文档视界 最新最全的文档下载
当前位置:文档视界 › 锥齿轮设计

锥齿轮设计

锥齿轮设计
锥齿轮设计

摘要

锥齿换向器广泛应用于现代机械产品之中,如航空、航天和工程机械传动系统,具有传动平稳,承载能力强等优点,有着非常可观的发展前景。利用锥齿换向器传动机构的特点实现在电渣炉执行机构的换向,通过对电渣炉执行机构的结构设计和对其分析,是本课题主要学习和研究的内容。该机构的原理主要是由一对轴交角为90°的锥齿轮通过相互啮合,实现传动角度的改变以及进给换向的目的。

为了满足该机构所体现出来的直观性,深入学习UG软件CAD/CAE,实现对锥齿换向器传动部件的三维参数化建模。本课题的主要研究工作与成果:首先,从建立平面渐开线入手,建模锥齿轮,实现参数化造型。再将轴、轴承以及箱体等部件依次建模,同时进行结构和强度设计计算;

其次,在CAD装配模块中,将换向器各零部件自下而上完成装配;

最后,利用CAE模块进行对该机构的分析。

关键词:换向器;锥齿轮;CAD参数化建模;CAE分析

目录

摘要 ........................................................................................................................................................ I

目录 ....................................................................................................................................................... II

第一章绪论 (1)

1.1 UG/CAD (1)

1.2锥齿轮传动及应用 (2)

第二章标准直齿锥齿轮及轴的相关计算 (3)

2.1 标准直齿锥齿轮的几何参数相关计算 (3)

2.1.1选定齿轮精度等级,材料及齿数 (3)

2.1.2 锥齿轮的初步设计 (3)

2.2 锥齿轮传动的强度校核 (6)

2.2.1 齿面接触疲劳强度校核[6] (6)

2.2.2 齿根抗弯疲劳强度校核 (9)

第三章直齿锥齿轮数学模型的建立与参数化建模 (11)

3.1 齿轮常用的齿形曲线—渐开线 (11)

3.1.1 渐开线的形成及其特性 (11)

3.2 建模思路 (13)

3.3 建模过程 (13)

3.3.1 建立渐开线齿廓曲线 (13)

3.3.2 直齿锥齿轮的建立 (15)

第四章总结 (19)

参考文献 (20)

钟山学院

第一章绪论

UG是一个优秀的机械CAD/CAE/CAM一体化高端软件,它基于完全的三维实体复合造型、特征建模、装配建模技术,能设计出任意复杂的产品模型,再加上技术上处于领先地位的CAM模块、内嵌的CAE模块,使CAD、CAE和CAM有机集成,可以使产品的设计、分析和制造一次性完成。它是当今最先进的计算机辅助设计、分析、制造软件,广泛应用于航空、航天、汽车、造船、通用机械和电子等工业领域。

1.1 UG/CAD

CAD模块包括了实体建模、特征建模、自由形状建模、装配建模和制图等基本模块。

1.UG/实体建模(UG/SO1id Modeling)

该模块将基于约束的特征建模和显示几何建模方法无缝地结合起来,提供了强有力的“复合建模”工具,使用户可以充分利用传统的实体、面、线框造型优势。在该模块中,可建立二维和三维线框模型、扫描和旋转实体以及进行布尔运算及参数化编辑。另外,该模块还提供用于快速概念设计的草图工具和一些通用的建模、编辑工具。

2.UG特征建模(UG/Features Modeling)

该模块用工程特征定义设计信息,并提供了多种标准的设计特征,如孔、槽、型腔、凸台、柱体、块体、锥体、球体、管道体、倒圆角和倒直角等,还可控主实体建立薄壁件。各设计特征可以用参数定义,其尺寸大小和位置均可以被编辑。用户白定义特征会存储在公共目录下,可以被添加到其他设计模型中。各特征可相对于其他特征或实体定位,也可被引用来建立相关特征组。

3.UG自由曲面建模(UG/Freeform Modeling)

该模块用于建立复杂的曲面形状,如机翼、进气道和其他工业产品的造型设计。它将实体建模和曲面建模的技术合并,组成一个功能强大的建模工具组。此建模技术包括沿曲线扫描,用标准二次曲线建立二次曲面体,并能在两个或更多实体间用桥接的方式建立光滑的连接曲面。它还可以用逆向工程的方法,通过曲线喘网格来定义曲面和通过点集来拟合曲面。另外,用户还可以通过修改所定义的曲线、改变参数值和用数学规律来编辑修改。

4.UG/用户自定义特征(UG/User-Defined Features)

该模块用自定义特征的方式建立零件族,易于用户送行调用和编辑。它提供了一些常用工具,如允许用存在的参数化实体模型建立特征参数之间的关系,定义特征变量、设置缺省值,以及确定调用特征时所采用的一般形式等工具。用户自定义特征建立以后,被存放在一

个目录中,可供用户访问。当用户自定义特征被加入到设计模型后,可用常规的特征编辑方法对该模型的参数进行编辑修改。

5.UG/工程制图(UG/Drafting)

该模块使设计人员可以方便地获得与三维实体模型完全相关的二维工程图。UG/Draoing 支持工业上颁布的主要制图标准,如州SI/ASME、ISO、DIN、JSIS和我国的GB标准。

6.UG/装配建模(UG/Assembty Modeling)

该模块提供了并行的、自上而下和自下而上的产品开发方法。在装配过程中,可以进行零部件的设计和编辑。零部件刘灵活地配对和定位,并保持其关联性。装配件的参数化建模,还可以描述各部件之间的配对关系。这种体系结构允许建立非常庞大的产品结构,并在各设计纪之间进行共享,使产品开发组成员能够并行工作。

7.UG/高级装配

UG高级装配模块提供了数据装载控制功能,允许用户对装配结构中的部件进行过滤分析,可以管理,以完成—一个复杂产品的全数字化装配过程。它提供的各种工具可对整个产品、指定的子系统或零件进行装配分析和质量管理。在进行间隙检测的过程中,其检测结果可保存备用。在需要的时候,该模块还可对硬干涉进行精确定位。当要对一个大型产品的部分结构进行修改时,该功能还可以定义区域和组件集,以便于快速修改。

8.UG/Wave

UG Wave提供了一个参数化产品开发平台,它将概念设计与详细设计贯穿到整个产品的设计过程。wave技术可对产品设计进行定义、控制和评估,通过定义几何形体框架和关键设计变量,表达产品的概念设计,通过多数化的编辑控制结构,使不同的设计概念可以被迅速地分析和评估。控制结构中的关键几何模型,可链接拷贝到经过详细设计的产品装配中。这样,在后续的产品开发过程中,允许高级概念设计中的变化与整个产品设计改变相关联。

1.2锥齿轮传动及应用

圆锥齿轮传动的应用、特点和分类

应用:圆锥齿轮传动是用来传递两相交轴之间的运动和动力的。

特点:圆锥齿轮的轮齿分布在一个圆锥体上。圆锥齿轮大端的参数为标准值。一对圆锥齿轮两轴之间的交角可根据传动的需要来确定。在一般机械中多采用∑ =90 ° 的圆锥齿轮。

第二章 标准直齿锥齿轮及轴的相关计算

设计齿轮传动时,考虑到锥齿轮传动的可能发生的各种失效形式,如:点蚀、片蚀、胶合、断损、断齿和塑性变形,应使齿面具有较高的抗磨,抗点蚀,抗胶合及抗塑性变形的能力,而齿根要有较高的抗折断的能力。因此,对齿轮材料性能的基本要求为:齿面要硬,齿芯要韧。

2.1 标准直齿锥齿轮的几何参数相关计算

齿轮传动的参数设计的目的是确定齿轮的最基本的参数值,以便确定齿轮的基本框架,方便齿轮传动的下一步的设计。

2.1.1选定齿轮精度等级,材料及齿数

1.按该换向器的速度和承载能力,选用7级精度。

2.材料选择:该装置采用闭式,齿面硬度为中齿面,因此两齿轮材料均选为20Cr ,硬度为60HRC 。

3.初选两齿轮的齿数为:Z 1=35,Z 2=24,

2.1.2 锥齿轮的初步设计

1.设计公式: 'e d ≥32/1951HP KT σμ' (2-1)

载荷系数:5.1=k 查《机械设计手册?齿轮传动》,闭式直齿锥齿轮。 齿数比: 1==i μ 估算时的齿轮许用接触应力:

HP

σ'=lim H σ'/H S ' (2-2)

式中,试验齿轮接触疲劳强度极限lim H

σ'=1300N/mm 2,估算时 安全系数: H

S '1.1= 转矩: T 1=9.55×610?11/n p =m N ?=??5.2578500/1351095506 (2-3)

估算结果: '

e d ≥?1951mm 97.273)1.1/1300(1/5.25785.132=?? 2.几何参数计算

取锥齿轮大端的参数为标准值,其压力角α 20=,齿顶高系数*

a h 0.1=,顶隙系数

*c 2.0=,如图3-1。

图2-1等顶隙锥齿轮齿坯旋转成形示意图

齿数: Z 1=Z 2=24

(2-5) 分锥角:

1δ =2δ=arctan(Z 1/ Z 2) 45=

(2-6) 大端模数: e m = /'

e d Z 1=273.97/24=mm 415.11 (2-7)

取mm m e 11=,

大端分度圆直径: e d = Z 1e m ?=24mm 26411=?

