=1:Iy

m=i*Px(1,1)+Px(1,2);%映射函数

n=j*Py(1,1)+Py(1,2);

m_integer=floor(m);%对映射值进行取整

n_integer=floor(n);

m_decimal=m-m_integer;%对映射值取小数

n_decimal=n-n_integer;

4.1.4图像匹配

if(ge(m_integer,Ix)||ge(n_integer,Iy)||lt(m_integer,0)||lt(n_integer,0)||m_ integer==0||n_integer==0)%判断映射点是否满足条件

result_img(i,j)=0;

result_img3(i,j)=0;

else

result_img(i,j)=target_img(m_integer,n_integer);%没有进行插值

result_img3(i,j)=(1-m_decimal)*(n_decimal*target_img(m_integer,n_integer+1) +(1-n_decimal)*target_img(m_integer,n_integer))+m_decimal*(n_decimal*target _img(m_integer+1,n_integer+1)+(1-n_decimal)*target_img(m_integer+1,n_intege r));%双线性插值

end

if result_img(i,j)==0%把没有进行插值图像和原始图像进行组合

result_img2(i,j)=reference_img(i,j);

else

result_img2(i,j)=result_img(i,j);

end

if result_img3(i,j)==0%把插值后图像和原始图像进行组合

result_img4(i,j)=reference_img(i,j);

else

result_img4(i,j)=result_img3(i,j);

end

end

end

4.1.5输出匹配后图像

subplot(2,3,3);%显示未插值图像匹配

imshow(result_img,[]);

title('未插值图像匹配');

subplot(2,3,4);%显示未插值图像匹配组合

imshow(result_img2,[]);

title('未插值图像匹配组合')

subplot(2,3,5);%显示双线性插值后图像匹配

imshow(result_img3,[]);

title('双线性插值后图像匹配');

subplot(2,3,6);%显示双线性插值后图像匹配组合

imshow(result_img4,[]);

title('双线性插值后图像匹配组合');

4.2界面设计

本程序采用交互式来演示图像匹配过程,GUI采用MATLAB 7.1自带

subplot(2,3,1);%显示原始图像的GUI界面编辑器。主要涉及图像显示,各个功能按钮对显示的图像所进行的操作(如:放大,缩小,旋转和图像匹配),文件对话框(用来读取和保存图像)。

举例:[pname,adrname]=uigetfile('*.jpg','*.bmp')

5.仿真与结果分析

5.1仿真分析

读取了两幅图片显示在显示区域内,如图4-1所示,一幅是原始图片,一幅是目标图像。从显示区域内剪切一块区域(按下剪切按钮可进行剪切)。按下匹配算法1,或匹配算法2后,系统就会自动将模板图像在显示图像中进行匹配,如果找到了匹配地点就会用红色矩形将匹配区域给圈定下来,例如图4-1就是在显示图像中找到的匹配区域。

5.2结果分析

根据测试结果得:

匹配算法1(基于灰度的模板匹配算法)的匹配时间约为26秒左右。

匹配算法2(基于灰度的快速匹配算法)的匹配时间约为16秒左右。

结论:匹配算法1和匹配算法2的共同缺点是都绝对的依赖坐标系统,费时间较多。在抗噪音能力上,匹配算法1没有抗噪音的能力,匹配算法2在理论上有一定的抗噪音的能力,可是在此程序中没做出来。

5-1测试结果图

结论

1.这此课程设计是我第一次使用新的编程软件来编程,用MATLAB来编写程序。刚开始的时候由于不适应这种编译环境和对其语法不理解让我几度想要放弃,但是MATLAB 的数据处理能力是不容质疑的,经过几次失败后终于将程序一点一点编出来并调试通过。

2.此次课程设计是我第一次接触图形图像方面的知识,并研究图形图像领域中的一个比较热门的话题—数字图像匹配。在研究图形图像基础知识和数字图像匹配算法的过程中查阅了许多资料,也得到了老师的一些帮助,使我对图形图像方面的知识有了一定了解,对数字图像匹配算法方面掌握了大致方向。

