文档视界 最新最全的文档下载
当前位置:文档视界 › X86寄存器组织结构

X86寄存器组织结构

汇编寄存器功能详解

数据寄存器(AX、BX、CX、DX) 1.寄存器AX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、 除、输入/输出等操作,它们的使用频率很高; 2.寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 3.寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次数;在位 操作中,当移多位时,要用CL来指明移位的位数; 4.寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算, 也可用于存放I/O的端口地址; 变址寄存器(SI、DI) 寄存器SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便 指针寄存器(BP、SP) 寄存器BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们主要用于访问堆栈内的存储单元,并且规定: BP为基指针(Base Pointer)寄存器,用它可直接存取堆栈中的数据; SP为堆栈指针(Stack Pointer)寄存器,用它只可访问栈顶 段寄存器(CS、DS、ES、SS、FS、GS) 段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址 CS 代码段寄存器(Code Segment Register),其值为代码段的段值 DS 数据段寄存器(Data Segment Register),其值为数据段的段值; ES 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 SS 堆栈段寄存器(Stack Segment Register),其值为堆栈段的段值; FS 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 GS 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 在16位CPU系统中,它只有4个段寄存器,所以,在此环境下开发的程序最多可同时访问4个段; 在32位CPU系统中,它共有6个段寄存器,所以,在此环境下开发的程序最多可同时访问6个段. 指令指针寄存器 指令指针EIP、IP(Instruction Pointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。 16位标志寄存器 9个标志位,它们主要用来反映CPU的状态和运算结果的特征。 1.进位标志CF(Carry Flag) 进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的 最高位产生了一个进位或借位,那么,其值为1,否则其值为0。 2.奇偶标志PF(Parity Flag)奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为 偶数,则PF的值为1,否则其值为0 3.辅助进位标志AF(Auxiliary Carry Flag) 在发生下列情况时,辅助进位标志AF的值被置为1,否 则其值为0:

计算机组成原理寄存器实验

成绩:计算机原理实验室实验报告 课程:计算机组成原理 姓名:李文周 专业:计算机科学与技术 学号:132054237 日期:2015.12 太原工业学院 计算机工程系

实验二:寄存器实验 实验环境PC机+Win7+74LS373+proteus仿真器实验日期2015.12一.实验内容 (1)基本内容 1.理解CPU运算器中寄存器的作用 2.设计并验证4位算数逻辑单元的功能 (2)扩展要求 1.实现更多的寄存器(至少8个)

二.理论分析或算法分析 74ls373是常用的地址锁存器芯片,它实质是一个是带三态缓冲输出的8D 触发器,在单片机系统中为了扩展外部存储器,通常需要一块74ls373芯片。74ls373工作原理简述: (1).1脚是输出使能(OE),是低电平有效,当1脚是高电平时,不管输入3、4、7、8、13、14、17、18如何,也不管11脚(锁存控制端,G)如何,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)全部呈现高阻状态(或者叫浮空状态); (2).当1脚是低电平时,只要11脚(锁存控制端,G)上出现一个下降沿,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)立即呈现输入脚3、4、7、8、13、14、17、18的状态.锁存端LE由高变低时,输出端8位信息被锁存,直到LE 端再次有效。当三态门使能信号OE为低电平时,三态门导通,允许Q0~Q7输出,OE为高电平时,输出悬空。

L——低电平;H——高电平;X——不定态;Q0——建立稳态前Q的电平;G——输入端,与8031ALE连高电平:畅通无阻低电平:关门锁存。图中OE——使能端,接地。当G=“1”时,74LS373输出端1Q—8Q与输入端1D—8D相同;当G 为下降沿时,将输入数据锁存。 三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)

AD9833详细原理解析汇报(附内部寄存器说明书)

