文档视界 最新最全的文档下载
当前位置:文档视界 › 2020年中考数学专题突破八:最短路径——胡不归点

2020年中考数学专题突破八:最短路径——胡不归点

2020年中考数学专题突破八:最短路径——胡不归点
2020年中考数学专题突破八:最短路径——胡不归点

(完整版)八年级最短路径问题归纳小结

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即 为P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠ APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有 一点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

初二数学 最短路径问题

最短路径问题 一、 学习目标 ①能利用轴对称解决简单的最短路径问题. ②体会图形的变化在解决最值问题中的作用; ③能通过逻辑推理证明所求距离最短,感悟转化思想 二、预习内容 自学课本85页,完成下列问题: 追问1:观察思考,抽象为数学问题 这是一个实际问题,你打算首先做什么? 活动1:思考画图、得出数学问题 将A ,B 两地抽象为两个点,将河l 抽象为一条直 线. 追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗? 师生活动:学生尝试回答, 并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A ,B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l 上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图). 三、探究学习 1、活动2:尝试解决数学问题 B 。 。A l B A l C

问题2 : 如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? 追问1 你能利用轴对称的有关知识,找到上问中符合条件的点B ′吗? 师生活动:学生独立思考,画图分析,并尝试回答,互相补充 (2)连接AB ′,与直线l 相交于点C ,则点C 即为所求 四、巩固测评 (1)求直线异侧的两点与直线上一点所连线段的和 最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A ,B 分别是直线l 异侧的两个点,在l 上找一个点C ,使CA +CB 最短,这时点C 是直线l 与AB 的交点. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关 于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求. 如图所示,点A ,B 分别是直线l 同侧的两个点,在l 上找一个点C ,使CA +CB 最短,这时先作点B 关于直线l 的对称点B ′,则点C 是直线l 与AB ′的交点. 如果学生有困难,教师可作如下提示 作法: (1)作点B 关于直线l 的对称点B ′; (一)基础训练:1、最短路径问题 l B ′ C A B

初二最短路径问题归纳

初二最短路径问题归纳 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

最短路径问题专题学习【基本问题】 m n

在直线l 上求一点P ,使PB PA -的值最小. 【问题10】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即为 P . 三角形任意两边之 差小于第三边.PB PA -≤ AB '. PB PA -最大值= AB '. 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23.6 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当 AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小 时,∠AMN +∠ANM 的度数为( ) l A B D E A B C A D E P B C D A M A B M N 第2题 第3题 第4

A .120 ° B .130° C .110° D .140° 4.如图,在锐角△ABC 中,AB =4 2 ,∠BAC =45°,∠BAC 的平分线交BC 于点D , M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 . 5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重 合),且ED =AE ,则线段AE 的取值范围是 . 6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分 别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________. 7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为 B (36,0). OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值 是______. 8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最 小值为 , 此时 C 、D 两点的坐标分别为 . 9.已知A (1,1)、B (4,2). y x B O A y x B A O 第6题 第

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变 式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线 段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街 道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的 点. 三、一点在两相交直线部 例:已知:如图A是锐角∠MON部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM, ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周 长最小

最新人教版八年级数学上册《最短路径问题》教学设计(精品教案)

13.4 课题学习最短路径问题 学习目标 1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点) 2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点) 教学过程 一、情境导入 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短? 二、合作探究 探究点:最短路径问题 【类型一】求直线异侧的两点与直线上一点所连线段的和最小的问题 例1:如图所示,在河a两岸有A、B两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修

建才能满足要求?(画出图形,做出说明。) 解析:利用两点之间线段最短进而得出答案. 解:如图所示:连接AB交直线a于点P,此时桥到这两村庄的距离之和最短.理由:两点之间线段最短. 【方法总结】求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 变式训练:见《学练优》本课时练习“课堂达标练习” 第2题 【类型二】运用轴对称解决距离最短问题 例2:在图中直线l上找到一点M,使它到A,B两点的距离和最小. 解析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点. 解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点. 【方法总结】利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.