(2-8) 外锥距: e R =e d /45sin 2?°mm 6762.18645sin 2/(264)=?= (2-9)

齿宽系数:取3.0=R φ 齿宽: =b R φ?e R mm 00286.566762.1863.0=?=

(2-10)

取mm b 56= 实际齿宽系数:

R φ=b /e R mm 2984.06762.186/56=

(2-11) 中点模数:

m m =mm m R e 3588.9)2984.05.01(11)5.01(=?-?=-φ (2-12)

中点分度圆直径:mm d d R e m 6112.224)2984.05.01(264)5.01(=?-?=-=φ(2-13) 切向变位系数: 1t x =02=t x

高变位系数: 1x =02=x

顶隙:

*=c c ?mm m e 2.2112.0=?=

(2-14) 大端齿顶高: mm m x h e a 1111)01()1(1=?+=+= (2-15) 大端齿根高: =f h *+c 1(-1x )mm m e 2.1311)02.01(=?-+= (2-16) 全齿高:

+=2(h *c )mm m e 2.2411)2.02(=?+=

(2-17)

齿根角: 04469.4)6762.186/2.13arctan()/arctan(===e f f R h θ (2-18) 齿顶角: a θ= 04469.4=f θ(采用等顶隙收缩齿) (2-19) 顶锥角: a δ=1δ+ 04469.4904469.445=+=a θ (2-20) 根锥角:

f δ=1δ- 95531.4004469.445=-=f θ

(2-21)

大端齿顶圆直径:ae d =mm h d a e 5563.27945cos 112264cos 21=??+=+ δ (2-22) 冠顶距: mm h d A a e K 22.12445sin 112/264sin 2/1121=?-=?-= δ (2-23)

mm A A K K 22.12412==

大端分度圆弧齿厚:

mm x x m S t e 27.17)020tan 022/14.3(11)tan 22/(111=+??+?=+?+?= απ

(2-24)

mm S m S e 27.1727.171114.312=-?=-=π

大端分度圆弦齿厚:

(2-25)

大端分度圆弦齿高:

mm d S h h e a a 1997.112644/45cos 27.17114/cos 2112

111=??+=?+=-

δ

(2-26)

mm h h a a 1997.1112==

当量齿数: 94.3345cos /2445cos /112==== Z Z Z v v

(2-27)

当量齿轮分度圆直径:

mm d d m v 6482.3171/116112.224/1211=+?=+=μμ

(2-28)

mm d d v v 6482.317122==μ

(2-29)

当量齿轮顶圆直径:

mm h d d a v va 6482.3391126482.317211=?+=+=

(2-30)

mm d d va va 6482.33912==

当量齿轮基圆直径:mm d d d v vb vb 4917.29820cos 6482.317cos 121=?=== α

(2-31)

当量齿轮根圆直径:mm h d d d f v vf vf 2482.2912.132648.3172121=?-=-==

(2-32)

当量齿轮传动中心距:

mm

d S S S

e 258.17)2646/27.171(27.17)6/1(22122

111=?-?=-?=-

mm d d a v v v 6482.317)6482.3176482.317(2/1)(2/121=+?=+=

(2-33)

当量齿轮基圆齿距:mm m P m vb 6284.2720cos 3588.914.3cos =??== απ (2-34) 啮合线长度:

vt v vb va vb va va a d d d d g αsin )(2/12

22

22

12

1--+-=

20sin 6482.317)24917.2986482.339(2/122?-?-?=

m 418.53=

(2-35)

端面重合度: 933.16284.27/418.53/===vb v v P g ααε

(2-36)

齿中部接触线长度: mm b l va v bm 56933.1/1933.1562/1(2=-??=-=εεα

(2-37)

齿中部接触线的投影长度:mm l l bm bm

56==' (2-38)

2.2 锥齿轮传动的强度校核

在前面的参数选取中,有一些参数是按照经验来选取的,必须进行强度校核。对于闭式传动,一般按照齿面接触强度设计;对于开式传动,按照齿根弯曲轻度设计,用适当降低许用应力或者增大模数来增加齿厚,以便增加磨损的储备量。

通过强度计算,我们可以调整前面按照经验来确定的参数,最终达即符合设计的要求,又符合经济性的要求。

2.2.1 齿面接触疲劳强度校核[6]

(该节计算所涉及到的有关系数都出自《机械设计手册·齿轮传动·单行本》) 计算公式:

HP k LS E H B M bm m t H H V A H Z Z Z Z Z Z l d F K K K K σμμσβαβ≤+=-)/()1(12

(2-39)

中点分度圆上的切向力 :

N d T F m t 411102960.26112.224/5.25782000/2000?=?==

(2-40)

使用系数: 25.1=A K ,表2-1

表2-1最齿轮的平稳性

动载系数: 由7级精度和中点节线速度:

s m n d m m /87.5100060/11=?=πυ

查图08.1=v k 齿向载荷分布系数:

取 1.1=e H K β,有效工作齿宽b b e 85.0?

65.11.15.15.1=?==e H H K K ββ

端面载荷系数: mm N b F e t /10041056/102960.2/4?=?≈ 由表的0.1=αH K

节点区域系数:5.2=H Z , 中点区域系数计算

]/1)/([]/1)/([/tan 2222211211v vb va v vb va vt B M Z F d d Z F d d Z ππα--?--=-

(2-41)

参数1F 和2F 计算。

1F =2,2F =)1(2-αεv =87.1)1933.1(2=-?

1]/1)/([]/1)/([/tan 2222211211=--?--=-v vb va v vb va vt B M Z F d d Z F d d Z ππα

弹性系数 m E m N Z 2/8.189?=,表2-3

表2-2材料的纵向重合度

表2-3材料的弹性系数

螺旋角系数: 直齿轮,1=βZ 锥齿轮系数 : 8.0=K Z 载荷分配系数:1=LS Z 计算接触应力:

8.0118.1895.21)566112.224/()2101459.20.165.108.125.1(4?????????????=H σ

2/267.910mm N =

许用接触应力: W X L V R N H H HP Z Z Z Z S ?=lim lim /σσ (2-42)

试验齿轮的接触疲劳极限: 2lim /1300mm N H =σ 寿命系数1=N Z ,长期工作 润滑油影响系数93.0=LVR Z 工作硬化系数:1=W Z 尺寸系数: 1=X Z

最小安全系数:1.1lim =H S ,表2-4

表2-4安全系数

许用接触应力值:

22/09.1099/)1193.011.1/1300(mm N mm N HP =????=σ

齿面接触强度校核结果:

22/09.1099/267.910mm N mm N HP H =?=σσ,通过

2.2.2 齿根抗弯疲劳强度校核

计算公式:

[]Fp Ls k FS nm t F F V A F Y Y Y Y bm F K K K K σσεαβ≤=)/(

(2-43)

式中:

0.1;65.1;08.1,25.1======ααββH F H F V A K K K K K K

N F t 4102960.2?= 同前

复合齿形系数:425.4=Fs Y ,按94.3321==V V Z Z 重合度系数:当0=βεv 时,

638.0933.1/75.025.0/75.025.0=+=+=αεεv Y

锥齿轮系数计算

156/56)56/561(4/1/)/1(4/122=?+?=''+=bm bm

K l b b l Y 载荷分配系数:)式(154.16,12

-==LS LS Z Y 齿根弯曲应力计算值:

11638.0425.4]3588.956/102960.20.165.108.125.1[41??????????=)(F σ

2/496.275mm N =

212/496.275mm N F F ==σσ

齿根许用弯曲应力: X e l T R e l T F FE FP Y Y Y S γδγσσ?=lim /

(2-44)

齿根弯曲疲劳强度基本值: 2/625mm N FE =σ 寿命系数: 1=NT Y ,长期工作

相对齿根圆角敏感系数:1re1=T Y δ,齿根圆角参数范围5.1≥s q 相对齿根表面状况系数:1rel =T R R ,齿根表面粗糙度设为m R z μ16≤ 尺寸系数: 108.103588.908.108.1=?==n X m Y

渗碳淬火钢最小安全系数: 1.25min =F S ,一般可靠度,查本篇第二章 许用弯曲应力值:

22/5054/108.1011125.1/625mm N mm N FP =????=)(δ

齿根弯曲强度校核结果 :