基于AD9833的高精度可编程波形发生器系统设计 来源:国外电子元器件 1 引言 频率合成器在通信、雷达和导航等设备中既是发射机的激励信号源,又是接收机的本地振荡器;在电子对抗设备中可作为干扰信号发生器;在测试设备中则作为标准信号源。因此频率合成器被称为许多电子系统的“心脏”。而设计高精度,易于操作的频率合成器则是核心,因此,这里提出了一种基于DDS AD9833的高精度波形发生器系统解决方案。用户可直接编辑设置所需的波形频率和峰峰值等信息,利用串口将配置信息发送到电路板,实时控制波形。该系统设计已成功应用于某型雷达测速仪测试设备。 2 AD9833简介 AD9833是ADI公司的一款低功耗、DDS器件,能够输出正弦波、三角波、方波。AD9833无需外接元件,输出频率和相位可通过软件编程设置,易于调节。其频率寄存器为28位,主频时钟为25 MHz时,其精度为0.1 Hz;主频时钟为l MHz时.精度可达0.004 Hzt2。 AD9833内部有5个可编程寄存器:1个16位控制寄存器,用于设置器件_T作模式;2个28位频率寄存器和2个12位相位寄存器,分别用于设置器件输出正弦波的频率和相位。AD9833有3根串行接口线,可与SPI,QSPI,MICRO-WIRE 和DSP接口标准相兼容。在串口时钟SCLK的作用下,数据是以16位方式加载至设备。 AD9833的内部电路主要有数控振荡器(NCO)、频率和相位调节器、SineROM、D/A转换器、电压调整器。AD9833的核心是28位的相位累加器,它由加法器和相位寄存器组成,而相位寄存器是按每个时钟增加步长,相位寄存器的输出与相位控制字相加后输入到正弦查询表地址中。正弦查询表包含1个周期正弦波的数字幅值信息,每个地址对应正弦波中O。~360°内的1个相位点。查询表把输入的地址相位信息映射成正弦波幅值的数字量信号,驱动D/A转换器输出模拟量。 输出正弦波频率为: 式中:FREQREG为频率控制字,由频率寄存器FREQOREG或FREQlREG的值给定,其范围为0≤M<228一1。fMCLK为参考时钟频率。 输出正弦波的相位为2π/4 096xPHASEREG,其中PHASEREG是所选相位寄存器的值。输出正弦波的峰峰值固定.约600 mV,且正弦波不是标准正弦波,即波谷是0 V,而不是负电压。因此,输出正弦波为: 式中:K约600 mV,与器件内部参考电压有关。

寄存器(register)

寄存器 Scope of register: 寄存器是CPU内部用来存放数据的一些小型存储区域,用来暂时存放参与运算的数据和运算结果。其实寄存器就是一种常用的时序逻辑电路,但这种时序逻辑电路只包含存储电路。寄存器的存储电路是由锁存器或触发器构成的,因为一个锁存器或触发器能存储1位二进制数,所以由N个锁存器或触发器可以构成N位寄存器。寄存器是中央处理器内的组成部份。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。 1、寄存器- 特点及原理 寄存器又分为内部寄存器与外部寄存器,所谓内部寄存器,其实也是一些小的存储单元,也能存储数据。但同存储器相比,寄存器又有自己独有的特点: ①寄存器位于CPU内部,数量很少,仅十四个; ②寄存器所能存储的数据不一定是8bit,有一些寄存器可以存储16bit数据,对于386/486处理器中的一些寄存器则能存储32bit数据; ③每个内部寄存器都有一个名字,而没有类似存储器的地址编号。 寄存器的功能十分重要,CPU对存储器中的数据进行处理时,往往先把数据取到内部寄存器中,而后再作处理。外部寄存器是计算机中其它一些部件上用于暂存数据的寄存器,它与CPU之间通过“端口”交换数据,外部寄存器具有寄存器和内存储器双重特点。有些时候我们常把外部寄存器就称为“端口”,这种说法不太严格,但经常这样说。 外部寄存器虽然也用于存放数据,但是它保存的数据具有特殊的用途。某些寄存器中各个位的0、1状态反映了外部设备的工作状态或方式;还有一些寄存器中的各个位可对外部设备进行控制;也有一些端口作为CPU同外部设备交换数据的通路。所以说,端口是CPU和外设间的联系桥梁。CPU对端口(Ports)的访问也是依据端口的“编号”(地址),这一点又和访问存储器一样。不过考虑到机器所联接的外设数量并不多,所以在设计机器的时候仅安排了1024个端口

计算机组成原理 实验一 运算器组成实验

实验一运算器组成实验 一、实验目的 1.熟悉双端口通用寄存器堆的读写操作。 2.熟悉简单运算器的数据传送通路。 3.验证运算器74LS181的算术逻辑功能。 4.按给定数据,完成指定的算术、逻辑运算。 二、实验电路 S3 S2 S1 S0 M 图3.1 运算器实验电路 图3.1示出了本实验所用的运算器数据通路图。参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF中。 RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF中保存。双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A端口(左端口)读出的通用寄存器。而WR1、WR0用于选择写入的通用寄存器。LDRi是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。RF的A、

