文档视界 最新最全的文档下载
当前位置:文档视界 › 蓝宝石应力介绍

蓝宝石应力介绍

蓝宝石应力介绍
蓝宝石应力介绍

蓝宝石应力

1.概述

在晶体生长过程中晶体内存在的应力将引起应变,当应变超过了晶体材料本身塑性形变的屈服极限时,晶体将发生开裂。一般来说,根据晶体内应力的形成原因,可将其分为三类:热应力,化学应力和结构应力。

1.1热应力

蓝宝石晶体在从结晶温度冷却至室温过程中并不发生相结构的转变,因此,晶体内应力主要是由温度梯度引起的热应力。晶体热应力正比于晶体内的温度梯度、晶体热膨胀系数及晶体直径。最大热应力总是出现在籽晶与新生晶体的界面区域,较大热应力一般出现在结晶界面、放肩、收尾及直径发生突变的部位,在等径部位热应力相对较小。

1.2结构应力

由特定材料构建成的一个功能性物体叫做结构,在结构的材料内部纤维受到结构自身重力或者外界作用力下,纤维会产生变形,这种变形的能量来自于材料所受的应力,这种应力就叫结构应力。

2.产生因素

晶体全开裂主要与晶体的生长速率和冷却速率有关,生长速率或冷却速率过快,必将使晶体整体的热应力过大。当热应力值超过屈服应力时,裂纹大量萌生,不断扩展,相互交织造成晶体整体碎裂,具有此种裂纹的晶体已失去使用价值,应当严格避免。通过相关理论分析和多次实验证明,采用匀速的降温程序,降温速率控制在1.5~3.0 K/h的范围内,晶体生长速率为1.0~5.0 mm/h;依据蓝宝石晶体退火工艺,晶体强度与温度的变化关系,在10~30 K/h范围内设计晶体的冷却程序,完成晶体的退火和冷却。此晶体生长速率及冷却程序,可使晶体的整体碎裂得到有效控制。

在晶体生长中时常发现在晶体的引晶、放肩及晶体直径突变等部位发生裂纹萌生,并沿特定的晶面扩展。具有该种裂纹的晶体虽然仍可利用,但会使器件的尺寸受到一定的限制,降低晶体坯料的利用率,故应尽力避免。

此种裂纹的形成与泡生法晶体生长控制工艺密切相关。在晶体生长的引晶和放肩阶段主要是通过调节热交换器的散热能力来控制晶体生长,在籽晶和新生晶体的界面区域,受热交换器工作流体温度的影响较显著,温度梯度较大。同时,在此阶段需不断的调整晶体的生长

状态,造成此位置晶体外形不规则以及较高的缺陷浓度等都极易引起应力集中,裂纹萌生的机率也相对较大。在后续实验中,本实验室采用加长籽晶杆长度,增加温度梯度过渡区长度和恒定热交换器工作流体温度等措施来控制该区域的裂纹萌生,并取得了较好的效果。3.检测方法

检测工具为应力仪。

台式应力仪:S-18应力测试仪应用范围广泛。该仪器可以从水平或垂直角度,对玻璃和塑料配件进行检测,大多运用于品控。S-18有足够大的使用空间供各种产品进行测量。测量过程中,主要通过手持被测物体在偏光下进行观察测量。

标准配置的S-18包括一个光源,一个装有四分之一波盘的分析器和另一个装有四分之一波盘的偏光装置。S-18应力仪中已经置入了一块全波盘。

S-18应力测试仪使用时要垂直放置。机身上有2对橡胶脚垫减震器,便于从水平或垂直方向操作。

应力仪功能的优越点

应力仪是一种无损检测应力情况的机器,便于人们在生产国产中更直观的判别样品的应力情况。做好分析应力的情况,更好的改进生产工艺,做出更好的产品。

应力仪的操作简便易学,机器性能一般可以稳定维持3-5年。

4.控制方法

泡生法生长的蓝宝石晶体,晶体直径通常仅略小于坩埚内径;随着晶体直径的增大,直径惯性迅速减小,晶体的直径对温度波动过于敏感,抗扰动能力降低,易引起晶体直径突变。晶体直径突变部位必将形成应力集中,当应力集中值达到屈服点时,造成裂纹萌生并沿薄弱面延伸。裂纹在晶体直径突变处萌生,并沿(1120)面扩展。

在后续实验中,根据晶体生长热场设计要求,在晶体生长炉内填充氧化铝耐火保温层,增大系统热惯性和热场温度均匀性。调整晶体生长控制工艺,适当加大固液界面熔体包裹层厚度。通过抑制界面温度波动和增大晶体直径惯性的方式,来增强晶体直径的可控性,预防直径突变的发生,避免晶体开裂。