212/5054/496.275mm N mm N FP F =?=δδ

通过。

第三章直齿锥齿轮数学模型的建立与参数化建模

首先分析渐开线齿形曲线的特性,建立了相应的渐开线数学模型,以此指导渐开线齿廓的参数化建模。其次,在上述研究的基础上建立直齿圆锥齿轮的学模型,并运用 UG实现各种齿轮的三维参数化造型。

3.1 齿轮常用的齿形曲线—渐开线

目前齿轮齿形曲线通常采用渐开线、摆线及变态摆线,近年来还有圆弧和渐开线齿形等。齿形齿廓除了要满足定传动比外,还必需从设计、制造、测量、安装及使用等方面要求,和其它的齿形相比,渐开线拥有保持瞬时传动比恒等和可分离性等优点,因此绝大部分的齿轮都是采用渐开线作为齿形齿廓的。齿轮的齿廓曲线包括齿顶圆部分、齿形曲线部分、过渡曲线及齿根圆部分如图3-l所示。其中齿形曲线部分为齿轮啮合传动接触的重要部分,也是构造齿廓的重要曲线。

渐开线

齿顶圆

图3-1 齿廓曲线组成

3.1.1 渐开线的形成及其特性

1.渐开线的形成的原理

当有一条直线(常称发生线)在一个半径为rb的固定圆的圆周上作纯滚动时,如下图,直线上任意点A的运动轨迹线AA。就是形成的渐开线。图中半径为rb的固定圆称为渐开线的基圆。由图可知,当发生线在基圆上做纯滚动时,发生线上的一些任意点如B、C都会展出渐开线。尽管这些渐开线的位置不同,但渐开线的形状相同,如图所示。

渐开线齿轮的轮齿齿形就是由两条对称的渐开线所形成。

图3-2 渐开线的形成

2.渐开线特性

⑴.渐开线自基圆开始,基圆外面才有渐开线,基圆以内无渐开线。

⑵.渐开线上任意点的法线必切于基圆,切于基圆的直线必为渐开线上一点

的法线。

⑶.发生线与基圆的切点G。是渐开线在点A的曲率中心,线段AG。是渐开线在点A的曲率半径,渐开线上越接近基圆的点,其曲率半径越小。

⑷.同一基圆上任意两条渐开线之间各处的公法线长相等。

⑸.渐开线的形状取决于基圆的大小。在相同展开角处,基圆半径越大,其渐开线的曲率半径越大,当基圆半径为无穷大时,其渐开线变成直线。故齿条的齿廓曲线就是变为直线的渐开线。

⑹.渐开线上任意点的法线长度(也是曲率半径)等于发生线在基圆上滚过的弧长。

3.齿轮的齿形曲线

对于定传动比的齿轮机构,选择的齿形曲线除了要满足定传动比外,还必需从设计、制造、测量、安装及使用等方面综合考虑。其中渐开线齿形能够较为全面地满足上述方面的要

求,渐开线齿形的优点如下:

⑴.渐开线齿形能够保证瞬时传动比不变。

⑵.渐开线齿轮传动具有“可分离性”。渐开线齿轮传动,如果把两轮的中心距离稍微增大或减小些,此时,两轮的啮合时的传动比仍能保持不变。即:渐开线齿轮的瞬时传动比不因中心距稍有变化而发生变化。这种性质称为渐开线齿轮传动的“可分离性”。

⑶.因为渐开线的形成原理较其它齿形曲线简单,并可用直线廓形的工具进行加工,所以制造精度也容易提高。

⑷.互换性好。渐开线齿轮只要模数和压力角相同都可以互换。加工刀具的通用性也广,一种模数的刀具可加工任意齿数的齿轮。而其他齿形曲线的齿轮基本上没有互换性,常成对调换,并且加工刀具都为专用刀具,设计制造的工作量大。

故目前绝大部分的齿轮都是采用渐开线作为齿形。渐开线齿轮的齿形有着严格的数学方程轨迹,造型复杂,而一般的软件均不提供渐开线和其他高级曲线的功能。目前,绘制渐开线齿轮齿形的方法有三种,一种是用圆弧近似代替渐开线,这样虽然能够近似画出齿轮轮廓,但存在如下缺点:绘制过程复杂,费时并且容易出错;修改过程困难,不能形成系列化修改不能直接在图中得出渐开线的相应数据。第二种方法是先调用绘制工程图形的专用软件,然后把图形文件导入CAD 系统。如果只是为了绘制渐开线而花高价钱购买专用软件显然不合算。第三种方法是利用CAD 的二次开发工具来实现渐开线齿轮齿廓的精确绘制,此种方法能够比较精确的绘制出渐开线齿轮齿廓。此次我们就使用这种方法来绘制渐开线齿轮齿廓。

3.2 建模思路

首先利用UG 中的规律曲线(Law Curve)功能生成齿廓曲线———渐开线,然后利用扫掠和抽取几何元素特征操作,建立锥齿基本齿形,接着对该齿形和锥台进行求和特征操作、阵列操作得到相应的直齿锥齿轮三维模型。

3.3 建模过程

3.3.1 建立渐开线齿廓曲线

建立包含齿轮基本参数,内容如下: 大端模数:11=me 齿数:2421==z z 压力角:20=a 齿数比:1/21==z z μ 分锥角:b =arctan(Z 1/ Z 2) 45=

齿顶高系数ha 0.1= 高变位系数:1x =02=x 大端分度圆直径:me z de ?= 外锥距:e R =de /b sin 2? 齿宽系数:取3.0=width 齿宽:=b width ?e R 实际齿宽系数:2984.0=e 中点模数:e)0.5-(1me ??=mm

中点分度圆直径:)5.01(width de dm ?-?= 当量齿轮基圆直径:a dv db cos ?= 大端齿顶高:me x ha )11(+= 大端齿根高:=hf 2.1(-1x me 齿根角:)/arctan(e R hf f =

齿顶角:a =f (采用等顶隙收缩齿) 顶锥角:ba =b +a 根锥角:bf =b -f

当量齿轮顶圆直径: ha dv dva 2+= 当量齿轮根圆直径:hf dv dvf 2-= UG 系统默认变量:00??t 0=t

渐开线展角范围:)90,0( =k ,180/pi()dvb^2)/dvb -2^sqrt(dva ?=k ,t k u ?= 渐开线方程(渐开线起点在X 轴上):

sin(u)*rad(u)*(dvb/2)cos(u)*(dvb/2)xt += cos(u)*rad(u)*(dvb/2)-sin(u)*(dvb/2)yt =

0zt =

齿距:)cos(mm pi()a pvb ??= 齿厚对应的圆心角:180/z1=c

参数化是一种基于特征、尺寸约束、数据相关、尺寸驱动设计修改的技术。因此,如果需要绘制不同齿轮参数的齿轮,只需在此文件中修改齿轮的基本参数值,然后在UG 中重新导入,即可生成参数不同的齿轮渐开线。

图3-3 渐开线的绘制

首先在UG中输入直齿锥齿轮的各参数生成渐开线.具体方法如下:①从“工具→表达式”中输入参数;②从“插入→曲线→规律曲线”进入对话框,然后点击规律函数对话框的“确定“按钮,设置以t为自变量,横坐标为xt的因变量;同理,分别设置以t为自变量,纵坐标为yt、第3个坐标为zt的因变量,再选择原点作为参考点,即可生成渐开线,见图3-3。

之后,在X-Y平面内绘制当量齿顶圆与两段渐开线相交所得的圆弧,以及连接坐标原点与渐开线的另两个端点,形成大端俯视截面草图。如图3-4。

图3-4 草图建立结果

3.3.2 直齿锥齿轮的建立

1.根据所输入的参数中当量齿轮分度圆半径,当量齿轮齿根圆半径,当量齿轮齿顶圆半径,分锥角,顶锥角,在不同的平面内绘制出如图3-5的草图。

顶锥角

分锥角

根锥角

图3-5 齿形初建立草图

2.根据齿宽b的尺寸参数创建一平面,利用方法:“编辑—曲线—修剪”,完成最后齿形轮廓,如图3-6。

3.利用方法“插入—扫掠—扫掠”,令线1,2,3为截面线串,线4为引导线串,创建出一个齿的外形,如图3-7。

4.绕图3-6中1线作为环绕轴,截面是在大端平面内为当量齿轮齿根圆半径的一平面,创建出的一个中间的锥体,如图3-8。

2

1 3

4

图3-6 形成轮齿的截面线和引导线

图3-7 轮齿的生成

图3-8 锥齿轮中间锥体的生成

5.生成上图齿将锥体和一个齿作布尔运算和,将创建出来的一个齿按所选定的齿数作圆周阵列,即而创建出锥齿轮的最初的形状,如图3-9。

图3-9 锥齿轮轮齿的阵列结果

6.根据结构设计需要,经添加锥体,创建基准面,经修剪体切除顶锥多余的部分,以及根据与轴配合的孔径尺寸建孔,最后完善的直齿锥齿轮如图3-10。

图3-10 标准直齿锥齿轮的生成

直齿圆锥齿轮的画法

圆锥齿轮的画法 机械设计2009-09-27 09:55:12 阅读1120 评论2 字号:大中小订阅 圆锥齿轮 单个圆锥齿轮结构画法 [文本] 圆锥齿轮通常用于交角90°的两轴之间的传动,其各部分结构如图所示。齿顶圆所在的锥面称为顶锥面、大端端面所在的锥面称为背锥,小端端面所在的锥面称为前锥,分度圆所在的锥面称为分度圆锥,该锥顶角的半角称为分锥角,用δ表示。 圆锥齿轮的轮齿是在圆锥面上加工出来的,在齿的长度方向上模数、齿数、齿厚均不相同,大端尺寸最