3.我通过图像匹配特征匹配算法对目标图像进行匹配组合处理,在这个过程中我用到了MATLAB 7.1编程环境,对程序进行设计和编写;通过对原图像提取的特征点来处理目标图像。通过本次课程设计,使我了解了特征匹配技术用于图像匹配中的图像组合方面的知识。图像匹配可以在空间域中进行,基本方法是提取特征点对目标图像进行处理。当然,图像匹配还有许多方法,基于灰度的快速匹配算法就是其中之一。

4. 我通过图像匹配特征匹配算法对目标图像进行匹配组合处理,在这个过程中我用到了MATLAB 7.1编程环境,对程序进行设计和编写;通过对原图像提取的特征点来处理目标图像。通过本次课程设计,使我了解了特征匹配技术用于图像匹配中的图像组合方面的知识。图像匹配可以在空间域中进行,基本方法是提取特征点对目标图像进行处理。当然,图像匹配还有许多方法,基于灰度的快速匹配算法就是其中之一。

参考文献

[1] 姚敏. 数字图像处理[M].机械工业出版社,2006: 52-60.

[2] 陈桂明.应用MATLAB语言处理数字信号与图像处理[M]. 科学出版社.2000: 50-65.

[3] 赵荣椿.数字图像处理导论[M].西北工业大学出版社,2003: 65-72.

[4] 刘刚等. MATLAB数字图像处理[M].机械工业出版社,2010:135-150.

[5] 龚声蓉等.数字图像处理与分析[M].清华大学出版社,2006: 269.

[6] 葛哲学.精通MATLAB[M].电子工业出版社,2008: 2-8.

[7] 张圣勤. MATLAB7.0实用教程[M].机器工业出版社,2006: 90-118.

[8] 孙仲康,沈振康.数字图像处理的应用[M].国防工业出版社,2008:132-158.

[9] 龚声蓉等.数字图像处理与分析(第二版)[M].清华大学出版社.2014:267

[10] 阮沈勇.MATLAB程序设计[M].电子工业出版社,2004: 70-85.

数字图像处理课程心得

数字图像处理课程心得 本学期,我有幸学习了数字图像处理这门课程,这也是我大学学习中的最后一门课程,因此这门课有着特殊的意义。人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉、触觉、嗅觉信息总的加起来不过占20%。可见图像信息是十分重要的。通过十二周的努力学习,我深刻认识到数字图像处理对于我的专业能力提升有着比较重要的作用,我们可以运用Matlab对图像信息进行加工,从而满足了我们的心理、视觉或者应用的需求,达到所需图像效果。 数字图像处理起源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约采用数字压缩技术传输了第一幅数字照片。此后,由于遥感等领域的应用,使得图像处理技术逐步受到关注并得到了相应的发展。第三代计算机问世后,数字图像处理便开始迅速发展并得到普遍应用。由于CT的发明、应用及获得了备受科技界瞩目的诺贝尔奖,使得数字图像处理技术大放异彩。目前数字图像处理科学已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科之间学习和研究的对象。随着信息高速公路、数字地球概念的提出以及Internet的广泛应用,数字图像处理技术的需求与日俱增。其中,图像信息以其信息量大、传输速度快、作用距离远等一系列优点成为人类获取信息的重要来源及利用信息的重要手段,因此图像处理科学与技术逐步向其他学科领域渗透并为其它学科所利用是必然的。 数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。图像处理科学是一门与国计民生紧密相联的应用科学,它给人类带来了巨大的经济和社会效益,不久的将来它不仅在理论上会有更深入的发展,在应用上亦是科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。它的发展及应用与我国的现代化建设联系之密切、影响之深远是不可估量的。在信息社会中,数字图象处理科学无论是在理论上还是在实践中都存在着巨大的潜力。近几十年,数字图像处理技术在数字信号处理技术和计算机技术发展的推动下得到了飞速的发展,正逐渐成为其他科学技术领域中不可缺少的一项重要工具。数字图像处理的应用领域越来越广泛,从空间探索到微观研究,从军事领域到工农业生产,从科学教育到娱乐游戏,越来越多的领域用到了数字图像处理技术。 虽然通过一学期的课程学习我们还没有完全掌握数字图像处理技术,但也收获了不少,对于数字图像处理方面的知识有了比较深入的了解,当然也更加理解了数字图像的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的RGB图像和灰度图像有了明确的理解,这对大家以后应用Photoshop等图像处理软件对图像进行处理打下了