如果晶体内含有包裹物与晶体自身的热膨胀系数不同,即使温度变化相同,也会因热膨胀系数失配而产生本征应变,引起晶体与包裹物间界面区域的应力集中,形成微裂纹。这种由包裹物引起的热应力集中同晶体与杂质粒子之间的热膨胀系数失配率成正比,热膨胀系数失配率越大,引起的应力集中越严重。此外,还与杂质颗粒形态,杂质粒子、晶体自身的弹性性能相关。微裂纹在加工刀具的作用下沿(1120)或(0112)面快速扩展,引起在加工过程晶

体开裂。

5.结论

综上,引起晶体开裂的原因可概括为两方面,一方面与晶体自身的结构和性质有关,如强度、热传导系数、热膨胀系数,晶面结构等;另一方面与晶体生长工艺相关,如热场设计、生长速率、冷却速率、退火程序等。只有根据晶体自身的热物性能,进行合理的温的场设计和生长工艺设计方能获得完整的高质量的大尺寸晶体。

蓝宝石晶体生长技术回顾

蓝宝石晶体生长技术回顾 (2011-07-12 15:21:18) 转载 分类:蓝宝石晶体 标签: 蓝宝石 晶体生长 技术 历史 杂文 杂谈 引言 不少群众提出意见,博主说了这多不行的,能不能告诉广大投身蓝宝石长晶事业的什么设备行?说实话,这真的是为难我了!怎么讲?举个例子吧,Ky技术设备在Mono手里还真的是Ky,但到了你手里可能就是YY了。 可能你觉得受打击了,可是没有办法啊,事实如此啊,实话听 起来往往比较刺耳!本博主前面发表的《从缺陷的角度谈谈蓝宝石生长方向的选择》博文,迄今为止只有寥寥无几群众真正看出精髓所在..................................不服气群众可以留言谈谈自己了解了什么? 古人云“博古通今”、“温故知新”,我觉得很有道理,技术之道也是如此。如果没有对以往技术的熟练掌握、熟知精髓所在,没有

对以往技术的总结提炼,你就不可能对一个新技术真正的掌握。任何新技术新设备到你手里,充其量你只是一个熟练操作工而已。 还觉得不信的话,我就在这篇博文里用大家认为最古老的火焰法宝石生长的经验理论总结来给大家进行目前流行的衬底级蓝宝石晶体生长进行理论指导。 蓝宝石晶体生长技术简介

焰熔法(flame fusion technique)&维尔纳叶法(Verneuil technique) 1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳叶法。 弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)这几个哥们实际上就是做假珠宝的,一群有创新精神的专业人士。 博主对两类造假者比较佩服,一类是以人造珠宝以假乱真的,一类是造假文物的。首先、他们具有很高的专业素养;其次、他们也无关民生大计;还有利于社会财富的再分配。 至于火焰法简单的描述我就不啰嗦了,我讲讲一些你所不知道的火焰法长宝石的一些前人总结;这些总结和经验对今天的任何一种新方法长蓝宝石单晶都是有借鉴意义的。 100多年来火焰法工作者在气泡、微散射,晶体应力和晶体生长方向的关系,晶体生长方向与缺陷、成品率之间的关系做了大量的数据总结,可以讲在各个宝石生长方法中研究数据是最完备的。在这篇博文里我只讲讲个人认为对其他方法有借鉴意义的一些总结。

LED蓝宝石衬底

LED蓝宝石衬底 蓝宝石详细介绍 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C 面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料. 下图则分别为蓝宝石的切面图;晶体结构图上视图;晶体结构侧视图; Al2O3分之结构图;蓝宝石结晶面示意图 蓝宝石结晶面示意图 最常用来做GaN磊晶的是C面(0001)这个不具极性的面,所以GaN的极性将由制程决定 (a)图从C轴俯看(b) 图从C轴侧看

蓝宝石晶体的生长方法 蓝宝石晶体的生长方法常用的有两种: 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇. 蓝宝石晶体的应用: 广大外延片厂家使用的蓝宝石基片分为三种: 1:C-Plane蓝宝石基板 这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C 轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定. 2:R-Plane或M-Plane蓝宝石基板 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。 3:图案化蓝宝石基板(Pattern Sapphire Substrate简称PSS) 以成长(Growth)或蚀刻(Etching)的方式,在蓝宝石基板上设计制作出纳米级特定规则的微结构图案藉以控制LED之输出光形式,并可同时减少生长在蓝宝石基板上GaN之间的差排缺陷,改善磊晶质量,并提升LED内部量子效率、增加光萃取效率。

蓝宝石基本知识

蓝宝石基本知识 1、蓝宝石介绍 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应 用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿 透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性. 因此被大量用在光学元件、红外装置、高强度镭射镜片材料及 光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透 光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。目前超高亮度白/蓝光LE D的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料. 2、蓝宝石晶体的生长方法常用的有两种: 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到 熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。 于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单

晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedC rystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇. 蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成 广大外延片厂家使用的蓝宝石基片分为三种: 1:C-Plane蓝宝石基板 这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物

一点应力状态概念及其表示方法

一点应力状态概念及其表示方法 凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力; 图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。

2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。如图8-3是通过轴向拉伸杆件内点不同(方向)截面上 的应力情况(集合) 3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。 特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。

§8-2平面应力状态的工程实例1.薄壁圆筒压力容器

为平均直径,为壁厚 由平衡条件 得轴向应力:(8-1a) 图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面) 由平衡条件或, 得环向应力:(8-1b) 2.球形贮气罐(图8-6) 由球对称知径向应力与纬向应力相同,设为 对半球写平衡条件:

得(8-2) 3.弯曲与扭转组合作用下的圆轴 4.受横向载荷作用的深梁         §8-3平面一般应力状态分析——解析法 空间一般应力状态

如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。 1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。由剪应力互等定理,有: , , 。2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。 3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。 2.平面一般应力状态斜截面上应力 如图8-10所示,斜截面平行于轴且与面成倾角,由力的平衡条件: 和 可求得斜截面上应力,:

彩色宝石之蓝宝石简介

彩色宝石之蓝宝石简介 蓝宝石属于刚玉石物,是除了钻石以外地球上最硬的天然矿物,基本化学成分是氧化铝。蓝宝石属于高档宝石,是五大宝石之一,位于钻石、红宝石之后排第三,被看作诚实和德高望重的象征。它和红宝石有“姊妹宝石”之称。它的硬度是9,仅次于金刚石,因而坚硬无比。 蓝色的蓝宝石(sapphire)是因为含有微量的钛元素和铁元素。事实上,除了红色的刚玉宝石,其他所有色调的刚玉在商业上都被称作蓝宝石。所以,蓝宝石并不是仅指蓝色的刚玉宝石,它除了拥有完整的蓝色系列之外,还有着如同烟花落日般的黄色、粉红色、橙橘色及紫色等等,这些彩色系的蓝宝石被称为彩色蓝宝石。 蓝宝石优质者的产地大部分集中在亚洲、印度和巴基斯坦边境上的克什米尔和缅甸出产的蓝宝石,被公认为最美丽和最有价值的。克什米尔蓝宝石的矿区位于喜马拉雅山脉的西北端,海拔5000多米,位于雪线以上,开采条件非常艰苦,且产量一直很少,以至于许多年轻的珠宝商都没有见过这种珍贵的宝石,更不用说普通的消费者了。克什米尔蓝宝石的颜色呈矢车菊蓝宝石,也就是微带紫的靛蓝色,所以又被称作矢车菊蓝宝石。典型的矢车菊蓝宝石,除了拥有纯净且浓艳的蓝色调外,内部必须有非常细微的丝状内涵物,使得宝石带有丝绒般的光泽。该种蓝宝石即便是处于人工光源下,颜色也不会变,能拥有此种特性才是真正的矢车菊蓝宝石。 英国王室有过“不爱江山,更爱美人”的经典爱情。1936年12月,即位不足一年的英国国王爱德华八世为了和离异两次的美国平民女子辛普夫人结婚,毅然宣布退位。爱德华八世的弟弟乔治六世继位后,授予他温莎公爵的头衔。温莎公爵曾为夫人订做了一枚“猎豹”胸针,而“猎豹”蹲踞的“岩石”就是一枚重152.35克拉磨圆切割的克什米尔蓝宝石。 另外,我国山东昌乐县亦有蓝宝石出产,虽颗粒大,净度高,但颜色优美者较少,色调普通有些偏深。昌乐县的蓝宝石储量为中国之最,也是目前上已探明储量最大的蓝宝石矿区之一。在昌乐县1000多平方公里的地域内,分布着100多座古火山,蓝宝石是远古1800万年前火山喷发后留给这里人们的宝贵财富。昌乐蓝宝石在地下50—60公里的地幔中生成,它是在高温下由氧和铝缓慢结合

蓝宝石晶体材料应用及市场需求分析

蓝宝石晶体材料应用及市场需求分析 蓝宝石晶体材料是蓝宝石单晶体的原材料,是生产LED衬底、蓝宝石视窗等产业的上游产业,因此可分析其下游产业趋势来确定其市场需求。 据预计,未来LED蓝宝石衬底市场需求量年增速超过30%,蓝宝石视窗则受益于新机型屏幕升级和智能穿戴设备的潜在高速增长,全球性的蓝宝石经济即将到来。 LED市场对蓝宝石晶体材料的需求分析 图1 蓝宝石材料的应用及趋势 1)LED衬底 LED是一种节能环保、寿命长和多用途的光源,其能量转换效率大大高于白炽灯和节能灯。衬底材料是半导体照明产业技术发展的基石,不同的衬底材料,需要不同的外延生长技术、芯片加工技术和器件封装技术,衬底材料决定了半导体照明技术的发展路线。 衬底材料的选择取决于很多条件,目前只能通过外延生长技术的变更和器件加工工艺的调整来适应不同衬底上的半导体发光器件的