B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。 DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。DR1接ALU 的A输入端口,DR2接ALU的B输入端口。ALU(U31、U35)由两片74LS181构成,ALU的输出通过一个三态门(74LS244)发送到数据总线DBUS上。 实验台上的八个发光二极管DBUS7-DBUS0显示灯接在DBUS上,可以显示输入数据或运算结果。另有一个指示灯C显示运算器进位标志信号状态。 图中尾巴上带粗短线标记的信号都是控制信号,其中S3、S2、S1、S0、M、Cn#、LDDR1、LDDR2、ALU_BUS#、SW_BUS#、LDRi、RS1、RS0、RD1、RD0、WR1、WR0都是电位信号,在本次实验中用拨动开关K0—K15来模拟;T2、T3为时序脉冲信号,印制板上已连接到实验台的时序电路。实验中进行单拍操作,每次只产生一组T1、T2、T3、T4时序脉冲,需将实验台上的DP、DB开关进行正确设置。将DP开关置1,DB开关置0,每按一次QD按钮,则顺序产生T1、T2、T3、T4一组单脉冲。 三、实验设备 1.TEC-5计算机组成实验系统1台 2.逻辑测试笔一支(在TEC-5实验台上) 3.双踪示波器一台(公用) 4.万用表一只(公用) 四、实验任务 1.按图3.1所示,将运算器模块与实验台操作板上的线路进行连接。由于运算器模块 内部的连线已由印制板连好,故接线任务仅仅是完成数据开关、控制信号模拟开 关、与运算器模块的外部连线。注意:为了建立清楚的整机概念,培养严谨的科 研能力,手工连线是绝对必要的。 2.用开关SW7—SW0向通用寄存器堆RF内的R0—R3寄存器置数。然后读出R0—R3 的内容,在数据总线DBUS上显示出来。 3.验证ALU的正逻辑算术、逻辑运算功能。 令DR1=55H,DR2=0AAH,Cn#=1。在M=0和M=1两种情况下,令S3—S0的值从0000B变到1111B,列表表示出实验结果。实验结果包含进位C,进位C由指示灯显示。 注意:进位C是运算器ALU最高位进位Cn+4#的反,即有进位为1,无进位为0。 五、实验要求 1.做好实验预习,掌握运算器的数据传输通路及其功能特性,并熟悉本实验中所用 的模拟开关的作用和使用方法。 2.写出实验报告,内容是: (1)实验目的。 (2)按实验任务3的要求,列表表示出实验结果。 (3)按实验任务4的要求,在表中填写各控制信号模拟开关值,以及运算结果值。 六、实验步骤和实验结果 (1)实验任务2 的实验步骤和结果如下:(假定令R0=34H,R1=21H,R2=52H,R3=65H)1.置DP=1,DB=0,编程开关拨到正常位置。 接线表如下:

ATPCS中寄存器使用

ATPCS中各寄存器的使用规则及其名称 参数传递规则 1. 参数不超过4个时,可以使用寄存器R0~R3来传递参数,当参数超过4个时,还可 以使用数据栈来传递参数。 2. 结果为一个32位整数时,可以通过寄存器R0返回 3. 结果为一个64位整数时,可以通过寄存器R0和R1返回,依次类推。 汇编程序、C程序及C++程序相互调用 C 程序调用汇编程序: ?汇编程序的设置要遵循ATPCS 规则,保证程序调用时参数的正确传递。 ?在汇编程序中使用EXPORT 伪指令声明本子程序,使其它程序可以调用此子程序。 ?在C 语言程序中使用extern 关键字声明外部函数(声明要调用的汇编子程序),即可调用此汇编子程序。 ?调用汇编的C 函数: ?示例 #include extern void strcopy(char *d,const char *s) //声明外部函数,即要调用的汇编 //子程序 int main(void) { const cha r *srcstr=“First string-source”;//定义字符串常量 char dstsrt[] =“Second string-destination”;//定义字符串变量 printf(“Before copying:\n”); printf(“?%s?\n …%s\n,”srcstr,dststr); //显示源字符串和目标字符串的内容strcopy(dststr,srcstr); //调用汇编子程序,R0=dststr,R1=srcstr printf(“Aft er copying:\n”) printf(“?%s?\n …%s\n,”srcstr,dststr); //显示strcopy 复制字符串结果 return(0);

西门子s7-200常用寄存器使用基础知识

西门子s7-200常用寄存器使用基础知识 1、S7-200将1个字长(16位)数字值按比例转换为电流或电压。可以用区域标识符(AQ)、数据长度(W)及字节的起始地址来改变这些值。因为模拟量为1个字长,且从偶数字节(如0、 2、4)开始,所以必须用偶数字节地址(如AQW0、AQW2、AQW4)来改变这些值。模拟量输出值为只写数据。模拟量转换的实际精度是12位。格式:AQW[起始字节地址]。例如:AQW4 2、在S7-200 CPU中,计数器用于累计从输入端或内部元件送来的脉冲数。它有增计数器、减计数器及增/减计数器3种类型。由于计数器频率扫描周期的限制,当需要对高频信号计数时可以用高频计数器(HSC)。 计数器有以下两种寻址形式。 当前值寻址:16位有符号整数,存储累计脉冲数。 计数器位寻址:根据当前值和预置值的比较结果置位或者复位。同定时器一样,两种寻址方式使用同样的格式,即C+计数器编号。例如:C0 (1)每个高速计数器都有一个32位当前值和一个32位预置值,当前值和预设值均为带符号的整数值。要设置高速计数器的新当前值和新预置值,必须设置控制字节(表6-7),令其第五位和第六位为1,允许更新预置值和当前值,新当前值和新预置值写入特殊内部标志位存储区。然后执行HSC指令,将新数值传输到高速计数器。当前值和预置值占用的特殊内部标志位存储区如表1所示。 表1 HSC0-HSC5当前值和预置值占用的特殊内部标志位存储区 除控制字节以及新预设值和当前值保持字节外,还可以使用数据类型HC(高速计数器当前值)加计数器号码(0、1、2、3、4或5)读取每台高速计数器的当前值。因此,读取操作可直接读取当前值,但只有用上述HSC指令才能执行写入操作。 (2)执行HDEF指令之前,必须将高速计数器控制字节的位设置成需要的状态,否则将采用默认设置。默认设置为:复位和起动输入高电平有效,正交计数速率选择4×模式。执行HDEF指令后,就不能再改变计数器的设置,除非CPU进入停止模式。