关于数字图像处理论文的题目

长春理工大学——professor——景文博——旗下出品 1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像 2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容:

基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1>对原始参考图和实时图像进行去噪处理; 2>对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑; 3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。 4>显示每步处理后的图像; 5>分析此种图像监控方式的优缺点。 背景目标出现目标提取 4车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 6>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 5医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞核区域。 2>通过直方图修改技术得到均衡化或规定化等不同的处理效果。 3>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输时所混入的噪声,提高图像的视觉效果。 4>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 5>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。 原始细胞图像 图像处理后的细胞图像 6瓶子灌装流水线检测是否液体灌装满瓶体 当饮料瓶子在罐装设备后要进行液体的检测,即:进行判断瓶子灌装流水线是否灌装满瓶体的检测,如液面超过瓶颈的位置,则装满,否则不满,如果不满则灌装液体不合格,需重新进行灌装。 具体要求: 1)将原进行二值化 2)二值化后的图像若不好,将其滤波再进行膨胀处理,并重新进行二值化

数字图像处理教学大纲(2014新版)

数字图像处理 课程编码:3073009223 课程名称:数字图像处理 总学分: 2 总学时:32 (讲课28,实验4) 课程英文名称:Digital Image Processing 先修课程:概率论与数理统计、线性代数、C++程序设计 适用专业:自动化专业等 一、课程性质、地位和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源

1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成 第二章:数字图像基础(4学时) 教学目标:了解视觉感知要素;了解几种常用的图像获取方法;掌握图像的数字化过程及其图像分辨率之间的关系;掌握像素间的联系的概念;了解数字图像处理中的常用数学工具。 重点难点:要求重点掌握图像数字化过程及图像中像素的联系。 2.1 视觉感知要素(1学时) 2.1.1 人眼的构造 2.1.2 眼镜中图像的形成 2.1.3 亮度适应和辨别 2.2 光和电磁波谱 2.3 图像感知和获取(1学时) 2.3.1 用单个传感器获取图像 2.3.2 用条带传感器获取图像 2.3.3 用传感器阵列获取图像 2.3.4 简单的图像形成模型 2.4 图像取样和量化(1学时) 2.4.1 取样和量化的基本概念 2.4.2 数字图像表示 2.4.3 空间和灰度级分辨率 2.4.4 图像内插 2.5 像素间的一些基本关系(1学时) 2.5.1 相邻像素 2.5.2 临接性、连通性、区域和边界 2.5.3 距离度量 2.6 数字图像处理中所用数学工具的介绍 2.6.1 阵列与矩阵操作