大,其它部分向锥顶方向缩小。为了计算、制造方便,规定以大端的模数为准计算圆锥齿轮各部分的尺寸,计算公式见下表。 其实与圆柱齿轮区别也不大,只是圆锥齿轮的计算参数都是打断的参数,齿根高是1.2倍的模数,比同模数的标准圆柱齿轮的齿顶高要小,另外尺高的方向垂直于分度圆圆锥的母线,不是州县的平行方向。 单个圆锥齿轮的画法规则同标准圆柱齿轮一样,在投影为非圆的视图中常用剖视图表示,轮齿按不剖处理,用粗实线画出齿顶线、齿根线,用点画线画出分度线。在投影为非圆的视图中,只用粗实线画出大端和小端的齿顶圆,用点画线画出大端的分度圆,齿根圆不画。 [文本] 注意:圆锥齿轮计算的模数为大端的模数,所有计算的数据都是大

端的参数,根据大端的分度圆直径,分锥角画出分度线细点画线,量出齿顶高、齿根高,即可画出齿顶和齿根线,根据齿宽,画出齿形部分,其余部分根据需要进行设计。 单个齿轮的画法同圆柱齿轮的规定完全相同。应当根据分锥角,画出分度圆锥的分度线,根据分度圆半径量出大端的位置,根据齿顶高、齿根高找出大端齿顶和齿根的位置,向分度锥顶连线,就是顶锥(齿顶圆锥)和根锥(齿根圆锥),根据齿宽量出分度圆上小端的位置,做分度圆线的垂直线,其他的次要结构根据需要设计即可。 啮合画法 [文本]

齿轮轴的结构设计

目 录 7.轴类零件设计 7.1 I 轴的设计计算 1.求轴上的功率,转速和转矩 由前面算得P 1=5.76KW ,n 1=440r/min ,T 1=1.35 10?N mm ? 2.求作用在齿轮上的力 已知高速级小齿轮的分度圆直径为d 1=70mm 而 F t 112d T = 70 130000 2?= =3625N F r =F =αtan t 3625? ?20tan =1319N 压轴力F=1696N 1—输送带 2—电动机 3—V 带传动 4—减速器 5—联轴器

3.初步确定轴的最小直径 现初步估算轴的最小直径。选取轴的材料为45钢,调质处理据[2]表15-3,取A 0=110,于是得: d min =A 0==33 11 440 0.75110n P 26mm 因为轴上应开2个键槽,所以轴径应增大5%-7%故d=20.33mm ,又此段轴与大带轮装配,综合考虑两者要求取d min =32mm ,查[4]P 620表14-16知带轮宽B=78mm 故此段轴长取76mm 。 4.轴的结构设计 (1)拟定轴上零件的装配方案 通过分析比较,装配示意图7-1 图7-1 (2)据轴向定位的要求确定轴的各段直径和长度 1)I-II 段是与带轮连接的其d II I -=32mm ,l II I -=76mm 。 2)II-III 段用于安装轴承端盖,轴承端盖的e=9.6mm (由减速器及轴的结构设计而定)。根据轴承端盖的拆卸及便于对轴承添加润滑油的要求,取端盖与I-II 段右端的距离为38mm 。故取l III II -=58mm ,

因其右端面需制出一轴肩故取d III II -=35mm 。 3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求并据d III II -=35mm ,由轴承目录里初选6208号其尺寸为 d B D ??=40mm ?80mm ?18mm 故d IV III -=40mm 。又右边采用轴肩定位取ⅤⅣ-d =52mm 所以l ⅤⅣ-=139mm ,ⅥⅤ-d =58mm ,ⅥⅤ-l =12mm 4)取安装齿轮段轴径为d ⅦⅥ-=46mm ,齿轮左端与左轴承之间用套筒定位,已知齿轮宽度为75mm 为是套筒端面可靠地压紧齿轮,此轴段应略短于齿轮宽度故取l ⅦⅥ-=71mm 。齿轮右边Ⅶ-Ⅷ段为轴套定位,且继续选用6208轴承,则此处d ⅧⅦ-=40mm 。取l ⅧⅦ-=46mm (3)轴上零件的周向定位 齿轮,带轮与轴之间的定位均采用平键连接。按d II I -由[5]P 53表4-1查得平键截面b 810?=?h ,键槽用键槽铣刀加工长为70mm 。同时为了保证带轮与轴之间配合有良好的对中性,故选择带轮与轴之间的配合 为 67 n H ,同样齿轮与轴的连接用平键14639??,齿轮与轴之间的配合为6 7n H 轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差为m6。 (4)确定轴上圆角和倒角尺寸 参考[2]表15-2取轴端倒角为2??45.其他轴肩处圆觉角见图。 5.求轴上的载荷 先作出轴上的受力图以及轴的弯矩图和扭矩图7-2

直齿锥齿轮传动计算例题

例题10-3试设计一减速器中的直齿锥齿轮传动。已知输入功率P=10kw,小齿轮转速n1=960r/min,齿数比u=3.2,由电动机驱动,工作寿命15年(设每年工作300天),两班制,带式输送机工作平稳,转向不变。 [解]1.选定齿轮类型、精度等级、材料及齿数 (1)选用标准直齿锥齿轮齿轮传动,压力角取为20°。 (2)齿轮精度和材料与例题10-1同。 (3)选小齿轮齿数z1=24,大齿轮齿数z2=uz1=3.224=76.8,取z2=77。 2.按齿面接触疲劳强度设计 (1)由式(10-29)试算小齿轮分度圆直径,即 1) =1.3 计算小齿轮传递的转矩。 9.948 选取齿宽系数=0.3。 查得区域系数 查得材料的弹性影响系数。 [] 由图 由式( , 由图10-23查取接触疲劳寿命系数 取失效概率为1%,安全系数S=1,由式(10-14)得 取和中的较小者作为该齿轮副的接触疲劳许用应力,即

2)试算小齿轮分度圆直径 (2) 1 3.630m/s ②当量齿轮的齿宽系数 0.342.832mm 2) ①由表查得使用系数 ②根据级精度(降低了一级精度) ④由表 由此,得到实际载荷系数 3)由式(10-12),可得按实际载荷系数算得的分度圆直径为 及相应的齿轮模数 3.按齿根弯曲疲劳强度设计 (1)由式(10-27)试算模数,即

1)确定公式中的各参数值。 ①试选 ②计算 由分锥角 由图 由图 由图查得小齿轮和大齿轮的齿根弯曲疲劳极限分别为 由图取弯曲疲劳寿命系数 ,由式(10-14)得 因为大齿轮的大于小齿轮,所以取 2)试算模数。 =1.840mm

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中 点处的当量齿轮作为计算的依据。对轴交角 刀=90。的直齿锥齿轮传动,其齿数 比u 、锥距&图<直齿锥齿轮传动的几何参数 >)、分度圆直d i , d 2、平均分度圆直 径d mi, d m2当量齿轮的分度圆直径d vi , d v2之间的关系分别为: Zj "亠 =■? 现以g 表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿 的模数(简称平均模数),则当量齿数 z v 为 (a) 丘二胆*勇诃娠屁丙pl 2 2 1 _________________ R (b) V 2 2 _ dm2 _ R - ~ = ~R - 令? R =b/R,称为锥齿轮传动的齿宽系数,通常取 ? R =0.25-0.35,最常用的值为 ~c = ? R =1/3 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v 与平均 分度圆直 径d m 的关 系式为 AjIL 2cos8 --(e) 直齿锥齿轮传动的几何参数

(0 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d)极易得出平均模数mm和大端模数m的关系为 111^=111(1-0.5^)------------------------------------ (h) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图 OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根高,过点A作直线AO丄AO与圆锥齿轮轴线交于点O,设想以OO为轴线,OA为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A、B附近背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

齿轮轴的设计及加工工艺

浙江科技学院 本科毕业设计 (2013届) 题目螺旋输送机驱动轴设计及制造学院机械与汽车工程学院 专业材料成型与控制工程 班级材料092 学号109012050 学生姓名杨鹏飞 指导教师奚基学 完成日期2013年5 月14 号