八年级最数学最短路径稳妥(供参考)

第五讲最短路径 一、知识点 二、课前练习 1、如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______( 取3) [ 2、如图所示,P为∠AOB内一点,P1,P2分别是P关于OA,OB的对称点,P1P2交OA于M,交OB于N,若P1P2=8 cm,则△PMN的周长是( ) A.7 cm B.5 cm C.8 cm D.10 cm 3、在某一地方,有条小河和草地,一天某牧民的计划是从A处的牧场牵着一只马到草地牧马,再到小河饮马,你能为他设计一条最短的路线吗?(在N上任意一点即可牧马,M上任意一点即可饮马.)(保留作图痕迹,需要证明) 4、某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:用尺规作图,保留作图痕迹,不写作法和证明) 5、如图,△ABC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得△PMN的周长最短.(写出作法,保留作图痕迹) 6、加油站A和商店B在马路MN的同一侧(如图),A到MN的距离大于B到MN的距离,AB=7米,一个行人P在马路MN上行走,问:当P到A的距离与P到B的距离之差最大时,这个差等于________米. 7、如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近? 8、如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN 周长最小时,求∠AMN+∠ANM的度数. 三、例题讲解 1、如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,求蚂蚁吃到饭粒需爬行的最短路径是多少 2、如图,在等腰Rt△ABC中,AC=BC=4,D是BC边的中点,E是AB边上一动点,求EC+ED 的最小值 3、如图,在△ABC中,AB=AC=13,BC=10,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置,并求出MB+MN最小值. 4、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是坐标轴上一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,求点C的坐标 5、在平面直角坐标系中,点A、B的坐标分别为(2,0 ),(4,0),点C的坐标为(m,3 m)(m为非负数),求CA+CB的最小值 三、练习

人教版八年级数学下册 第17章 勾股定理中最短路径问题专题

勾股定理中最短路径问题专题 一、同步知识梳理 1、勾股数:满足a2+b2=c2的3个正整数a、b、c称为勾股数. (1)由定义可知,一组数是勾股数必须满足两个条件: ①满足a2+b2=c2 ②都是正整数.两者缺一不可. (2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满足a2+b2=c2 (但不一定是勾股数),例如:3、4、5是一组勾股数,但是以0.3 cm、0.4 cm、0.5 cm为边长的三个数就不是勾股数。 二、同步题型分析 1、等腰三角形的周长是20 cm,底边上的高是6 cm,求它的面积. 2、(1)在△ABC中,∠C=90°,AB=6,BC=8,DE垂直平分AB,求BE的长. (2)在△ABC中,∠C=90°,AB=6,BC=8,AE平分∠CAE,ED⊥AB,求BE的长. (3)如图,折叠长方形纸片ABCD,是点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度. 一、专题精讲 知识总结:长方体: (1)长方体的长、宽、高分别为a、b、c;(2)求如图所示的两个对顶点的最短距离d。 E D A C B D E A C B

A B A 1B 1D C D 1C 1214 (2)长方体盒子表面小虫爬行的最短路线d 是22c b a ++)(、22b c a ++)(、2 2a c b ++)( 中最小者的值。 圆柱体: (1)圆柱体的高是h 、半径是r ;(2)要求圆柱体的对顶点的最短距离。 圆柱体盒子外小虫爬行的最短路线d ; 两条路线比较:其一、AC+BC 即高+直径 ; 其二、圆柱表面展开后线段AB=2 2r h +的长. 题型二、长方体 例题1、如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 . 例题2、如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。 B A A B

八年级上《最短路径问题》同步练习含答案

八年级上《最短路径问题》同步练习含答案 基础题 知识点最短路径问题 1.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________. 2.已知,如图,在直线l的同侧有两点A,B. (1)在图1的直线上找一点P使PA+PB最短; (2)在图2的直线上找一点P,使PA-PB最长. 3.如图均是由相同的小正方形组成的网格图,点A、B、C、D均落在格点上.请只用无刻度的直尺在格线CD上确定一点Q,使QA与QB的长度之和最小. 4.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?