数字图像处理技术试题答案

数字图像处理技术试题库 一、单项选择题:(本大题 小题, 2分/每小题,共 分) 1.自然界中的所有颜色都可以由()组成 A.红蓝绿 B.红黄绿 C.红黄蓝绿 D.红黄蓝紫白 2. 有一个长宽各为200个象素,颜色数为16色的彩色图,每一个象素都用R(红)、G(绿)、B(蓝)三个分量表示,则需要()字节来表示 A.100 B.200 C.300 D. 400 3.颜色数为16种的彩色图,R(红)、G(绿)、B(蓝)三个分量分别由1个字节表示,则调色板需要()字节来表示 A.48 B.60 C.30 D. 40 4.下面哪一个不属于bmp 文件的组成部分 A .位图文件信息头 B. 位图文件头 C.调色板 D. 数据库标示 5.位图中,最小分辨单元是 A.像素 B.图元 C.文件头 D.厘米 6.真彩色的颜色数为 A.888?? B. 161616?? C.128128128?? D.256256256?? 7.如果图像中出现了与相邻像素点值区别很大的一个点,即噪声,则可以通过以下方式去除 A.平滑 B.锐化 C. 坐标旋转 D. 坐标平移 8.下面哪一个选项不属于图像的几何变换() A.平移 B.旋转 C. 镜像 D. 锐化 9.设平移量为x x t t (,),则平移矩阵为() A .1 0 00 1 0 1x y t t ?????????? B. 1 0 00 -1 0 1x y t t ??-???????? C.1 0 00 1 0 - 1x y t t ????????-?? D.1 0 00 1 0 - -1x y t t ?????????? 10.设旋转角度为a ,则旋转变换矩阵为() A .cos() sin() 0sin() cos() 00 0 1a a a a -?????????? B .cos() sin() 0sin() cos() 00 0 1a a a a ?????????? C .sin() cos() 0 sin() cos() 0 0 0 1a a a a -?????????? D .cos() sin() 0sin() cos() 00 0 1a a a a -????-?????? 11.下面哪一个选项是锐化模板 A .-1 -1 -1-1 9 -1-1 -1 -1??????????g B .-1 -1 -1-1 -9 -1-1 -1 -1??????????g C .-1 -1 -1-1 8 -1-1 -1 -1??????????g D .-1 -1 -1-1 6 -1-1 -1 -1?????????? g 12.真彩色所能表示的颜色数目是 A .128128? B .256256256 ?? C .256 D .6059

浅谈数字图像处理中的图像分割技术

电大理工 2011年12月Study of Science and Engineering at RTVU. 第4期总第249期 浅谈数字图像处理中的图像分割技术 郑洪涛 朝阳广播电视大学( 朝阳 122500 ) 摘 要 数字图像处理科学迅速发展并得到广泛应用。图像分割是其中重要的中间技术。它依托图像数字处理底层技术,为模式识别等高层应用服务。本文简要介绍了图像分割的概念范畴和常见的分割 技术的方法描述。掌握图像分割技术有助于系统理解数字图像处理技术的层次。 关键词 数字图像处理 图像分割 阈值 数字图像处理技术,简单地说就是借助计算机的帮助对数字图像进行特定算法运算处理来满足众多应用需要的技术。它涵盖了众多图像处理方式,图像分割是其中一项重要的技术环节。 1 图像分割的范畴 图像分割处理技术属于数字图像处理技术中的图像分析范畴,是图像分析的中间层处理技术。图像分割的目的是把经过底层处理的数字图像空间分成若干有意义的区域,后期的一些高层应用如模式识别等将在这些分割的区域基础上进行。分割的依据建立在这些由像素组成的区域满足相似性和非连续性的基本概念上。 2 图像分割的方法 图像分割一般没有唯一的、标准的分割方法,也没有规定分割成功的准则。一般从以下几方面分割、描述方法: 2.1 灰度阈值法实现图像分割 阈值法主要利用直方图,设定合适的阈值来分辨物体与背景。简单地说就是在图像的灰度值中选一合适的阈值,若小于阈值则判断为背景,若大于阈值则判断为物体。这种方法适合与物体和背景之间有明显区域分界且边界封闭的情况。亦即数字图像中物体与背景的灰度值有明显差异,可较好的分割物体与背景。 (1)整体阈值 就是对整幅图像选定一固定灰度值,以此去做图像分类找出图像的物体。在物体与背景单纯且亮暗分明下才会有较好效果。 (2)适应性阈值 在不同的区域有不同的阈值,即自适性阈值。 2.2 区域法实现图像分割 区域法实现分割是以某种规则为约束(如子区域全部像素灰度相同、子区域不重合且相连接等),直接找取区域的方式实现分割。 (1)像素类聚区域成长法 此方法从一种子(seed)像素开始,通过平均灰度、组织纹理及色彩等性质的检视,将具有类似性质的像素逐一纳入所考虑的区域中,使其逐渐成长,形成子区域的方法。这种方法实际应用中至少要考虑种子像素的选择和聚类的相似性选择等因素。 (2)区域分割与合并法 首先将图像分割成不重叠的区域或子图像,