螺旋输送机驱动轴设计及制造 学生姓名:杨鹏飞指导教师:奚基学 浙江科技学院机械学院 摘要 随着工业生产的发展,螺旋输送机的应用越来越广泛,但由于具体工作环境的不同,技术参数的不同,对螺旋输送机的一些组成设备要求也不一样。本文通过对螺旋输送机的结构,发展历程的分析,然后就对螺旋输送机性能影响较大的部分,即驱动轴作了详细的设计说明,并对轴的加工工艺做了分析。最终设计出了一种主要用于输螺旋输送机驱动端的驱动轴 关键词:螺旋输送机驱动轴加工工艺

浙江科技学院毕业设计 II II

Design of Screw Conveyor Live Axle and Product Student: Yang Pengfei Advisor: Dr. Xi Jixue School of Mechanical and Automotive Engineering Zhejiang University of Science and Technology Abstract With the development of the industry, the flexible screw conveyors are used more and more widespread, but because the concrete working conditions are different, so the leak-proof requests of spiral conveyer are different too. Through different plan contrast, This article has chosen one kind of perfect plan considering the efficiency, structure compact and the usable angle embarked. Then explaned two major parts- the reducting gear and the screw shaft detailedly that h ave large affects on the flexible screw conveyer’ performance,and has given the brief explanation to the flexible screw conveyer’s seal and lubrication. At last ,a high quality flexible screw conveyor was desiganed out,which is primarily used to transport the cement, seal completely , work safely, have high efficiency and long work life, and can proceeds the cement during the course of transporting. Key words: Screw Conveyor Live Axle Processing technic

弧齿锥齿轮几何参数设计分解

弧齿锥齿轮几何参数设计分解

————————————————————————————————作者:————————————————————————————————日期: ?

第14章 弧齿锥齿轮的轮坯设计 14.1 弧齿锥齿轮的基本概念 14.1.1 锥齿轮的节锥 对于相交轴之间的齿轮传动,一般采用锥齿轮。锥齿轮有直齿锥齿轮和弧齿锥齿轮。弧齿锥齿轮副的形式如图14-1所示,与直齿锥齿轮相比,轮齿倾斜呈弧线形。但弧齿锥齿轮的节锥同直齿锥齿轮的节锥一样,相当于一对相切圆锥面作纯滚动,它是齿轮副相对运动的瞬时轴线绕齿轮轴线旋转形成的(图14-2)。两个相切圆锥的公切面成为齿轮副的节平面。齿轮轴线与节平面的夹角,即节锥的半锥角称为锥齿轮的节锥角δ1或δ2。两齿轮轴线之间的夹角称为锥齿轮副的轴交角∑。节锥任意一点到节锥顶点O 的距离称为该点的锥距Ri ,节点P 的锥距为R 。因锥齿轮副两个节锥的顶点重合,则 21δδ+=∑ 大小轮的齿数之比称为锥齿轮的传动比 1 2 12z z i = (14-1) 小轮和大轮的节点半径r1、r 2分别为 11sin δR r = 22sin δR r = (14-2) 它们与锥齿轮的齿数成正比,即 1 2 1212sin sin z z r r ==δδ (14-3) 传动比与轴交角已知,则节锥可惟一的确定,大、小轮节锥角计算公式为 ∑ +∑ = cos 1sin 12122i i tg δ 21δδ-∑= (14-4) 当0 90 =∑时,即正交锥齿轮 副,122i tg =δ 14.1.2弧齿锥齿轮的旋向与螺旋角 图14-2 锥齿轮的 (a) 左旋 图14-1 弧齿锥

弧齿锥齿轮几何参数设计

弧齿锥齿轮几何参数设计

————————————————————————————————作者: ————————————————————————————————日期: ?

第14章 弧齿锥齿轮的轮坯设计 14.1 弧齿锥齿轮的基本概念 14.1.1 锥齿轮的节锥 对于相交轴之间的齿轮传动,一般采用锥齿轮。锥齿轮有直齿锥齿轮和弧齿锥齿轮。弧齿锥齿轮副的形式如图14-1所示,与直齿锥齿轮相比,轮齿倾斜呈弧线形。但弧齿锥齿轮的节锥同直齿锥齿轮的节锥一样,相当于一对相切圆锥面作纯滚动,它是齿轮副相对运动的瞬时轴线绕齿轮轴线旋转形成的(图14-2)。两个相切圆锥的公切面成为齿轮副的节平面。齿轮轴线与节平面的夹角,即节锥的半锥角称为锥齿轮的节锥角δ1或δ2。两齿轮轴线之间的夹角称为锥齿轮副的轴交角∑。节锥任意一点到节锥顶点O 的距离称为该点的锥距R i ,节点P 的锥距为R 。因锥齿轮副两个节锥的顶点重合,则 21δδ+=∑ 大小轮的齿数之比称为锥齿轮的传动比 1 2 12z z i = (14-1) 小轮和大轮的节点半径r 1、r 2分别为 11sin δR r = 22sin δR r = (14-2) 它们与锥齿轮的齿数成正比,即 1 2 1212sin sin z z r r ==δδ (14-3) 传动比与轴交角已知,则节锥可惟一的确定,大、小轮节锥角计算公式为 ∑ +∑ = cos 1sin 12122i i tg δ 21δδ-∑= (14-4) 当0 90 =∑时,即正交锥齿轮 副,122i tg =δ 图14-2 锥齿轮的 (a) 左旋 图14-1 弧齿锥

六、硬齿面直齿锥齿轮传动设计步骤

三、硬齿面直齿轮传动设计步骤(精密机械设计) 已知:传动功率P ,转速1n 、2n (或传动比ⅰ,齿数比u);齿 作小时数,使用年限等。 设计:齿轮的材料、热处理及主要尺寸等 步骤: 1. 选择齿轮材料、热处理及硬度、精度等级(一般为6~9级)、齿数Z 1 一般:HRC 1可以等于HRC 2,也可以HRC 1>HRC 2,即HBS 1,HBS 2>350HBS 选:Z 1=20~40(闭式) Z 1=17~20(开式) 则:112arctg z z δ= 2190δδ=?- 2. 确定许用应力 1)许用接触应力 式(8—39)[]lim H b H H L H K S σσ= ①由表8-10查lim 1H b σ、lim 1H b σ,并取二者之间的小值计算[]H σ ②取安全系数H S , (课本:171P ) ③计算应力循环次数 H N = 60nt, (n 是与[]H σ相对应的齿轮转速) ④由图8-41查循环基数 HO N ⑤计算 6 HO HL H N K N = 当H N > HO N 时,取HL K = 1 ⑥计算[]H σ 2)许用弯曲应力 式(8-46)[]lim F b F FC FL F K K S σσ= ①由表8-11查1lim F b σ ,2lim F b σ②取安全系数F S (课本:174P ) ③取FC K (课本:174P ) ④计算FL K 一般:FV N = H N , FO N = 4 × 610 计算 FL K 当HBS >350时,9 FO FL FV N K = 1 N ≥,但≤1.6 (课本:P 174) ⑤计算[]1F σ , []2F σ

齿轮结构设计

齿轮结构设计 齿轮结构设计主要确定齿轮的轮缘、轮毂及腹板(轮辐)的结构形式和尺寸大小。结构设计通常要考虑齿轮的几何尺寸、材料、使用要求、工艺性及经济性等因素,确定适合的结构型式,再按设计手册荐用的经验数据确定结构尺寸。齿轮结构形式有以下四种: 1.齿轮轴 当齿轮的齿根圆到键槽底面的距离e很小,如圆柱齿轮e≤2.5mn(下图一a),圆锥齿轮的小端e≤1.6m(下图一b),为了保证轮毂键槽足够的强度,应将齿轮与轴作成一体,形成齿轮轴,如下图二所示。 齿轮轴 2. 实心齿轮 当齿顶圆直径da≤200mm或高速传动且要求低噪声时,可采用上图一的实心结构。实心齿轮和齿轮轴可以用热轧型材或锻造毛坯加工。 3. 辐板式齿轮 对于齿顶圆直径da≤500mm时,可采用辐板式结构,以减轻重量、节约材料。通常多选用锻造毛坯,也可用铸造毛坯及焊接结构。有时为了节省材料或解决工艺问题等,而采用组合装配式结构,如过盈组合和螺栓联结组合。 腹板式齿轮(锻造)

腹板式锥齿轮 双腹板焊接齿轮 过盈、螺栓联接组合 4. 轮辐式齿轮 对于齿轮直径时,采用轮辐式结构。受锻造设备的限制,轮辐式齿轮多为铸造齿轮。轮辐剖面形状可以采用椭圆形(轻载)、十字形(中载)、及工字形(重载)等。