研发和生产。目前能用于生产的衬底只有三种,即蓝宝石Al2O3衬底和碳化硅SiC衬底以及Si衬底等。蓝宝石的性价比不断提升将成为LED上游衬底材料的最优选择。 由图1所示,LED衬底可应用于照明、信息、笔记本电脑等诸多领域,市场整体保持快速增长,尤其是LED照明市场应用扩张明显,而蓝宝石晶体材料是LED上游衬底材料的最优选择,受其影响,也将迎来高速增长。 蓝宝石由于性能优良是最为理想的衬底材料,并且被广泛应用于光电元件中。蓝宝石的应用领域主要涉及衬底材料,军事、武器方面的应用及消费性电子智能终端等。衬底依旧是蓝宝石的重要应用领域,以LED衬底材料为主。目前来看,蓝宝石衬底材料应用为蓝宝石的最主要应用,按照法国Yole统计,蓝宝石衬底材料应用占比约75%,非衬底材料应用占比约25%。其中衬底材料中主要是半导体照明(LED)衬底材料及SOS相关产品使用,其中LED衬底材料占比约95%以上,可见LED衬底目前是蓝宝石市场的主要驱动力,现在主要应用在LED照明市场。 2、LED照明市场分析 LED应用于照明,是继日光灯、节能灯后的第三次革命。LED 的发光效率,是白炽灯的8倍,是荧光灯的2倍多。LED的光谱中没有紫外线和红外线成分,所以不会发热,不产生有害辐射。而且LED的光通量半衰期大于5万小时,可以正常使用20年,器件寿命一般都在10万小时以上,是荧光灯寿命的10倍,是白炽灯的100倍,LED这种节能、长寿的特性,使其取代其他灯具成为主流照明产品是必然趋势。另一方面,LED在大尺寸光源、景观照明、汽车车灯、低温照明等应用市场将得到进一步发展,逐步成为推动LED市场发

蓝宝石介绍

蓝宝石介绍 常用晶体生长方法: Czochralski Method (柴氏拉晶法,又称为提拉法):Pull from the melt. Kyropoulos Method (凯氏长晶法,又称为泡生法): Dip and turn. 温度梯度法(TGT法) EFG Method (导模法,Edge Defined Film-fed Growth): Pull through die. 热交换法(Heat Exchange Method,HEM)

垂直水平温度梯度冷却法(Vertical Horiaontal Gradient Freezing,VHGF): 韩国Sapphire Technology Company (STC)技术。 ES2-GSA长晶法:美国Rubicon Technology Inc.技术。 由于钨钼具有耐高温、低污染等特性,被广泛用来做蓝宝石长晶炉的热场部件,包括钨坩埚/钼坩埚、发热体、钨筒、隔热屏、支撑、底座、籽晶杆、坩埚盖等。发热体 采用鸟笼结构钨发热体或者钨网发热体,有利于提供均匀稳定的温场。 化学式 Al2O3 相对分子质量 101.96 性状 白色结晶性粉末。无臭。无味。质极硬。易吸潮而不潮解。溶于浓硫酸,缓慢溶于碱液 中形成氢氧化物,几乎不溶于水及非极性有机溶剂。相对密度(d204)4.0。熔点约2000℃。 用途 1. 红宝石、蓝宝石的主成份皆为氧化铝,因为其它杂质而呈现不同的色泽。红宝石含有 氧化铬而呈红色,蓝宝石则含有氧化铁和氧化钛而呈蓝色。 2. 在铝矿的主成份铁铝氧 石中,氧化铝的含量最高。工业上,铁铝氧石经由Bayer process纯化为氧化铝,再由 Hall-Heroult process转变为铝金属。 3. 氧化铝是金属铝在空气中不易被腐蚀的原因。 纯净的金属铝极易与空气中的氧气反应,生成一层致密的氧化铝薄膜覆盖在暴露于空气中铝 表面。这层氧化铝薄膜能防止铝被继续氧化。这层氧化物薄膜的厚度和性质都能通过一种称 为阳极处理(阳极防腐)的处理过程得到加强。 4. 铝为电和热的良导体。铝的晶体形 态因为硬度高,适合用作研磨材料及切割工具。 5. 氧化铝粉末常用作色层分析的媒介 物。 6. 2004年8月,在美国3M公司任职的科学家开发出以铝及稀土元素化合成的合 金制造出称为transparent alumina的强化玻璃。资料:刚玉粉硬度大可用作磨料,抛 光粉,高温烧结的氧化铝,称人造刚玉或人造宝石,可制机械轴承或钟表中的钻石。氧化铝 也用作高温耐火材料,制耐火砖、坩埚、瓷器、人造宝石等,氧化铝也是炼铝的原料。煅烧 氢氧化铝可制得γ-Al2O3。γ-Al2O3具有强吸附力和催化活性,可做吸附剂和催化剂。刚玉 主要成分α-Al2O3。桶状或锥状的三方晶体。有玻璃光泽或金刚光泽。密度为3.9~4.1g/cm3, 硬度9,熔点2000±15℃。不溶于水,也不溶于酸和碱。耐高温。无色透明者称白玉,含微 量三价铬的显红色称红宝石;含二价铁、三价铁或四价钛的显蓝色称蓝宝石;含少量四氧化 三铁的显暗灰色、暗黑色称刚玉粉。可用做精密仪器的轴承,钟表的钻石、砂轮、抛光剂、 耐火材料和电的绝缘体。色彩艳丽的可做装饰用宝石。人造红宝石单晶可制激光器的材料。 除天然矿产外,可用氢氧焰熔化氢氧化铝制取。氧化铝化学式Al2O3,分子量101.96。 矾土的主要成分。白色粉末。具有不同晶型,常见的是α-Al2O3和γ-Al2O3。自然界中的刚 玉为α-Al2O3,六方紧密堆积晶体,α-Al2O3的熔点2015±15℃,密度3.965g/cm3,硬度