数字图像处理的概念教学总结

数字图像处理的概念

二、数字图像处理的概念 1.什么是图像 “图”是物体投射或反射光的分布,“像”是人的视觉系统对图的接受在大脑中形成的印象或反映。 是客观和主观的结合。 2数字图像是指由被称作象素的小块区域组成的二维矩阵。将 物理图象行列划分后,每个小块区域称为像素(pixel)。 –每个像素包括两个属性:位置和灰度。 对于单色即灰度图像而言,每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示, 0表示黑、255表示白,而其它表示灰度级别。 物理图象及对应 的数字图象 3彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。 –通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。 4什么是数字图像处理 数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 5对连续图像f(x,y)进行数字化:空间上,图像抽样;幅度上,灰度级量化 x方向,抽样M行 y方向,每行抽样N点

整个图像共抽样M×N个像素点 一般取M=N=2n=64,128,256,512,1024,2048 6数字图像常用矩阵来表示: f(i,j)=0~255,灰度级为256,设灰度量化为8bit 7 数字图像处理的三个层次 8 图像处理: 对图像进行各种加工,以改善图像的视觉效果;强调图像之间进行的变换;图像处理是一个从图像到图像的过程。 9图像分析:对图像中感兴趣的目标进行提取和分割,获得目标的客观信息 以观察者为中心研究客观世界; 图像分析是一个从图像到数据的过程。 10图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内 以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作 (符号运算) N N N N f N f N f N f f f N f f f y x f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - = )1 ,1 ( )1,1 ( )0,1 ( )1 ,1( )1,1( )0,1( )1 ,0( )1,0( )0,0( ) ,( 符号 目标 像素 高层 中层 低层 高 低 抽 象 程 度 数 据 量 操 作 对 象 小 大语 义

数字图像处理毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

数字图像处理技术练习

数字图像处理技术练习

1. 图像中每个像素点的灰度值如下图所示: 分别求经过邻域平滑模板、邻域高通模板和中值滤波处理后的结果。其中不能 处理的点保持不变如果处理后的值为负数则变为0。邻域平滑模 板01011 14010H ????=??????,邻域高通模板010141010H -????=--????-?? ,中值滤波窗口取3×3矩阵,窗口中心为原点。 2. 图像中每个像素点的灰度值如下图所示: 分别求经过邻域平滑模板、邻域高通模板和中值滤波处理后的结果。其 中不能处理的点保持不变如果处理后的值为负数则变为0。邻域平滑模 板11111018111H ????=??????,邻域高通模板111181111H ---????=--????---?? ,中值滤波窗口取3×3矩阵,窗口中心为原点。 3.设有以下信源符号w1,w2,w3,w4,w5和概率P(w1)=0.3, P(w2)=0.2, P(w3)=0.2, P(w4)=0.2, P(w5)=0.1。请对此信源进行Huffman 编码,并计 算熵,平均码长和编码效率。 (log 20.3= -1.737,log 20.2= -2.322,log 20.1=-3.322) 4.设有以下信源符号w1,w2,w3,w4,w5和概率P(w1)=0.5, P(w2)=0.2, P(w3)=0.1, P(w4)=0.1, P(w5)=0.1, 请对此信源进行Huffman 编码,并计算熵,平均码