轮辐式齿轮(锻造)轮结构设计主要确定齿轮的轮缘、轮毂及腹板(轮辐)的结构形式和尺寸大小。结构设计通常要考虑齿轮的几何尺寸、材料、使用要求、工艺性及经济性等因素,确定适合的结构型式,再按设计手册荐用的经验数据确定结构尺寸。齿轮结构形式有以下四种: 1. 齿轮轴 当齿轮的齿根圆到键槽底面的距离e很小,如圆柱齿轮e≤2.5mn(下图一a),圆锥齿轮的小端e≤1.6m(下图一b),为了保证轮毂键槽足够的强度,应将齿轮与轴作成一体,形成齿轮轴,如下图二所示。 齿轮轴 2. 实心齿轮 当齿顶圆直径da≤200mm或高速传动且要求低噪声时,可采用上图一的实心结构。实心齿轮和齿轮轴可以用热轧型材或锻造毛坯加工。 3. 辐板式齿轮 对于齿顶圆直径da≤500mm时,可采用辐板式结构,以减轻重量、节约材料。通常多选用锻造毛坯,也可用铸造毛坯及焊接结构。有时为了节省材料或解决工艺问题等,而采用组合装配式结构,如过盈组合和螺栓联结组合。 腹板式齿轮(锻造)

锥齿轮传动设计说明书

毕业设计说明书 专业:机械制造与自动化 班级:机制3081班 姓名:弓宏国 学号:11308123 指导老师:白福民 陕西国防工业职业技术学院

目录 第一部分工艺设计说明书 (4) ………… 第二部分第17号工序夹具设计说明书 (13) ………… 第三部分第7 号工序刀具设计说明书 (15) ………… 第四部分第17号工序量具设计说明书 (17) ………… 第五部分毕业设计体会 (18) ………… 第六部分参考资料 (19)

二O一O届毕业设计(论文)任务书 专业:机械制造与自动化班级:机制3081班姓名:钟磊学号:11308110一、设计题目(见附图): 锥齿轮传动(CL24-A)零件机械加工工艺规程制订及第17工序工艺装备设计。 二、设计条件: l、零件图;2、生产批量:中批量生产。 三、设计内容: 1、零件图分析:l)、零件图工艺性分析(结构工艺性及技术条件分析);2)、绘制零件图; 2、毛坯选择:1)、毛坯类型;2)、余量确定;3)、毛坯图。 3、机械加工工艺路线确定:1)、加工方案分析及确定;2)、基准的选择;3)、绘制加工工艺流程图(确定定位夹紧方案)。 4、工艺尺寸及其公差确定:1)、基准重合时(工序尺寸关系图绘制);2)、利用尺寸关系图计算工序尺寸;3)、基准不重合时(绘制尺寸链图)并计算工序尺寸。 5、设备及其工艺装备确定: 6、切削用量及工时定额确定:确定每道工序切削用量及工时定额。 7、工艺文件制订:1)、编写工艺设计说明书;2)、填写工艺规程;(工艺过程卡片和工序卡片) 8、指定工序机床夹具设计:1)、工序图分析;2)、定位方案确定;3)、定位误差计算;4)、夹具总装图绘制,绘制夹具中所有非标零件图。 9、刀具、量具没计。(绘制刀具量具工作图) 四、上交资料(全部为电子文稿): 1、零件机械加工工艺规程制订设计说明书一份;(按统一格式撰写) 2、工艺文件一套(含工艺流程卡片、每一道工序的工序卡片含工序附图); 3、机床夹具设计说明书一份;(按统一格式撰写) 4、夹具总装图一张(A4图纸);零件图两张(A4图纸); 5、刀量具设计说明书一份;(按统一格式撰写) 6、刀具工作图一张(A4图纸);量具工作图一张(A4图纸)。 五、起止日期: 2 010年11月1日一2 01 年月日(共周) 六、指导教师: 七、审核批准: 教研室主任:系主任: 年月日 八、设计评语: 九、设计成绩: 年月日

锥齿轮的设计说明

(2)传动方案 本次设计的山地割草机的传动部分主要是长轴带动锥齿轮转动,锥齿轮带动另一锥齿轮转动并且改变方向,最后传到到割刀转动,将苜蓿的根部草割断。传动部分的设计主要是对齿轮的设计 齿轮传动的类型 齿轮传动就装置形式分: 1)开式、半开式传动在农业机械、建筑机械以及简易的机械设备中,有一些齿轮传动没有防尘罩或机壳,齿轮完全暴露在外边,这叫开式齿轮传动。这种传动不仅外界杂物极易侵入,而且润滑不良,因此工作条件不好,轮齿也容易磨损,故只宜用于低速传动。齿轮传动装有简单的防护罩,有时还把大齿轮部分地浸入油池中,则称为半开式齿轮传动。它工作条件虽有改善,但仍不能做到严密防止外界杂物侵入,润滑条件也不算最好。 2)闭式传动而汽车、机床、航空发动机等所用的齿轮传动,都是装在经过精确加工而且封闭严密的箱体(机匣)的,这称为闭式齿轮传动(齿轮箱)。它与开式或半开式的相比,润滑及防护等条件最好,多用于重要的场合。 本次设计的推移式割草机割草总成部分尺寸比较小,传动齿轮尺寸和质量比较小,转速比较高,且没有防护罩,如果选用开式容易损坏其寿命,因此齿轮传动选用闭式传动。 齿轮的设计准则 齿轮传动是靠齿与齿的啮合进行工作的,轮齿是齿轮直接参与工作的部分,所以齿轮的失效主要发生在轮齿上。主要的失效形式有轮齿折断、齿面点蚀、齿面磨损、 齿面胶合以及塑性变形等。 齿轮传动的失效形式不大可能同时发生,但却是互相影响的。例如齿面的点蚀会加剧齿面的磨损,而严重的磨损又会导致轮齿折断。在一定条件下,由于上述第一、二种失效形式是主要的,因此设计齿轮传动时,应根据实际工作条件分析其可能发生的主要失效形式,以确定相应的设计准则。 齿轮传动的强度计算是根据齿轮可能出现的失效形式进行的。对一般齿轮传

直齿锥齿轮设计步骤

直齿锥齿轮的设计步骤(精密机械设计) 已知:传动功率P ,转速1n 、2n (或传动比ⅰ,齿数比u);齿 小时数,使用年限等。 设计:齿轮的材料、热处理及主要尺寸等 步骤: 1、 选择齿轮材料:大小齿轮材料、热处理、硬度(查表7—8)、选择精度等级(一般6~9级) 根据设计要求,可以取软齿面,也可以取硬齿面。 软齿面是指:HBW1,HBW2≤350,或HBW1>350,HBW2<350 注意:HBW1=HBW2+(30~50) (1为小齿轮、2为大齿轮) 硬齿面是指:HRC 1可以等于HRC 2,也可以HRC 1>HRC 2,即HBW 1,HBW 2>350HBW 112arctgi δ= 1290δδ=- 2、确定许用应力 1)许用接触应力 式(7—24) []l i m H b H H L H K S σσ= ①由表7-8查lim 1H b σ、lim 1H b σ,并取二者之间的小值计算[]H σ ②取安全系数H S , (课本:P145) ③计算应力循环次数 H N = 60nt, (n 是与[]H σ相对应的齿轮转速) ④由图7-35查循环基数0H N ⑤计算H L K = 当H N >0H N 时,取H L K =1 ⑥计算[]H σ 2)许用弯曲应力 式(7-30)[]lim F b F FC FL F K K S σσ= ①由表7-9查1 lim F b σ ,2 lim F b σ ②取安全系数F S (课本:P148) ③取FC K (课本:P148) ④计算F L K FV N = H N ,0F N =4×6 10 计算 F L K = ≥1但≤2 (课本:P148) ⑤计算[]1F σ , []2F σ 3、计算工作转矩 6 111 T =9.5510 P n ? (单位:P 1:KW ;n 1:rpm ;T 1:Nmm 。有时T 1是已知的不用计算) 4、根据接触强度,试求小齿轮分度圆直径1m d m1d d K = 初步计算时,取d K =;1d m b d ψ= 一般:()d ψ =0.30.6 由图7-32查K β; 求出试算值1m t d 。

直齿锥齿轮传动计算例题

例题10-3 试设计一减速器中的直齿锥齿轮传动。已知输入功率P=10kw,小齿轮转速n1=960r/min,齿数比u=3.2,由电动机驱动,工作寿命15年(设每年工作300天),两班制,带式输送机工作平稳,转向不变。 [解] 1.选定齿轮类型、精度等级、材料及齿数 (1)选用标准直齿锥齿轮齿轮传动,压力角取为20°。 (2)齿轮精度和材料与例题10-1同。 (3)选小齿轮齿数z1=24,大齿轮齿数z2=uz1=3.224=76.8,取z2=77。 2.按齿面接触疲劳强度设计 (1)由式(10-29)试算小齿轮分度圆直径,即 1)确定公式中的各参数值。 ①试选=1.3。 ②计算小齿轮传递的转矩。 9.948 ③选取齿宽系数=0.3。 ④由图10-20查得区域系数。 ⑤由表10-5查得材料的弹性影响系数。 ⑥计算接触疲劳许用应力[]。 由图10-25d查得小齿轮和大齿轮的接触疲劳极限分别为 ,。 由式(10-15)计算应力循环次数: , 由图10-23查取接触疲劳寿命系数,。 取失效概率为1%,安全系数S=1,由式(10-14)得 取和中的较小者作为该齿轮副的接触疲劳许用应力,即 2)试算小齿轮分度圆直径