计算机组成原理实验报告 通用寄存器单元实验

西华大学数学与计算机学院实验报告 课程名称:计算机组成原理年级:2011级实验成绩: 指导教师:祝昌宇姓名:蒋俊 实验名称:通用寄存器单元实验学号:312011*********实验日期:2013-12-15 一、目的 1.了解通用寄存器的组成和硬件电路 2. 利用通用寄存器实现数据的置数、左移、右移等功能 二、实验原理 (1)寄存器实验构成 1、通用寄存器由2片GAL构成8位字长的寄存器单元。8芯插座RA-IN作为数据输入端,可通过端8芯扁平电缆,把数据数据输入端连接到数据总线上。 2、数据输出由一片74LS244(输出缓冲器)来控制。用8芯插座RA-OUT作为数据输出端,可通过端8芯扁平电缆,把数据数据输出端连接到数据总线上。 3、判零和进位电路由1片GAL、1片7474和一些常规芯片组成,用2个LED(ZD、CY)发光管分别显示其状态。 (2)通用寄存器单元的工作原理 通用寄存器的核心部件为2片GAL,它具有锁存、左移、右移、保存等功能。各个功能都由X1、X2信号和工作脉冲RACK来决定。当置ERA=0、X0=1、X1=1,RACK有上升沿时,把总线上的数据打入通用寄存器。可通过设置X1、X0来指定通用寄存器工作方式,通用寄存器的输出端Q0~Q7接入判零电路。LED(ZD)亮时,表示当前通用寄存器内数据为0。 输出缓冲器采用74LS244,当控制信号RA-O为低时,74LS244开通,把通用寄存器内容输出到总线;当控制信号RA-O为高时,74LS244的输出为高阻。 图1 通用寄存器原理图 三、使用环境 计算机组成原理实验箱 四、实验步骤

(一)数据输入通用寄存器 1.把RA-IN(8芯的盒型插座)与CPT-B板上二进制开关单元中的J1插座相连(对应二进制开关H16~H23),把RA-OUT(8芯的盒型插座)与数据总线上的DJ6相连。 2.把RACK连到脉冲单元的PLS1,把ERA、X0、X1、RA-0、M接入二进制拨动开关。请按下表接线。 信号定义接入开关位号 RACK PLS1孔 X0 H12孔 X1 H11孔 ERA H10孔 RA-O H9孔 M H4孔 3.二进制开关H16~H23作为数据输入,置42H(对应开关如下表) H23 H22 H21 H20 H19 H18 H17 H16 数据总线值 D7 D6 D5 D4 D3 D2 D1 D0 8位数据 0 1 0 0 0 0 1 0 42H 置各控制信号如下: H12 H11 H10 H9 H4 X0 X1 ERA RA-O M 1 1 0 0 1 4.按启停单元中的有效按钮,置实验机为运行状态。 5.按脉冲单元中的PLS1脉冲按键,在RACK上产生一个上升沿,把42H打入通用寄存器。 $ 此时数据总线上的指示灯IDB0~IDB7显示为42H。由于通用寄存器内容不为0,所以ZD (LED)灯灭。 (二)寄存器内容无进位位左移 1.把42H打入通用寄存器中,数据总线上显示42H。 2.实现左移功能,置各控制信号如下: H12 H11 H10 H9 H4 X0 X1 ERA RA-O M 1 1 0 0 1 3.按启停单元中的有效按钮,置实验机为运行状态。 4.按脉冲单元中的PLS1脉冲按键,在RACK上产生一个上升沿,使通用寄存器的值左移。 $ 此时数据总线上的LED指示灯IDB0~IDB7应该显示为84H。由于通用寄存器内容不为0,所以ZD (LED)灯灭。 5.按脉冲单元中的PLS1脉冲按键,使通用寄存器的值左移,此时数据总线上的LED指示灯IDB0~IDB7显示为09H。若一直按PLS1,在总线上看见数据循环左移的现象。