幅 4.一个灰度变换形式如下图所示,该灰度变换的作用是( B )。 A .灰度反转 B .二值化 C .灰度均衡 D .对比度增强 5.一个灰度变换形式如下图所示,该灰度变换的作用是( A )。 A .灰度反转 B .二值化 C .灰度均衡 D .对比度增强 6.一个三段线性变换如下图所示,横轴表示原始灰度,纵轴表示变换后灰度。以下关于该变换的说法错误的是( A )。 A .(0,80)区间的灰度对比度增强 B .(80,130)区间的灰度对比度增强 C .(130,255)区间的灰度对比度降低 D .变换后的灰度的区间还是(0,255) 7.将灰度或单一波段的图像变换为彩色图像,从而把人眼不能区分的微小的灰度差别显示为明显的彩色差异。这种处理方法称为( C )。 A .真彩色增强 B .假彩色增强 C .伪彩色增强 D .彩色图像灰度化 8.灰度图像的高帽变换的定义为THT()()f f f g =-,该变换的作用是0 320255

数字图像处理

院系:计算机科学学院 专业:计算机科学与技术 年级: 09级 课程名称:数字图像处理 组号: 25组 指导教师:孙阳光 学号: 姓名: 2012 年 6 月 13 日

年 级 班号学号 专 业 姓名实 验名称MATLAB图像处理编程基础 实验 类型 设计型综合型创新型 √ 实验目的或要求加深对数字图像处理理论课程的理解,进一步熟悉数字图像处理课程的相关算法和原理选择一副图像,叠加椒盐噪声,分别用邻域平均法和中值滤波法对该图像进行滤波,显示滤波后的图像,比较和分析各滤波器的效果。 选择一副图像,叠加零均值高斯噪声,设计一种处理方法,既能去噪声,又能保持边缘清晰。

实验原理(算法流程图或者含注释的源代码)二、算法原理 平滑滤波器用滤波模板确定的领域内象素的平均灰度值去代替图像中的每一个像素点的值,这种处理减少了图像灰度的“尖锐”变化,常称为邻域平均法。邻域平均法有力地抑制了噪声,同时也引起了模糊,模糊程度与邻域半径成正比。 中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值.中值滤波法对消除椒盐噪音非常有效。 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰。 三、Matlab代码 1: I = imread('eight.tif'); J = imnoise(I,'salt & pepper',0.02); subplot(231); imshow(I);title('原图象'); subplot(232); imshow(J);title('添加椒盐噪声图象'); k1 = filter2(fspecial('average', 3), J); k2 = filter2(fspecial('average', 5), J); k3 = filter2(fspecial('average', 7), J); k4 = filter2(fspecial('average', 9), J); subplot(233); imshow(uint8(k1));title('3×3模板平滑滤波'); subplot(234); imshow(uint8(k2));title('5×5模板平滑滤波'); subplot(235); imshow(uint8(k3));title('7×7模板平滑滤波'); subplot(236); imshow(uint8(k4));title('9×9模板平滑滤波'); I = imread('eight.tif'); J = imnoise(I,'salt & pepper',0.02); subplot(231); imshow(I);title('原图象'); subplot(232); imshow(J);title('添加椒盐噪声图象'); k1 = medfilt2(J); k2 = medfilt2(J,[5,5]); k3 = medfilt2(J,[7,7]); k4 = medfilt2(J,[9,9]); subplot(233); imshow(k1);title('3×3模板中值滤波'); subplot(234); imshow(k2);title('5×5模板中值滤波'); subplot(235); imshow(k3);title('7×7模板中值滤波'); subplot(236); imshow(k4);title('9×9模板中值滤波');

数字图像处理应用论文数字图像处理技术论文

数字图像处理应用论文数字图像处理技术论文 关于数字图像处理及其应用的研究 摘要:首先对数字图像处理的关键技术以及相应的处理设备进行详细的探讨,然后对数字图像处理的应用领域以及发展趋势进行详尽论述。 关键词:数字图像处理:关键技术;应用领域 0 引言 人类通过眼、耳、鼻、舌、身接受信息,感知世界。约有75%的信息是通过视觉系统获取的。数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪50年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代扔,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系,成为一门新兴的学科。数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。