(2)调整小齿轮分度圆直径 1)计算实际载荷系数前的数据准备。 ①圆周速度 3.630m/s ②当量齿轮的齿宽系数。 0.342.832mm 2)计算实际载荷系数。 ①由表10-2查得使用系数。 ②根据Vm=3.630m/s、8级精度(降低了一级精度),由图10-8查得动载系数Kv=1.173。 ③直齿锥齿轮精度较低,取齿间载荷分配系数。 ④由表10-4用插值法查得7级精度、小齿轮悬臂时,得齿向载荷分布系数 。 由此,得到实际载荷系数 3)由式(10-12),可得按实际载荷系数算得的分度圆直径为 及相应的齿轮模数 3.按齿根弯曲疲劳强度设计 (1)由式(10-27)试算模数,即 1)确定公式中的各参数值。 ①试选。

轴的结构设计范例

四、低速轴系的结构设计 1、根据轴的工作条件,选择材料及热处理方法,确定许用应力,由(二)(三)已算得从动齿轮转速n 2=71.7r/min 。齿轮分度圆直径d 2=360mm 。选用45号钢调质。查①表11-1得抗拉强度MPa 650b =σ,查①表11-9得许用弯曲应力[]MPa 60b 1=-σ。 2、按扭转强度估算最小直径 由(二)知,P 2=3.87kw ,T 2=516.1N.m 查①表11-5取A=110,按①式(11-3)计算得: mm 57.417 .7187.3110n P A d 33 2==≥ 考虑轴和联轴器用一个键联接,故将轴放大5%并取标准值,即取d=45mm 。 3、轴的结构设计 (1)将轴设计成阶梯轴,按T=516.1N.m ,从②查用TL8型弹性联轴器,孔径为45mm ,长L=112mm ,与轴头配合长度为84mm 。取轴头直径为45mm ,故靠近轴头的轴身直径为52mm ,轴颈直径取55mm 。轴两端选用6011型轴承,轴承宽度B=18mm ,外径D=90mm 。轴承由套筒和轴肩实现轴向定位,圆角r=1mm 。取齿轮轴头直径为60mm ,定位环高度h=5mm ,其余圆角r=1.5mm ,挡油盘外径取D=89mm 。 (2)在(三)已经求得轮毂长为90mm ,因此轴头长度为88mm ,轴颈长度与轴承宽度相等为18mm ,齿轮两端与箱体内壁间距离各取15mm ,由于转速较低,故轴承用润滑脂,所以轴承端面与箱体内壁距离取10mm 。这样可定出跨距为158mm 。伸出箱体的轴段长度取44mm 。为了保证轴端挡圈只压在半联轴器上,应将头长度取短一些,故取轴头长度为75mm 。 3、由于是单级齿轮减速器,因此齿轮布置在中央,轴承对称布置,齿轮与轴环、套筒实现轴向定位,以平键联接及选用过渡配合H7/n6实现周向固定。齿轮轴头有装配锥度,两端轴承分别以轴肩和套筒实现轴向定位,采用过盈配合k6实现周向固定。整个轴系以两端轴承盖实现轴向定位,联轴器以轴肩、平键和选用过渡配合H7/k6实现轴向定位和周向固定。 4、草图如下:

直齿锥齿轮传动设计

锥齿轮是圆锥齿轮的简称,它用来实现两相交轴之间的传动,两轴交角S称为轴角,其值可根据传动需要确定,一般多采用90°。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,如下图所示。由于这一特点,对应于圆柱齿轮中的各有关"圆柱"在锥齿轮中就变成了"圆锥",如分度锥、节锥、基锥、齿顶锥等。锥齿轮的轮齿有直齿、斜齿和曲线齿等形式。直齿和斜齿锥齿轮设计、制造及安装均较简单,但噪声较大,用于低速传动(<5m/s);曲线齿锥齿轮具有传动平稳、噪声小及承载能力大等特点,用于高速重载的场合。本节只讨论S=90°的标准直齿锥齿轮传动。 1. 齿廓曲面的形成 直齿锥齿轮齿廓曲面的形成与圆柱齿轮类似。如下图所示,发生平面1与基锥2相切并作纯滚动,该平面上过锥顶点O的任一直线OK的轨迹即为渐开锥面。渐开锥面与以O为球心,以锥长R为半径的球面的交线AK为球面渐开线,它应是锥齿轮的大端齿廓曲线。但球面无法展开成平面,这就给锥齿轮的设计制造带来很多困难。为此产生一种代替球面渐开线的近似方法。 2. 锥齿轮大端背锥、当量齿轮及当量齿数

(1) 背锥和当量齿轮 下图为一锥齿轮的轴向半剖面,其中DOAA为分度锥的轴剖面,锥长OA称锥距,用R表示;以锥顶O为圆心,以R为半径的圆应为球面的投影。若以球面渐开线作锥齿轮的齿廓,则园弧bAc为轮齿球面大端与轴剖面的交线,该球面齿形是不能展开成平面的。为此,再过A作O1A⊥OA,交齿轮的轴线于点O1。设想以OO1为轴线,以O1A为母线作圆锥面O1AA,该圆锥称为锥齿轮的大端背锥。显然,该背锥与球面切于锥齿轮大端的分度圆。由于大端背锥母线1A与锥齿轮的分度锥母线相互垂直,将球面齿形的圆弧bAc投影到背锥上得到线段b'Ac',圆弧bAc与线段b'Ac'非常接近,且锥距R与锥齿轮大端模数m之比值愈大(一般R/m>30),两者就更接近。这说明:可用大端背锥上的齿形近似地作为锥齿轮的大端齿形。由于背锥可展开成平面并得到一扇形齿轮,扇形齿轮的模数m、压力角a和齿高系数ha*等参数分别与锥齿轮大端参数相同。再将扇形齿轮补足成完整的直齿圆柱齿轮,这个虚拟的圆柱齿轮称为该锥齿轮的大端当量齿轮。这样就可用大端当量齿轮的齿形近似地作为锥齿轮的大端齿形,即锥齿轮大端轮齿尺寸(ha、hf等)等于当量齿轮的轮齿尺寸。 (2) 基本参数 由于直齿锥齿轮大端的尺寸最大,测量方便。因此,规定锥齿轮的参数和几何尺寸均以大端为准。大端的模数m的值为标准值,按下表选取。在GB12369-90中规定了大端的压力角a=20。,齿顶高系数ha*=1,顶隙系数c*=0.2。 (3) 当量齿数 当量齿轮的齿数zv称为锥齿轮的当量齿数。zv与锥齿轮的齿数z的关系可由上图求出,由图可得当量齿轮的分度圆半径rv

五软齿面直齿锥齿轮设计步骤(精)

一、软齿面直齿轮设计步骤(精密机械设计) 已知:传动功率P ,转速1n 、2n (或传动比ⅰ,齿数比u);齿轮的布置情况、载荷情况,每天工作小时数,使用年限等。 设计:齿轮的材料、热处理及主要尺寸等 步骤: 1、 选择齿轮材料:大小齿轮材料、热处理、硬度(查表8—7)、选精度等级(一般6~9级) 软齿面是指:HBS1,HBS2≤350,或HBS1>350,HBS2<350 注意:HBS1=HBS2+(30~50) (1为小齿轮、2为大齿轮) 2、确定许用应力 1)许用接触应力 式(8—39) []l i m H b H H L H K S σσ= ①由表8-10查lim 1H b σ、lim 1H b σ,并取二者之间的小值计算[]H σ ②取安全系数H S , (课本:171P ) ③计算应力循环次数 H N = 60nt, (n 是与[]H σ相对应的齿轮转速) ④由图8-41查循环基数HO N ⑤计算 HL K = 当H N >HO N 时,取HL K =1 ⑥计算[]H σ 2)许用弯曲应力 式(8-46)[]lim F b F FC FL F K K S σσ= ①由表8-11查1 lim F b σ ,2 lim F b σ ②取安全系数F S (课本:174P ) ③取FC K (课本:174P ) ④计算FL K 一般:FV N = H N , FO N =4×6 10 计算 FL K = (课本:P174)