组成原理实验一寄存器范文

实验一寄存器实验 一、实验目的 (1)了解模型机中A, W寄存器结构、工作原理及其控制方法。 (2)了解模型机中寄存器组R0..R3结构、工作原理及其控制方法。 (3)了解模型机中地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT寄存 器结构、工作原理及其控制方法。 二、实验要求 (1)A、W寄存器:利用COP2000实验仪上的K16..K23开关做为DBUS的 数据,其它开关做为控制信号,将数据写入寄存器A,W。 (2)R0、R1、R2、R3寄存器实验:利用COP2000实验仪上的K16..K23开 关做为DBUS的数据,其它开关做为控制信号,对数据寄存器组R0..R3 进行读写。 (3)利用COP2000实验仪上的K16..K23开关做为DBUS的数据,其它开关 做为控制信号,将数据写入地址寄存器MAR,堆栈寄存器ST,输出寄 存器OUT。 三、实验说明 寄存器的作用是用于保存数据的,因为我们的模型机是8位的,因此在本模型机中大部寄存器是8位的,标志位寄存器(Cy, Z)是二位的。 COP2000用74HC574来构成寄存器。74HC574的功能如下: 注意: 1. 在CLK的上升沿将输入端的数据打入到8个触发器中 2. 当OC = 1 时触发器的输出被关闭,当OC=0时触发器的输出数据

74HC574工作波形图 四、实验原理 实验1:A,W寄存器实验 (1)原理图 寄存器A原理图 寄存器W原理图(2)工作波形图

寄存器A,W写工作波形图 (4)实验数据 a)将03H写入A寄存器 置控制信号为: b)将13H写入W寄存器 置控制信号为:

实验2:R0,R1,R2,R3寄存器实验 (1)原理图 寄存器R0,R1,R2,R3原理图 寄存器R 写工作波形图

计算机组成原理实验报告总结寄存器的原理及操作.doc

成绩:实验报告 课程名称:计算机组成原理 实验项目:寄存器的原理及操作 姓名: 专业:计算机科学与技术 班级: 学号:

计算机科学与技术学院 实验教学中心 20 16年6月20日

实验项目名称:寄存器的原理及操作 一、实验目的 1.了解模型机中 A, W 寄存器结构、工作原理及其控制方法。 2.了解模型机中寄存器组 R0..R3 结构、工作原理及其控制方法。 3.了解模型机中地址寄存器 MAR,堆栈寄存器 ST,输出寄存器 OUT寄存器结构、工作原理及其控 制方法。 二、实验内容 1、A、W寄存器:利用 COP2000实验仪上的K16..K23 开关做为DBUS的数据,其它开关做为控制信号, 将数据写入寄存器A, W。 2、R0、R1、R2、R3 寄存器实验:利用COP2000实验仪上的K16..K23 开关做为DBUS的数据,其它开 关做为控制信号,对数据寄存器组R0..R3 进行读写。 3、MAR、ST、OUT寄存器:利用COP2000实验仪上的K16..K23 开关做为DBUS的数据,其它开关做为 控制信号,将数据写入地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。 三、实验用设备仪器及材料 伟福 COP2000 系列计算机组成原理实验系统 四、实验原理及接线 实验 1:A,W 寄存器实验

实验 2 :R0,R1, R2,R3寄存器实验

MAR为存储器地址寄存器,其功能是存储操作数在内存中的地址,信号MAREN的功能是将数据总线DBUS上数据 MAR,信号 MAROE的功能是将MAR的值送到地址总线ABUS上 ST 堆栈寄存器的作用,是出现中断或子程序调用时,保存断点处PC 的值,以便中断或子程序结束时, 能继续执行原程序。图中,信号STEN的作用是将数据总线DBUS上数据存入堆栈寄存器ST 中

三菱PLC的指令代码和内部特殊寄存器

三菱PLC的指令代码 一顺控指令 1 触点指令 00 LD 逻辑操作开始 01 LDI 逻辑非操作开始 02 AND 逻辑乘 03 ANI 逻辑乘非 04 OR 逻辑加 05 ORI 逻辑加非 2 连接指令 06 ANB AND逻辑块与 07 ORB OR逻辑块或 08 MPS 存储操作结果 09 MRD 从MPS读取操作结果 10 MPP 从MPS读取操作结果 并清除结果 3 输出指令 11 OUT 软元件输出 12 SET 软元件置位 13 RST 软元件复位 14 PLS 在输入信号的上升沿 15 PLF 在输入信号的下降沿 16 CHK 软元件输出翻转 4 移位指令 17 SFT 元件移1位 18 SFTP 元件移1位 5 主控指令 19 MC 主控开始 20 MCR 主控复位 6 结束指令 21 FEND 结束主程序 22 END 总的程序末尾, 返回第0步 7 其它指令 23 STOP 停止 24 NOP 空操作 二基本指令 1 比较指令 16位数据比较 25 LD= 当S1=S2, 接通, 当S1≠S2, 断开 26 AND= 27 OR= 28 LD<> 当S1≠S2, 接通, 当S1=S2, 断开 29 AND<>