蓝宝石应力介绍

蓝宝石应力 1.概述 在晶体生长过程中晶体内存在的应力将引起应变,当应变超过了晶体材料本身塑性形变的屈服极限时,晶体将发生开裂。一般来说,根据晶体内应力的形成原因,可将其分为三类:热应力,化学应力和结构应力。 1.1热应力 蓝宝石晶体在从结晶温度冷却至室温过程中并不发生相结构的转变,因此,晶体内应力主要是由温度梯度引起的热应力。晶体热应力正比于晶体内的温度梯度、晶体热膨胀系数及晶体直径。最大热应力总是出现在籽晶与新生晶体的界面区域,较大热应力一般出现在结晶界面、放肩、收尾及直径发生突变的部位,在等径部位热应力相对较小。 1.2结构应力 由特定材料构建成的一个功能性物体叫做结构,在结构的材料内部纤维受到结构自身重力或者外界作用力下,纤维会产生变形,这种变形的能量来自于材料所受的应力,这种应力就叫结构应力。 2.产生因素 晶体全开裂主要与晶体的生长速率和冷却速率有关,生长速率或冷却速率过快,必将使晶体整体的热应力过大。当热应力值超过屈服应力时,裂纹大量萌生,不断扩展,相互交织造成晶体整体碎裂,具有此种裂纹的晶体已失去使用价值,应当严格避免。通过相关理论分析和多次实验证明,采用匀速的降温程序,降温速率控制在1.5~3.0 K/h的范围内,晶体生长速率为1.0~5.0 mm/h;依据蓝宝石晶体退火工艺,晶体强度与温度的变化关系,在10~30 K/h范围内设计晶体的冷却程序,完成晶体的退火和冷却。此晶体生长速率及冷却程序,可使晶体的整体碎裂得到有效控制。 在晶体生长中时常发现在晶体的引晶、放肩及晶体直径突变等部位发生裂纹萌生,并沿特定的晶面扩展。具有该种裂纹的晶体虽然仍可利用,但会使器件的尺寸受到一定的限制,降低晶体坯料的利用率,故应尽力避免。 此种裂纹的形成与泡生法晶体生长控制工艺密切相关。在晶体生长的引晶和放肩阶段主要是通过调节热交换器的散热能力来控制晶体生长,在籽晶和新生晶体的界面区域,受热交换器工作流体温度的影响较显著,温度梯度较大。同时,在此阶段需不断的调整晶体的生长

应力、应力状态分析(习题解答)

8-9 矩形截面梁如图所示,绘出1、2、3、4点的应力单元体,并写出各点的应力计算式。 解:(1)求支反力R A =,R B = (2)画内力图如图所示。 x Pl (-)(+) Pl M kN ·m) P P y (-) (-) (+) V kN) 题8-9图 (3) 求梁各点的正应力、剪应力: (4)画各点的应力单元体如图所示。 9-1 试用单元体表示图示构件的A 、B 的应力单元体。 (a )解:(1)圆轴发生扭转变形,扭矩如图所示。 111max 222222333333max 442330,22(')[()]448 11 4()12 12 00(0, 0) 16 Z Z Z Z z V p A b h h h h P P b M V S Pl h y I I b b h b h b M S M Pl W b h σττστστστ==-=-? =-??-?? ?-?= ?=? = =??????=====- =- =??