1 数字图像处理主要技术概述 不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。图像校正:在理想情况下,卫星图像上的像素值只依赖于进入传感器的辐射强度;而辐射强度又只与太阳照射到地面的辐射强度和地物的辐射特性(反射率和发射率)有关,使图像上灰度值的差异直接反映了地物目标光谱辐射特性的差异,从而区分地物目标。图像复原,以图像退化的数学模型为基础,来改善图像质量表达与描述,图像分割后,输出分割标记或目标特征参数;特征提取:计算描述目标的特征,如目标的几何形状特征、统计特征、矩特征、纹理特征等。图像增强:显示图像中被模糊的细节。或是突出图像中感兴趣的特征。图像识别:统计模式识别、模糊模式识别、人工神经网络等。

数字图像处理技术现状及发展趋势

数字图像处理技术现状及发展趋势 摘要现今是计算机技术、网络技术以及多媒体技术高速发展的时代,更多高科技技术正在全面发展,数字图像处理技术作为一种新式技术,如今已经广泛地应用于人们的生产生活中。数字图像处理技术的应用和发展为人们的生活发展带来了很多的便利,在遥感技术、工业检测方面发展迅速,在医学领域,气象通信领域也有很大的成就。由此,本文主要探讨数字图像处理技术的现状及发展趋势。 关键词数字图像处理技术;现状;发展趋势 现今是计算机和网络技术高速发展的时代,计算机的应用给人们的生产生活带来了很大的便利,人们应用计算机处理各种复杂的数据,将传统方式不能处理的问题以全新的技术和方式有效解决[1]。数字图像处理技术是应用较为广泛的一种技术,在具体应用过程中,能够经过增强、复原、分割等过程对数据进行处理,且具有多样性、精度高、处理量大的显著优势,本文对数字图像处理技术的现状及发展趋势进行研究和探讨。 1 数字图像处理技术发展现状 数字图像处理技术是近年来发展较为迅速的一种技术,具体是指应用计算机对图像进行一系列的处理,最终达到人们要求的水平,在具体的处理过程中,以改善图像的视觉效果为核心,最终呈现出人们想要表达的意思。笔者查阅国内外诸多文献库,发现对数字图像处理技术的研究多数集中于图像数字化、图像增强、图像还原、图像分割等领域[2]。最初数字图像处理技术产生于20世纪20年代,当时普遍将其应用于报纸业,发展至20世纪50年代,图像处理技术跟随着计算机的发展而迅速发展,也有更多的人开始关注和应用该技术,当时在各国的太空计划中发挥了巨大作用,尤其是对月球照片的处理,获得了很大的成功。发展到20世纪70年代时,数字图像处理技术的应用已经很普遍了,尤其是在计算机断层扫面(CT)等方面,该技术的应用得到了一致好评,而现今,数字图像处理技术随处可见,已广泛应用在各行各业中。 2 数字图像处理技术的特点 数字图像处理技术有以下几个特点:①图像处理的多样性特点。数字图像处理技术可以编写多样的算法,以不同的程序模式施加于数字图像技术上,根据实际需求对图像进行处理,因此最终获取的图像效果也截然不同。②图像处理精度高。应用数字图像处理技术处理的图像,其精度和再现性都提高了一个层次,尤其是在各种算法和程序的支撑下,进一步确保了计算的精度和正确性。③交叉融合了多门学科和新技术。数字图像处理的应用基础包含了众多学科和技术,其中数学和物理是关键,而通信、计算机、电子等技术则是确保其处理质量的关键技术。④数据处理量大[3]。图像本身就包含了大量的信息,数字图像处理技术可以更好地区分有用信息和冗余信息,从而获取处理的关键性信息。