31 LD> 当S1>S2, 接通, 当S1≤S2, 断开 32 AND> 33 OR> 34 LD<= 当S1≤S2, 接通, 当S1>S2, 断开 35 AND<= 36 OR<= 37 LD< 当S1= 当S1≥S2, 接通, 当S1= 42 OR>= 32位数据比较 43 LDD= 当(S1+1,S1)=(S2+1,S2), 接通 44 ANDD= 45 ORD= 46 LDD<> 当(S1+1,S1)≠(S2+1,S2),接通 47 ANDD<> 48 ORD<> 49 LDD> 当(S1+1,S1)>(S2+1,S2), 接通 50 ANDD> 51 ORD> 52 LDD<= 当(S1+1,S1)≤(S2+1,S2),接通 53 ANDD<= 54 ORD<= 55 LDD< 当(S1+1,S1)<(S2+1,S2), 接通 56 ANDD< 57 ORD< 58 LDD>= 当(S1+1,S1)≥(S2+1,S2),接通 59 ANDD>= 60 ORD>= 2 算术运算指令 二进制16位加/减 61 + (D)+(S)→(D) 62 +P 63 + (S1)+(S2)→(D) 64 +P 65 - (D)-(S)→(D) 66 -P 67 - (S1)-(S2)→(D) 68 -P 二进制32位加/减 69 D+ (D+1,D)+(S+1,S)→(D+1,D)

PLC的文件寄存器的使用

PLC文件寄存器与HMI的配方的功能对比 摘要:在我们编程的过程中,有时会遇到PLC数据处理和数据运算所需的数据寄存器不足的情况,这时候,我们如果有HMI作为上位监控的情况下,我们会使用HMI的配方功能来处理一些数据运算,以此分担PLC的运算负担,但是,如果数据量较大,将HMI的配方传输到PLC中会花费比较长的时间。藉此我们可以使用文件寄存器来实现数据的快速响应。 关键词:PLC,HMI,文件寄存器,配方 一、介绍 在有些情况下,我们会因为处理的数据量比较大而用到HMI的配方,比如自动弹钢琴系统,但是,这时会产生一个问题就是将HMI中的配方下载到PLC中时会比较慢。在运行系统的时候会有一段等待的时间,这样就造成了客户在参观时的尴尬状态。 鉴于以上的问题,我们就可以使用PLC中的文件寄存器来代替配方。 文件寄存器(file register):当PLC处理数据和数值运算所需的数据寄存器不足时,可以利用文件寄存器来存储数据和各类参数。每个文件寄存器内为16位,即存有一个字,处理双字用相邻编号的两个文件寄存器。文件寄存器SA/SX/SC 系列机种一共有1600个,EH/EH2/SV系列机种一共有10000个。文件寄存器并没有实际的装置编号,所以需透过指令API 148 MEMR、API 149 MEMW或是透过周边装置HPP02及WPLSoft来执行晚间寄存器的读写功能。 注:装置表示:K0~K9999,无装置符号,顺序以十进制编号。 MEMR m D n文件寄存器数据读出 m: 欲读取文件寄存器的编号 D: 存放读取数据的位置,指定的D开始编号(D寄存器的起始编号为D2000)n : 一次读取的数据笔数 MEMW S m n 文件寄存器数据写入 S: 欲写入数据的位置,指定的D开始编号(D寄存器的起始编号为D2000)m: 欲写入文件寄存器的编号 n : 一次写入数据笔数 二、软件操作: 1、开启WPLSoft,选到通讯选项卡,如图(一) 图(一)

CPU各寄存器的作用

CPU各寄存器的作用- [Asm] 寄存器作用: ebp和esp是32位的SP,BP esp是堆栈指针 ebp是基址指针 ESP与SP的关系就象AX与AL,AH的关系. 32位CPU所含有的寄存器有: 4个数据寄存器(EAX、EBX、ECX和EDX) 2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP) 6个段寄存器(ES、CS、SS、DS、FS和GS) 1个指令指针寄存器(EIP) 1个标志寄存器(EFlags) 寄存器AX和AL通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、除、输入/输出等操作,它们的使用频率很高; 寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数; 寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。 寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。 变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。 寄存器EBP、ESP、BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。

通用寄存器的作用

通用寄存器的作用 数据寄存器不讲,简单的说,段寄存器(ES,CS,SS,DS,FS,GS)和变址寄存器(SI,DI)是配合使用访问段数据的,指针寄存器(BP,SP)是用来操作堆栈的,BP指向栈的基址,SP则永远指向栈顶。 另外指令指针EIP存放的是要执行的下一条指令在代码段里的偏移量,在实方式下,每个段的最大范围都是64K,所以EIP的高16位都是0。 寄存器的分类寄存器主要用途 通用寄存器 数据 寄存器 AX 乘、除运算,字的输入输出,中间结果的缓存 AL 字节的乘、除运算,字节的输入输出,十进制算术运算 AH 字节的乘、除运算,存放中断的功能号 BX 存储器指针 CX 串操作、循环控制的计数器 CL 移位操作的计数器 DX 字的乘、除运算,间接的输入输出 变址 寄存器 SI 存储器指针、串指令中的源操作数指针 DI 存储器指针、串指令中的目的操作数指针 变址 寄存器 BP 存储器指针、存取堆栈的指针 SP 堆栈的栈顶指针 指令指针IP/EIP 标志位寄存器Flag/EFlag 32位CPU的段寄存器16位CPU的 段寄存器 ES 附加段寄存器 CS 代码段寄存器 SS 堆栈段寄存器 DS 数据段寄存器新增加的 段寄存器 FS 附加段寄存器 GS 附加段寄存器