中档题 5.如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置. 6.如图,在△ABC的一边AB上有一点P. (1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置,若不能,请说明理由;

(2)若∠ACB=52°,在(1)的条件下,求出∠MPN的度数. 7.如图,已知∠AOB,点P是∠AOB内部的一个定点,点E、F分别是OA、OB上的动点. (1)要使得△PEF的周长最小,试在图上确定点E、F的位置. (2)若OP=4,要使得△PEF的周长的最小值为4,则∠AOB=________. 8.(兰州中考改编)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△周长最小,求∠AMN+∠ANM的度数.

人教版八年级上册13.4最短路径问题练习题

13.4课题学习最短路径问题 知识点: 1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求. 2.运用轴对称解决距离最短问题 运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3.利用平移确定最短路径选址 解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题. 同步练习: 1.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点. 2.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短, B A l 3..在图中直线l上找到一点M,使它到A,B两点的距离和最小.

4. 如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水. (1)若要使厂部到A,B村的距离相等,则应选择在哪建厂? (2)若要使厂部到A,B两村的水管最短,应建在什么地方? 5. 如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?

参考答案: 1. 2.这时先作点B 关于直线l 的对称点B ′,则点C 是直线l 与AB ′的交点. 为了证明点C 的位置即为所求,我们不妨在直线上另外任取一点C ′,连接AC ′,BC ′,B ′C ′,证明AC +CB <AC ′+C ′B .如下: 证明:由作图可知,点B 和B ′关于直线l 对称, 所以直线l 是线段BB ′的垂直平分线. 因为点C 与C ′在直线l 上, 所以BC =B ′C ,BC ′=B ′C ′. 在△AB ′C ′中,AB ′<AC ′+B ′C ′, 所以AC +B ′C <AC ′+B ′C ′, 所以AC +BC <AC ′+C ′B . 3. 解:如图所示:(1)作点B 关于直线l 的对称点B ′; (2)连接AB ′交直线l 于点M . (3)则点M 即为所求的点. 4.解:(1)如图1,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P , 则P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于12 AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求. (2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短. 5.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.

人教版初二数学上册《最短路径问题》教案

13.4 课题学习 最短路径问题 1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点) 2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点) 一、情境导入 相传,古希腊有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短? 二、合作探究 探究点:最短路径问题 【类型一】 两点的所有连线中,线段 最短 如图所示,在河a 两岸有A 、B 两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修建才能满足要求? (画出图形,做出说明) 解析:利用两点之间线段最短得出答案. 解:如图所示,连接AB 交直线a 于点P ,此时桥到这两村庄的距离之和最短.理由: 两点之间线段最短. 方法总结:求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这 两点,与直线的交点即为所求. 【类型二】 运用轴对称解决距离最短 问题 在图中直线l 上找到一点M ,使它 到A ,B 两点的距离和最小. 解析:先确定其中一个点关于直线l 的对称点,然后连接对称点和另一个点,与直 线l 的交点M 即为所求的点. 解:如图所示:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′交直线l 于点M ;(3)点M 即为所求的点. 方法总结:利用轴对称解决最值问题应注意题目要求,根据轴对称的性质、利用三角形的三边关系求解. 【类型三】 最短路径选址问题 如图,小河边有两个村庄A ,B , 要在河边建一自来水厂向A 村与B 村供水. (1)若要使厂址到A ,B 两村的距离相等,则应选择在哪建厂(要求:保留作图痕迹,写出必要的文字说明)? (2)若要使厂址到A ,B 两村的水管最短,应建在什么地方? 解析:(1)欲求到A 、B 两村的距离相等,即作出AB 的垂直平分线与EF 的交点即可,

初二数学最短路径问题家庭作业_题型归纳

初二数学最短路径问题家庭作业_题型归纳 一、精心选一选 1.在平面直角坐标系中有两点,要在轴上找一点,使它到的距离之和最小,现有如下四种方案,其中正确的是() A. B. C. D. 考查目的:本题主要考查利用轴对称解决简单的路径问题,体现了转化的思想. 答案:D. 解析:利用轴对称的性质,把y轴同侧的两点转化为y轴异侧的两点,根据“两点之间,线段最短”,找到点C的位置,故选D. 2.如图,在等边△ABC中,边BC的高AD=4,点P是高AD上的一个动点,E是边AC的中点,在点P运动的过程中,存在PE+PC的最小值,则这个最小值是() A.4 B.5 C.6 D.8 考查目的:本题主要考查等边三角形的性质及利用轴对称解决最短的线段和问题. 答案:A. 解析:根据等边三角形的性质可知点B是点C关于AD的对称点,PE+PC的最小值就是BE 的长,即等边△ABC的高,故选A. 3.如图,正方形ABCD的边长为8,△BCE是等边三角形,点E在正方形内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.4 B.6 C.8 D.10