80A - + 160 80 T (kN ·m ) (2)绘制A 、B 两点的应力单元体: A 、 B 两点均在圆轴最前面的母线上,横截面上应力沿铅垂方向单元体如图所示: 3 3 1601020.216 80510.216 A A t b B t T Pa kPa W T Pa kPa W τπτπ= ==?===-? (b )解:(1)梁发生弯曲变形,剪力、弯矩图如图所示。 - + 120 V kN) 40 M kN ·m) + 120 4020 60 题9-1(b )

(2)绘制A 、B 两点的应力单元体: A 点所在截面剪力为正,A 点横截面的剪力为顺时针,同时A 点所在截弯矩为正下拉,而A 点是压缩区的点。 B 点所在截面剪力为负,B 点横截面的剪力为逆时针,同时B 点所在截弯矩为正下拉,而B 点是拉伸区的点。单元体如图所示: 3 3 3.3 3 3 3.60100.0537.50.1200.212 12010(0.1200.050.075) 5.6250.1200.20.1201220100.0512.50.1200.212 4010(0.1200.05A A A t A z A A t B B B t B z B B t M y Pa MPa I V S Pa MPa I b M y Pa MPa I V S I b στστ?=-?=-?=-??????=?==????=?=?=??-????=?=?g g 30.075) 1.8750.1200.20.12012 Pa MPa =-?? 9-2(c 解:(1)由题意知: 30,20.5030o x x y MP MPa MP στσα==-==,,。 (2)求30o 斜截面上的应力 cos 2sin 22230503050 cos 60(20)sin 6052.32() 223050sin 2cos 2sin 60(20)cos 6018.67() 22 x x x x x o o o o x x x MPa MPa αασσσσσατα σστατα+-= + -+-=+--?=--=+=+-?=- (e) 试用解析法求出(1)图示应力单元体-30o 斜截面的应力。(2)主应力与主方向,以及面内的剪应力极值;(2)在单元体上标出主平面。 解:(1)由题意知: o MPa MP x x 30.20,10-=-=-=ατσ。见图(a )

单晶硅、蓝宝石介绍

单晶硅介绍: 一个完整的晶体硅太阳能产业链是由高纯多晶硅制造、硅棒的拉制、硅片的切割、太阳能电池封装、光伏发电组件系统集成等环节组成的,如下图所示。 硅棒、硅片产业是整个晶体硅太阳能产业链的中间部分,它从上游多晶硅生产企业购买原材料,加工成硅片后出售给下游的太阳能电池制造和系统集成企业。 蓝宝石晶体介绍: 蓝宝石晶体是现代工业尤其是微电子、光电子产业极为重要的基础材料,在LED 新光源产业链中属上游产品。蓝宝石晶体广泛应用于半导体、化工、航空、航天、国防等多行业的高科技领域,具有较大的社会和经济效益。蓝宝石晶体生长及切片项目是LED 产业链的核心环节,其产品是LED 产业最重要的上游原材料之一, LED 是发光二极管的简称,具有发光效率高、环保、寿命长、体积小等特点,是目前世界上最先进的照明技术。蓝宝石材料在LED 应用领域一直处于供不应求的状况。 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子多晶硅 单晶硅棒 单晶硅片 电池片 电池组件 公司经营行业

以共价键型式结合而成,其晶体结构为六方晶格结构。它常被应用的切面有A-Plane,C-Plane及R-Plane。由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性,因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。蓝宝石晶片成为制作白/蓝/绿光LED的关键材料。 蓝宝石晶体的生长及切片在工艺上非常类似于单晶硅的生产和切片,且蓝宝石晶体项目的建设符合国家产业政策,是国家鼓励发展的产品,有良好的市场前景,可推动我国节能产品的发展,为建设我国节约型社会起到积极大推动作用。

人造蓝宝石长晶生产及晶棒加工项目可行性研究报告

人造蓝宝石长晶生产及晶棒加工 项目 可行性研究报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (18) 2.1项目提出背景 (18) 2.2本次建设项目发起缘由 (20) 2.3项目建设必要性分析 (20) 2.3.1促进我国人造蓝宝石长晶生产及晶棒加工产业快速发展的需要 (21) 2.3.2加快当地高新技术产业发展的重要举措 (21) 2.3.3满足我国的工业发展需求的需要 (22) 2.3.4符合现行产业政策及清洁生产要求 (22) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (22) 2.3.6增加就业带动相关产业链发展的需要 (23) 2.3.7促进项目建设地经济发展进程的的需要 (23) 2.4项目可行性分析 (24) 2.4.1政策可行性 (24) 2.4.2市场可行性 (24) 2.4.3技术可行性 (24) 2.4.4管理可行性 (25) 2.4.5财务可行性 (25) 2.5人造蓝宝石长晶生产及晶棒加工项目发展概况 (25) 2.5.1已进行的调查研究项目及其成果 (26) 2.5.2试验试制工作情况 (26) 2.5.3厂址初勘和初步测量工作情况 (26)