--------------------------------- 1、数据寄存器 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。 32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。对低16位数据的存取,不会影响高16位的数据。这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。 4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。 寄存器AX和AL通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。 累加器可用于乘、除、输入/输出等操作,它们的使用频率很高; 寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次 数;在位操作中,当移多位时,要用CL来指明移位的位数; 寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数 参与运算,也可用于存放I/O的端口地址。 在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,但在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。详细内容请见第3.8节——32位地址的寻址方式。 2、变址寄存器 32位CPU有2个32位通用寄存器ESI和EDI。其低16位对应先前CPU中的SI 和DI,对低16位数据的存取,不影响高16位的数据。 寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式(在第3章有详细介绍),为以不同的地址形式访问存储单元提供方便。 变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。具体描述请见第5.2.11节。 3、指针寄存器 32位CPU有2个32位通用寄存器EBP和ESP。其低16位对应先前CPU中的SBP 和SP,对低16位数据的存取,不影响高16位的数据。 寄存器EBP、ESP、BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式(在第3章有详细介绍),为以不同的地址形式访问存储单元提供方便。

计算机组成原理实验教案

韶关学院 《计算机组成原理》 实验教案 彭玄璋 计算机科学学院计算机系

第一章实验项目 一、寄存器实验 实验要求:利用COP2000实验仪上的K16..K23开关做为DBUS的数据,其它开关做为控制信号,将数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据 寄存器组R0..R3,地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。 实验目的:了解模型机中各种寄存器结构、工作原理及其控制方法。 实验说明: 寄存器的作用是用于保存数据的,因为我们的模型机是8位的,因此在本模型机中大部寄存器是8位的,标志位寄存器(Cy, Z)是二位的。 COP2000用74HC574来构成寄存器。74HC574的功能如下: 1. 在CLK的上升沿将输入端的数据打入到8个触发器中 2. 当OC = 1 时触发器的输出被关闭,当OC=0时触发器的输出数据 OC CLK Q7..Q0 注释 1 X ZZZZZZZZ OC为1时触发器的输出被关闭 0 0 Q7..Q0 当OC=0时触发器的输出数据 0 1 Q7..Q0 当时钟为高时,触发器保持数据不变 X D7..D0 在CLK的上升沿将输入端的数据打入到触发器中 74HC574工作波形图

实验1:A,W寄存器实验 寄存器A原理图 寄存器W原理图 寄存器A,W写工作波形图 连接线表 连接信号孔接入孔作用有效电平 1 J1座J3座将K23-K16接入DBUS[7:0] 2 AEN K 3 选通A 低电平有效 3 WEN K 4 选通W 低电平有效 4 ALUCK CLOCK ALU工作脉冲上升沿打入将55H写入A寄存器

寄存器是什么

EAX是什么意思? 将数据33221100H传送到EAX寄存器的指令模拟图 32位CPU所含有的寄存器有: 4个数据寄存器(EAX、EBX、ECX和EDX) 2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP) 6个段寄存器(ES、CS、SS、DS、FS和GS) 1个指令指针寄存器(EIP) 1个标志寄存器(EFlags) 1、数据寄存器 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。 32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。 对低16位数据的存取,不会影响高16位的数据。 这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。 4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。 程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。 寄存器EAX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。可用于乘、除、输入/输出等操作,使用频率很高; 寄存器EBX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器ECX称为计数寄存器(Count Register)。 在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数;寄存器EDX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。 在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址, 在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果, 而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。 2、变址寄存器 32位CPU有2个32位通用寄存器ESI和EDI。

计算机组成原理实验一

上海大学计算机学院 《计算机组成原理实验》报告一 姓名:学号:教师: 时间:机位:报告成绩: 实验名称:数据传送实验 一、实验目的:1. 理解自然语言形式命令的人工译码过程。 2. 学习系统部件和数据总线间传送数据的操作。 二、实验原理:寄存器的作用是用于保存数据的,因为模型机是8位的,所以在模型机中大部分寄存器是8位的,标志位寄存器(Cy, Z)是二位的。 CP226实验仪用74HC574(8D型上升沿触发器)构成各种寄存器。 数据输入:CLK产生向上跳变时数据总线中的数据打入到触发器中。 数据输出:片选OC信号为高时,触发器输出端关闭。OC信号为低,触发器数据输出到数据总线。 CP226实验仪的标志位进RCy、Rz,是两位的。 每个寄存器的选通信号和工作脉冲共同构成74HC574的CLK信号。 1.在CLK的上升沿将输入端的数据打入到8 个触发器中 2.当OC = 1 时触发器的输出被关闭;当OC=0 时触发器的Q7…Q0输出数据。 74HC574 的功能如下: OC CLK Q7..Q0 注释 1 X ZZZZZZZZ OC为1时触发器的输出被关闭 0 0 Q7..Q0 当OC=0时触发器的数据输出 0 1 Q7..Q0 当时钟为高时,触发器保持数据不变 X ↑D7..D0 在CLK的上升沿将输入端的数据打入到触发器中 三、实验内容:1.将57H写入A寄存器。 2.将68H写入W寄存器。 3.将12H写入R0寄存器。 四、实验步骤:1.将57H写入A寄存器。 ①二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据57H。 K23到K16分别为01010111(电平为:低高低高低高高高)置控制信号为 选通寄存器A,置K0(AEN)为0。 ②关闭机箱电源,用导线把K0和AEN连接。 ③检查连线和电键位置,确信无误。 ④开启机箱电源,按下RST键复位,再按小键盘TV/ME键3次显示屏进入 Hand…手动状态。按下小键盘STEP脉冲键,CK由高变低,观察现象;放 开小键盘STEP键,CK脉冲由低变高,产生一个上升沿,数据57H打入选 通的寄存器A,观察现象。 ⑤将K0置一使寄存器记住数据。 2.剩余的两个做法和1一样。