考查目的:本题主要考查利用轴对称解决简单的路径问题,体现了转化的思想. 答案:C. 解析:由题意知,点B是点D关于AC的对称点,因此,PD+PE的和可以转化为PB+PE的和.因为PB+PE的和的最小值BE,即为8,故选C. 二、细心填一填 4.两点的所有连线中,最短. 考查目的:本题主要考查“两点之间,线段最短”的基本事实. 答案:线段. 解析:根据基本事实“两点之间,线段最短”即可得出答案. 5.连接直线外一点与直线上各点所有连线中,最短. 考查目的:本题主要考查连接直线外一点与直线上各点所有连线中,垂线段最短的基础知识.答案:垂线段. 解析:连接直线外一点与直线上各点所有连线中,垂线段最短. 6.如图,四边形ABCD中,△BAD=120°,△B=△D=90°,在BC,CD上分别找一点F,使△AEF周长最小,此时△AEF+△AFE的度数为. 考查目的:本题主要考查利用轴对称解决较复杂的路径问题.分别作点A关于CD、BC的对称点,画出基本图形是解题的关键. 答案:120°. 解析:如下图,分别作点A关于CD、BC的对称点A1,A2,连接A1A2,分别交CD、BC于点F,E,即此时△AEF周长最小.由对称可知△A1=△DAF,△A2=△BAE,因为△A1+△A2=180°-△BAD=60°,所以△DAF+△DAF=△A1+△A2=60°,所以△EAF =60°,所以△AEF+△AFE=180°-△EAF=120°.

八年级最短路径问题

最短路径问题 1、如图,在△ABC 中,DE 是AC 的垂直平分线,AE=5cm ,△ABD 的周长为15cm ,则△ABC 的周长是 (第1题) (第2题) 2、如图,△ABC 中,AB=BC ,D 是BC 边上一点,点A 在线段CD 的垂直平分线上,连接AD ,若∠B=50°,则∠BAD= 度。 3、如图,设△ABC 和△CDE 都是正三角形,且∠EBD = 62°,则∠AEB 的度数是为_________。 知识点一、最短路径 【知识梳理】 1、两定一动 (1)如图,点A 、B 在直线l 的两侧,在l 上求一点P ,使得PA +PB 最小。 (2)如图,点A 、B 在直线l 的同侧,在l 上求一点P ,使得PA +PB 最小。 第9题图D A B E C

2、三定一动 平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是。 3、一定两动型 如上图,点A是∠MON内部一点,在∠MON的两边OM、ON上各取一点B、C,与点A组成三角形,使△ABC的周长最小。 【例题精讲】 1、在平面直角坐标系中,点A(1,-2)与点B关于x轴对称,则点B的坐标是___________。 2、如图,∠AOB=30°,点P为∠AOB内一点,OP=8。点M、N分别在OA、OB上,则△PMN周长的最小值为__________。 (第2题)(第3题) 3、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且 A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是。 4、平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA-PB最大,则P点坐标_____。

人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

第6讲最短路径问题 知识定位 讲解用时:5分钟 A、适用范围:人教版初二,基础较好; B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径 问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。 知识梳理 讲解用时:20分钟 两点之间线段最短 C D A B E A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢? 选A-B,因为两点之间,直线最短 垂线段最短 如图,点P是直线L外一点,点P与直线上各 点的所有连线中,哪条最短? PC最短,因为垂线段最短

两点在一条直线异侧 A P L B 如图,已知A点、B点在直线L异侧,在L上选一点P,使PA+PB最短. 连接AB交直线L于点P,则PA+PB 最短. 依据:两点之间:线段最短 两点在一条直线同侧 相传,古希腊亚历山大里亚城里有一位 久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不 得其解的问题: 从图中的A地出发,到一条笔直的河边 l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短? 作法: 1、作B点关于直线L的对称点B’; 2、连接AB’交直线L于点C; 3、点C即为所求. 证明:在直线L上任意选一点C’(点C’不与C重合),连接AC’、BC’、B’C’. 在△AB’C’中, AC’+B’C’>AB’ ∴AC’+BC’>AC+BC 所以AC+BC最短.