浅谈学习数字图像处理技术地认识

数字图像处理结课论文 :X.X.X 学号:0.0.0.0.0.0.0.0专业:通信工程

浅谈学习数字图像处理技术的认识 摘要 数字图像处理技术是一门将图像信号转换成数字信号并利用计算机对其进行 处理的技术。图像信息是人类获得外界信息的主要来源,因为大约有70%的信息是通过人眼获得的,而人眼获得的都是图像信息。i通过数字图像处理技术对获得的图像信息进行处理来满足或者实现人们的各种需要。从某些方面来说,对图像信息的处理甚至比图像信息本身更重要,尤其是在这个科技迅猛发展的21世纪。 Abstract Digital image processing technology is a keeper image signals into digital signals and processed by computer technology. Images are a major source of human access to outside information, because some 70% of information was obtained through human eyes, are the image information obtained by the human eye. By means of digital image processing technology to obtain image information processing to meet or achieve people's various needs.In some ways, image information processing even more important than the image itself, especially in the rapid development of science and technology of the 21st century. 关键词 数字图像、处理、应用 引言 经过一个学期的学习,我对数字图像处理技术有了一个更加深刻的了解,做了几次MATLAB数字信号处理实验,知道了如何利用MATLAB编程来实现数字图像处理技术的一些基本方法,以及如何使用PHOTOSHOP软件来做一些简单的图像处理。 本文主要研究数字图像处理的特点,数字图像处理的分类, 数字图像处理的容,数字图像处理的实例,数字图像处理的具体实验举例,以及数字图像处理技术在日常生活中的一点应用 一、数字图像处理的特点 1.0处理精度高 按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。试想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。

数字图像处理心得体会

《数字图像处理》心得体会 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。? 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。? 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。? 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。?

图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。? 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。? 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。? 数字图像处理的特点主要表现在以下几个方面:? 1)?数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。? 2)?数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。? 3)?数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。?图像受人的因素影响较大,因为图像一般是给人观察和评价的。? 数字图像处理的优点主要表现在4个方面。? 1)?再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。? 2)?处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于

数字图像处理论文

华东交通大学理工学院课程设计报告书 所属课程名称数字图像处理期末论文分院电信分院专业班级14 计科 学号20140210440214 学生姓名习俊 指导教师熊渊 2016 年12 月13 日

摘要 数字图像处理是用计算机对图像信息进行处理的一门技术,主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。本文论述了用Matlab编程对数字图像进行图像运算的基本方法。图像运算涵盖了MA TLAB程序设计、图像点运算、代数运算、几何运算等基本知识及其应用(点运算是图象处理的一个重要运算)。以及对图像加入噪声、图像缩放和图像旋转。 关键词图像点运算;代数运算;几何运算;图像缩放;图像旋转

目录 绪论 第一章图像运算 2.1点运算 2.2代数运算 2.3几何运算 第二章程序设计与调试 结束语 参考文献

绪论 早期的计算机无论在计算速度或存储容量方面,难于满足对庞大图像数据进行实时处理的要求。随着计算机硬件技术及数字化技术的发展,计算机、内存及外围设备的价格急剧下降,而其性能却有了大幅度的提高。 图像信息是人类获得外界信息的主要来源,数字图像处理技术越来越多的应用于人们日常工作、学习和生活中。和传统图像处理相比,它具有精度高、再观性好、通用性和灵活性强等特点。在近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中也得到了广泛应用。 近几年来,随着计算机和各个相关领域研究的迅速发展,科学计算可视化、多媒体技术等研究和应用的兴起,数字图像处理从1个专门领域的学科,变成了1种新型的科学研究和人机界面的工具。数字图像作为一门新兴技术,它是二十一世纪五十年代数字计算机发展到相当水平后开拓出来的计算机应用新领域,它把图像转换成数据矩阵存放于计算机中,并进行滤波、增强、删除等处理,包括图像输入输出技术、图像分析、变换于处理技术以及图像识别和特征提取等方面。六十到七十年代数字处理技术的理论和方法更加完善,其准确性、灵活性和通用性逐步提高。 在日常生活中,电脑人像艺术,电视中的特殊效果,自动售货机钞票的识别,邮政编码的自动识别和利用指纹、虹膜、面部等特征的身份识别等均是图像处理的广泛应用。 进行数字图像处理时主要涉及数字图像点运算处理,针对图像的像素进行加、减、乘、除等运算,有效地改变了图像的直方图分布。

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

相关文档