(整理)Pentium微处理器内部寄存器.

Pentium微处理器的内部寄存器 Pentium是Intel公司于1993年3月推出的第五代80X86系列微处理器,简称P5或80586,中文译名为“奔腾”。与其前辈80X86微处理器相比,Pentium采用了全新的设计,它有64位数据线和32位地址线,但依然保持了与其前辈80X86的兼容性,在相同的工作方式上可以执行所有的80X86程序。 Pentium的内部结构如图2.4所示。它主要由执行单元、指令Cache、数据Cache、指令预取单元、指令译码单元、地址转换与管理单元、总线单元以及控制器等部件组成。其中核心是执行单元(又叫运算器),它的任务是高速完成各种算术和逻辑运算,其内部包括两个整数算术逻辑运算单元(ALU)和一个浮点运算器,分别用来执行整数和实数的各种运算。为了提高效率,它们都集成了几十个数据寄存器用来临时存放一些中间结果。这些功能部件除地址转换和管理单元与80386/80486保持兼容外,其他都进行了重新设计。 1) 超标量体系结构和指令流水线 Pentium由“U”和“V”两条指令流水线构成超标量流水线结构,其中每条流水线都有自己的ALU、地址生成逻辑和Cache接口。这种双流水线技术可以使两条指令在不同流水线中并行执行。 图2.4 Pentium微处理器的内部结构

每条流水线又分为指令预取PF、指令译码(一次译码)D1、地址生成(二次译码)D2、指令执行EX和回写WB共5个步骤。图2.5给出了Pentium的指令流水线操作示意。 图2.5 Pentium指令流水线操作示意图 当第一条指令完成指令预取,进入第二个操作步骤D1,执行指令译码操作时,流水线就可以开始预取第二条指令;当第一条指令进入第三个步骤D2,执行地址生成时,第二条指令进入第二个步骤D1,开始指令译码,流水线又开始预取第三条指令;当第一条指令进入第四个步骤EX,执行指令规定的操作时,第二条指令进入第三个步骤D2,执行地址生成,第三条指令进入第二个步骤D1,开始指令译码,流水线又开始预取第四条指令;当第一条指令进入第五个步骤WB,执行回写操作时,第二条指令进入第四个步骤EX,执行指令规定的操作,第三条指令进入第三个步骤D2,执行地址生成,第四条指令进入第二个步骤D1,开始指令译码,流水线又开始预取第五条指令。 这种流水线操作并没有减少每条指令的执行步骤,5个步骤哪一步都不能跳越。但由于各指令的不同步骤之间并行执行,从而极大地提高了指令的执行速度。从第一个时钟开始,经过5个时钟后,每个时钟都有一条指令执行完毕从流水线输出。在这种理想情况下,Pentium 的超标量体系结构每个时钟周期内可执行两条整数指令(每条流水线执行一条指令)。 2) 重新设计的浮点运算部件 Pentium的浮点运算部件在80486的基础上作了重新设计,采用了超流水线技术,由8个独立执行部件进行流水线作业,使每个时钟周期能完成一个浮点操作(或两个浮点操作)。采用快速算法可使诸如ADD、MUL和LOAD等运算的速度最少提高3倍,在许多应用程序中利用指令调度和重叠(流水线)执行可使性能提高5倍以上。同时,这些指令用电路进行固化,用硬件来实现,使执行速度得到更大提高。 3) 独立的指令Cache和数据Cache Pentium片内有两个8KB的超高速缓存器,一个是指令Cache,一个是数据Cache。转换后备缓冲器TLB(Translation Look-aside Buffer)的作用是将线性地址转换为物理地址。这两种Cache采用32×8线宽,是对Pentium的64位总线的有力支持。指令和数据分别使用不同的Cache,使Pentium中数据和指令的存取减少了冲突,提高了性能。

相关文档
相关文档 最新文档