课堂精讲精练 【例题1】 已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是() A.B. C.D. 【答案】D 【解析】根据作图的方法即可得到结论. 解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小, ∴D的作法正确, 故选:D. 讲解用时:3分钟 解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键. 教学建议:学会处理两点在直线同侧的最短距离问题. 难度: 3 适应场景:当堂例题例题来源:无年份:2018 【练习1.1】 如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需

八年级最短路径问题归纳小结

八年级最短路径问题归纳 小结 Last revision on 21 December 2020

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的) 中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】

AM +MN +NB 的值最小. B ,交直线l 于点N ,将N 点向左平移a 个单位得M . 【问题7】 作法 图形 原理 在1l 上求点A ,在2l 上求点B ,使PA +AB 值最小. 作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交2l 于A . 点到直线,垂线段最短. PA +AB 的最小值为线段P 'B 的长. 【问题8】 作法 图形 原理 A 为1l 上一定点, B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使 AM +MN +NB 的值最小. 作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N . 两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长. 【问题9】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最小. 连AB ,作AB 的中垂线与直线l 的交点即为P . 垂直平分上的点到线段两 端点的距离相等. PB PA -=0. 【问题10】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于第三边.PB PA -≤AB . PB PA -的最大值= AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点 即为P . 三角形任意两边之差小于第三边.PB PA -≤ AB '. PB PA -最大值= AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使PA +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求. 两点之间线段最短. PA +PB +PC 最小值= CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .3B .6 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 A D E P B C

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: -①确定起点的最短路径问题即已知起始结点,求最短路径的问题.-②确定终点的最短路径问题与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. -③确定起点终点的最短路径问题即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题-求图中所有的最短路径. 【问题原型】.“将军饮马”,“造桥选址”,“费马点”【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.】【十二个基本问题

】1作法图形【问题原理 A A 两点之间线段最短.P l.交点即为P连AB,与l l PA+PB 最小值为AB.B B,使上求一点P在直线l 值最小.PA+PB 【问题2】“将军饮马”作法图形原理 A A B'B关于作B l 的对称点两点之间线段最短.B

l l PA+PB 最小值为 A B P.'.连A B ',与l 交点即为 P,使P在直线l 上求一点B' PA+PB 值最小. 3】作法图形原理【问题 P'l 1l 1 分别作点P 关于两直线的两点之间线段最短.M P PM +MN +PN 的最小值为对称点P'和P',连P'P',P l l l 、上2.M,P'''的长.N与两直线交点即为线段P 分别求点在直线l212N M 、N,使△PMN的周长P'' 最小. 4】作法【问题图形原理 l 1l1Q' Q关于直线分别作点Q 、P Q两点之间线段最短.MP l 、l P'Q'和的对称点21P周长的最小四边形PQMN l2',与两直线交点即Q连'P值为线段P'P''的长.l 2、l l 上分别求点在直线.,N为M21N ,使四边形N 、M PQMN P' 的周长最小. 【问题5】“造桥选址”作法图形原理范文

八年级数学最短路径问题

八年级数学最短路径问题 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点。

三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小. 练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。 练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 提高训练 一、题中出现一个动点。 1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值. 例:如图,在正方形ABCD中,点E为AB上一定点, 且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。