蓝宝石晶体介绍

蓝宝石介绍 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶 体结构为六方晶格结构.它常被应用的 切面有A-Plane,C-Plane及R-Plane.由 于蓝宝石的光学穿透带很宽,从近紫外 光(190nm)到中红外线都具有很好的透 光性.因此被大量用在光学元件、红外装 置、高强度镭射镜片材料及光罩材料上, 它具有高声速、耐高温、抗腐蚀、高硬 度、高透光性、熔点高(2045℃)等特 点,它是一种相当难加工的材料,因此 常被用来作为光电元件的材料。目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料. 2、蓝宝石晶体的生长方法常用的有两种: 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇. 蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成.

晶硅和蓝宝石加工用金刚石工具介绍

晶硅和蓝宝石加工用金刚石工具介绍 一 单晶硅和多晶硅的加工 单晶硅与多晶硅 单晶硅是一种比较活泼的非金属元素,这种晶体具有基本完整的点阵结构,是一种良好的半导体材料,纯度能达到99.9999%,主要用于制造半导体器件和太阳能电池等。单晶硅(图1a) 的制造方法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。多晶硅( 图1b) 是单质硅的一种形态,熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,而且这些晶粒结合起来,就结晶成多晶硅。多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。 图1 单晶硅和多晶硅加工流程单晶硅的加工流程主要包括截断—滚圆—切方—平磨—切片—倒角—磨片—化学腐蚀—抛光等步骤。相比而言,多晶硅没有了切断和滚圆步骤,只需在晶锭制备完成后,切方、切片即可。在整个单晶硅和多晶硅从晶锭到芯片的制备过程中,均需要不同用途的金刚石工具参与加工,如金刚石圆锯片、带锯、高精度砂轮、线锯、超薄切片等,而且加工的精度要求比较高。 二 蓝宝石加工 蓝宝石成分为Al2O3,莫氏硬度为9,仅次于超硬材料的硬度,由于其优越的透光性能和耐磨性能,大多被用于LED发光组件的基体、光学视窗、高档手表的表壳以及手机摄像头等。蓝宝石具有硬脆的特点,且价格昂贵,在加工过程中通常要求精度高、加工效率快、低的材料损失以及洁净的工作环境。金刚石是自然界中硬度最高、耐磨性最强的材料,因此金刚石工具是加工蓝宝石材料的最佳选择。

图2 蓝宝石晶片 加工流程从蓝宝石晶锭到最后的衬底片(图2) ,主要流程包括以下步骤: 长晶—掏棒—滚磨—晶棒定向—切片—研磨—倒角—抛光,每一个步骤均需要配备不同的金刚石工具来完成,主要工具有金刚石套料钻头、金刚石砂轮、金刚石线锯等。 三 金刚石工具 1.金刚石线锯目前研究最为热门的就是金刚石线锯( 图3) ,日本的旭金刚石和则武株式会社、法国的圣戈班以及美国的diamond wire tech均在金刚石线锯方面做了大量的研究并相继推出了自己的产品; 国内已经有包括杨凌美畅、长沙岱勒、南京三超、青岛高测等多家规模化生产金刚石线锯的企业,金刚石线锯也广泛应用于单晶硅、多晶硅和蓝宝石的开方与切片,且市场需求量极大,2017 年国内 曾经出现一线难求的情况。图3 金刚石线锯 金刚石线锯的参数和应用见表1所示。