⑤计算[]1F σ , []2F σ 3、计算工作转矩 6 T=9.5510 P n ? (单位:P:KW ;n:rpm ;T :Nmm 。有时T 是已知的不用计算) 4、根据接触强度,求小齿轮分度圆直径 式 (8-52) m1d d K = 初步计算时,取84d K =;d m b d ψ=。一般:()d ψ =0.30.6 由图8-38查K β 求出1m d ,计算 1 m d b d ψ = 取整后,作为齿轮的宽度,注意:1 2b b = 实际的2 1d m b d ψ= (精确值) 选1Z , 一般120~40Z =(闭式传动);开式传动 117~20Z = 计算2Z ,21Z uZ = 取整数,于是: 112arctg z z δ= 2190δδ=?- 5、精确验算接触应力 式(8-51) []H H E H Z Z Z ε σσ=≤ 取 1.76, H z = 1z ε= E z = 计算圆周速度11 1601000 m m d n v m s π= ? 由图 8-39 查v k (依据精确等级和圆周速度) 代入以上各量及实际的d ψ,计算H σ是否小于[]H σ。如不满足,重新增加直径1m d . 6、验算齿根弯曲应力 式()853- 12120. 85F F m d m T K K Y d m βνσψ = 由111 cos v z Z δ= 2 22cos v z Z δ=,查图844-,得1F Y 2F Y

圆锥齿轮参数设计

圆锥齿轮参数设计 0.概述 锥齿轮是圆锥齿轮的简称,它用来实现两相交轴之间的传动,两轴交角S称为轴角,其值可根据传动需要确定,一般多采用90°。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,如下图所示。由于这一特点,对应于圆柱齿轮中的各有关"圆柱"在锥齿轮中就变成了"圆锥",如分度锥、节锥、基锥、齿顶锥等。锥齿轮的轮齿有直齿、斜齿和曲线齿等形式。直齿和斜齿锥齿轮设计、制造及安装均较简单,但噪声较大,用于低速传动(<5m/s);曲线齿锥齿轮具有传动平稳、噪声小及承载能力大等特点,用于高速重载的场合。本节只讨论S=90°的标准直齿锥齿轮传动。 1. 齿廓曲面的形成 直齿锥齿轮齿廓曲面的形成与圆柱齿轮类似。如下图所示,发生平面1与基锥2相切并作纯滚动,该平面上过锥顶点O的任一直线OK的轨迹即为渐开锥面。渐开锥面与以O为球心,以锥长R为半径的球面的交线AK为球面渐开线,它应是锥齿轮的大端齿廓曲线。但球面无法展开成平面,这就给锥齿轮的设计制造带来很多困难。为此产生一种代替球面渐开线的近似方法。 2. 锥齿轮大端背锥、当量齿轮及当量齿数 (1) 背锥和当量齿轮 下图为一锥齿轮的轴向半剖面,其中DOAA为分度锥的轴剖面,锥长OA称锥距,用R 表示;以锥顶O为圆心,以R为半径的圆应为球面的投影。若以球面渐开线作锥齿轮的齿廓,则园弧bAc为轮齿球面大端与轴剖面的交线,该球面齿形是不能展开成平面的。为此,再过A作O1A⊥OA,交齿轮的轴线于点O1。设想以OO1为轴线,以O1A为母线作圆锥面O1AA,该圆锥称为锥齿轮的大端背锥。显然,该背锥与球面切于锥齿轮大端的分度圆。由于大端背锥母线1A与锥齿轮的分度锥母线相互垂直,将球面齿形的圆弧bAc投影到背锥上得到线段 b'Ac',圆弧bAc与线段b'Ac'非常接近,且锥距R与锥齿轮大端模数m之比值愈大(一般R/m>30),两者就更接近。这说明:可用大端背锥上的齿形近似地作为锥齿轮的大端齿形。由于背锥可展开成平面并得到一扇形齿轮,扇形齿轮的模数m、压力角a和齿高系数ha*等参数分别与锥齿轮大端参数相同。再将扇形齿轮补足成完整的直齿圆柱齿轮,这个虚拟的圆

轴的结构设计

例1 已知传递的功率P=3.32kw,从动轮的转速n=76.4r/min,直齿圆柱齿轮分度圆直 径d2=250mm,传递的转矩T=415.82Nm (1)选择轴的材料确定许用应力 由已知条件知减速器传递的功率属于中小功率,材料无特殊要求,故选用45#钢调质处理,由表6-1查得强度极限σB=650Mpa,许用弯曲应力【σ-1b】=60Mpa (2)按扭矩强度估算直径 根据表6-2得C=118~107,又由式(6-5)得d≥c(p/n)1/3 =(107~118)×(3.32/76.4)1/3=37.6~41.5mm 考虑到轴的最小直径处要求安装联轴器,会有键槽存在,故将计算直径加3%~5%取38.73~41.5mm,由设计手册取标准直径d1=42mm (3)设计轴的结构并绘制草图 由于设计的是单级减速器,可将齿轮布置在箱体内部中央,将轴承对称安装在齿轮两 侧轴的外伸端安装半联轴器。 1)、确定轴上零件的位置和固定方式,要确定轴的结构形状,必须确定轴上零件的装 拆顺序和固定方式,确定齿轮从右端装入,齿轮的左端用轴肩(或轴环)定位,右端 用套筒固定,这样齿轮在轴上的轴向位置完全被确定,齿轮的周向固定采用平键联接, 轴承对称安装于齿轮的两侧,其轴向用轴肩固定,周向固定采用过盈配合。 2)、确定各轴段的直径,如图所示,轴段a(外伸端)直径最小,d1=42mm,考虑到要对 安装在轴段a上的联轴器进行定位,轴段b上应有轴肩,同时为能很顺利地在轴段c、 f 上安装轴承,轴段c、f必须满足轴承的内径的标准,故取轴段c、f的直径分别为 d3=55mm d6=55mm,用相同的方法确定轴段b、d、e的直径d2=50mm d4 =60mm d5=68mm,选用6211轴承。 3)、确定各轴段的长度,齿轮的轮毂宽为72mm,为保证齿轮固定可靠,轴段d的长度 应略短于齿轮轮毂宽,取L4=70mm。为保证齿轮端面与箱体内壁不相碰,齿轮端面与箱 体内壁间应留有一定的间距取该间距为13mm。为保证轴承安装在轴承座孔中(轴承宽 度为21mm)并考虑轴承的润滑,取轴承端面距箱体内壁的距离为5mm。所以轴段e的 长度L5=18mm, 轴段f的长度L6=20mm。轴段c由轴承安装的对称性知,L3=40mm,轴段 b的长度L2=66mm,轴段 a的长度由联轴器的长度确定得L1=83mm(由轴颈d1=42mm知联 轴器和轴配合部分的长度为84mm),在轴段a 、d 上分别加工出键槽,使两键槽处于轴 的同一圆柱母线上,键槽的长度比相应的轮毂宽度小约5—10mm,键槽的宽度按轴段直 径查手册得到,a处选用平键12×8×70,d处选用平键18×11×60。 4)、选定轴的结构细节,如圆角、倒角、退刀槽等的尺寸。

直齿圆柱齿轮传动轴的轴承组合设计原版

直齿圆柱齿轮传动轴的轴承组合设计设计计算 说明书5 学号:姓名:杜荣荣 b=80mm m=3mm n已知:=137r/min P= z=101 2l=65mm L=160mm a=80mm c=100mm 、计算受力1p52.44= N?mm =95510×T=955×10×n1372d=mz=3×101=303mm 1x T174270.122F=== N t d3031F=Ftanα=×tan20°= N ?tr2、选择轴的材料 用45钢,调质。由表12-2查得C=107~118。 3、估算轴径 p2.5=112×= ,由轴径选择键A8×7=取C=112,dC×57 GB/T1096-33min n1372003。 考虑键槽的影响,则d=×=。min4、结构设计 (1)为便于轴承部件的装拆,机体采用剖分式结构。因传递的功率小, 齿轮减 速器效率高, 发热小,估计轴不会长,轴承部件的固定方式可采用两端固定方式。由此,所设计的轴承部件的结构形式如图所示。然后,可按轴上零件的安装顺序, 从d处开始设计。min(2)=65mm,轴段①长度ld就是轴段①的直径,d=1min1(3) 轴段②的直径由密封圈确定,密封圈选用毛毡圈中的轴径为35mm的,则轴段②的直径d=35mm,l=。毛毡圈按标准画法画。22(4) 轴承类型选深沟球轴承,轴段③上安装轴承,查轴承手册,内径d=40mm,外径D=80mm,宽度B=18mm。故轴段③的直径d=40mm,考虑到齿轮中心线3到轴承中点距离a=80mm,故 l=53mm。3(5) 轴段④上安装齿轮,为方便齿轮的安装,d应略大于d,可取 d=44mm。齿443轮左端用套筒端面顶在齿轮左端面上,即靠紧,轴段④的长度l 应比吃轮毂略短,4因齿轮宽度b=80mm,故取l=78mm。由d选择键A12×8×70 GB/T1096- 2003,44t=。 (6) 齿轮右端用轴肩固定,由此可确定轴段⑤的直径。按公式h=~d= ~,取 4d=50mm,l=5mm。55(7) 轴段⑦的直径d=d=40mm,考虑到齿轮中心线到轴承

相关文档