八年级数学上册-13.4最短路径问题 教案

第十三章轴对称 13.4 课题学习最短路径问题【教材分析】 教学目标知识 技能 能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用. 过程 方法 在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透感悟转化思想. 情感 态度 通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性. 重点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题 难点如何利用轴对称将最短路径问题转化为线段和最小问题 【教学流程】 环节导学问题师生活动二次备课 情境引入如图所示,从A地到B地有三条路可供选择, 走哪条路最近?你的理由是什么? 前面我们研究过一些关于“两点的所有连 线中,线段最短”、“连接直线外一点与直线上 各点的所有线段中,垂线段最短”等的问题, 我们称它们为最短路径问题.现实生活中经常 涉及到选择最短路径的问题,本节将利用数学 知识探究数学史中著名的“将军饮马问题”. 教师出示问题,引导学生思 考、回答,引入课题。 自主探究 探究点一探索最短路径问题 活动一:相传,古希腊亚历山大里亚城里 有一位久负盛名的学者,名叫海伦.有一天, 一位将军专程拜访海伦,求教一个百思不得其 解的问题: 从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可 使他所走的路线全程最短? 精通数学、物理学的海伦稍加思索,利用 教师出示问题情境,激发学生 学习兴趣和探究欲望.

合 作 交 流 自 主 探 究 合 作 交 流 轴对称的知识回答了这个问题.这个问题后 来被称为“将军饮马问题”. 你能将这个问题抽象为数学问题吗? 追问1这是一个实际问题,你打算首先 做什么? 答:将A,B两地抽象为两个点,将河l抽 象为一条直线. 追问2你能用自己的语言说明这个问 题的意思,并把它抽象为数学问题吗? 答:(1)从A地出发,到河边l饮马,然 后到B地;(2)在河边饮马的地点有无穷多 处,把这些地点与A,B连接起来的两条线段 的长度之和,就是从A地到饮马地,再回到 B地的路程之和;(3)现在的问题是怎样找出 使两条线段长度之和为最短的直线l上的 点.设C为直线上的一个动点,上面的问题 就转化为:当点C在l的什么位置时,AC与 CB的和最小(如图). 问题2:如图,点A,B在直线l的同侧, 点C是直线上的一个动点,当点C在l的什 么位置时,AC与CB的和最小? 追问3:对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l上的任意一点C, 都保持CB与CB′的长度相等? 追问4:你能利用轴对称的有关知识,找 到上问中符合条件的点B′吗? 展示点评:作法: (1)作点B关于直线l的对称点B′; (2)连接AB′,与直线l交于点C. 则点C即为所求. 追问5、你能用所学的知识证明AC+ BC最短吗? 让学生将实际问题抽象为数 学问题,即将最短路径问题抽 象为“线段和最小问题” 学生尝试回答, 并互相补 充,最后达成共识: 教师引导学生,联想轴对 称知识解决,尝试作法,师生 共同矫正, 教师引导学生通过合作 交流完成证明;

(完整版)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在丁,我们善丁作定点关丁动点所在直线的对称点,或利用平移和 展开图来处理。这对丁我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”, “垂线段最短”,“点关丁线对称”,“线段的平移” “立体图形展开图”。教材中的例题“饮马问 题”,“造桥选址问题” “立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关丁线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A , B在直线L的两侧,在L上求一点P,使得PA+PB * 最小。? 解:连接AB,线段AB与直线L的交点P,就是所求。(根据:两点之间线 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地 方,才能使从A、B到它的距离之和最短. 虻叩 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关丁直线“街道”的对称点A',然后连接A ' B,交“街道” 丁点C,则点C就是所求的点. 、一点在两相交直线内部 例:已知:如图A是锐角Z MON内部任意一点,在Z MON的两边 OM , ON上各取一点B, C,组成三角形,使三角形周长最小 的两边

解:分别作点A关丁OM , ON的对称点A' , A〃;连接A' , A〃,分别交 OM , ON 丁点B、点C ,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何 处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B沿垂直与河岸的方向平■移一个河宽到E, 2. 连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得BN// EM 且BN=EM, MN=CD, BD // CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD处,连接AC.CD.DB.CE, 则AB两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在/\ACE 中,v AC+CE >AE,二AC+CE+MN >AE+MN,即AC+CD+DB 所以桥的位置建在CD处,AB两地的路程最短。 例:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉 作物,?要在河边建一个抽水站,将河水送到A、B两地,问该站建在 A\M f —广11 B >AM+MN+BN

相关文档
相关文档 最新文档