已知一点的应力状态MPa

第一章 1-10. 已知一点的应力状态10100015520???? ? ? ??--=ΛΛΛ ij σMPa ,试求该应力空间中 122=+-z y x 的斜截面上的正应力n σ和切应力n τ为多少? 解:若平面方程为Ax+By+Cz+D=0,则方向余弦为: 2 2 2 C B A A ++= l ,2 2 2 C B A B ++= m ,2 2 2 C B A C n ++= 因此:312)(-2112 22= ++= l ,322)(-212-222-=++=m ;3 22)(-212n 222=++= S x =σx l +τxy m +τxz n=3100 325031200= ?-? S y =τxy l +σy m +τzy n = 3350 321503150=?+? S z =τxz l +τyz m +σz n=3 200 32100-=?- 1-11已知OXYZ 坐标系中,物体内某点的坐标为(4,3,-12),其应力张量为: ??? ? ? ??--=1030205040100ΛΛΛ ij σ,求出主应力,应力偏量及球张量,八面体应力。 解:=1J z y x σσσ++=100+50-10=140 =2J 2 22xy xz yz y x z x z y τττσσσσσσ---++=100×50+50×(-10)+100×(-10) -402 -(-20)2 -302 =600 =3J 321σσσ=2 222xy z xz y yz x xz yz xy z y x τστστστττσσσ---+ =-192000 σ1=122.2,σ2=31.7,σ3=49.5 σm=140/3=46.7 σ8=σm =46.7 1-12设物体内的应力场为3 126x c xy x +-=σ,222 3 xy c y - =σ,y x c y c xy 2332--=τ,0===zx yz z ττσ,试求系数c 1,c 2,c 3。 解:由应力平衡方程的:

蓝宝石晶体介绍

蓝宝石晶体介绍 1、蓝宝石晶体介绍 ' N- Q* y+ R5 P* C 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.4 C% ?) j9 V0 |. W2 B% y5 w2 [ 0 H1 f' f9 h. z7 s 2、蓝宝石晶体的生长方法常用的有两种: 2 c: c7 }" N: x0 H 3 ~ 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2 p/ f1 ?8 x5 J0 {9 T3 @' k 2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskime thod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇. . J+ K6 Y% m$ ~0 m 0 f4 c5 v, k. h- U2 O: ` c ; h- h6 w# N0 U+ l , N2 h5 J6 E# l' G7 k 蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成# h5 `% W5 a! _1 I7 a( H [淘股吧] C7 _7 b( @+ f( C7 W n 广大外延片厂家使用的蓝宝石基片分为三种:, p, O, N* ^2 K# N2 M - O5 I2 h S2 q2 h6 ?: x 1:C-Plane蓝宝石基板5 c, H( p6 J0 @3 T 这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定. 3 i) D2 I) m6 C) [ " e0 m9 N, D) D5 a 2:R-Plane或M-Plane蓝宝石基板 3 q0 P8 l! W7 U$ ~2 B1 ~2 s 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。 F. @. Y' u$ B. m+ K5 U+ E # }! k/ S- t$ v- O: e. B" V6 a 3:图案化蓝宝石基板(Pattern Sapphire Substrate简称PSS). E6 N: Y6

国内外蓝宝石厂商介绍

国内外蓝宝石厂商介绍 蓝宝石市场前景广阔,但目前生产大尺寸蓝宝石晶体技术主要被俄罗斯和欧美企业垄断。据统计,目前全球70%的蓝宝石衬底由俄罗斯企业提供,另外30%由美国和欧洲掌控。国内尚未形成产业化生产的蓝宝石衬底片生产厂家。 蓝宝石是制作芯片的重要原料,占LED芯片原料费的10%。2010年第三季度后,全球蓝宝石产量居前两名的公司纷纷涨价,直接影响了LED芯片及封装价格上涨。 蓝宝石是指非红色的氧化铝(Al2O3)。含有杂质的蓝宝石很早以前就被作为宝石,由于其具有多种光学、机械、电气、热以及化学特性,因此还被广泛应用于工业等多种领域,而且应用范围仍在不断扩大之中。其中,能够合成制造出蓝宝石更是意义重大。蓝宝石的主要用途包括LED和LED底板。 LED市场在2010年经历了史无前例的发展。随着市场的发展,制造蓝色和白色GaN类LED 时使用的蓝宝石底板的需求也大幅增长。对底板成品的需求由每月按2英寸换算(TIE)为100万(2009年12月)增加到了200万(2010年第四季度)。 2009年第四季度,蓝宝石的加工能力满足需求还有余力。也就是说,加工蓝宝石的企业还能应对当时的需求。但是,材料的供应能力在2009年年底就逐步达到了极限。生产蓝宝石材料的企业大部分都因为2009年的金融危机和一直持续到09年的巨大物价压力而陷入苦于资金周转的困境。另外,由于新设备的导入和运转通常需要半到一年的时间,2010年产能缓慢上升,因而无法适应需求的急剧增加。由此产生了严重的材料短缺,导致价格暴涨。 蓝宝石芯材(Core)和坯料(Blank)由商品变身为“战略性材料”,大量的蓝宝石生产商时隔数年又重新掌握了定价的主导权。而且,他们可以将价格设定为能够最大限度获取利润的水平。其结果是,蓝宝石晶圆的美国国内售价超出我们的预想,上涨到了30美元,现金交易市场上的价格更是超过了30美元。很多加工蓝宝石的企业和LED厂商为确保产能已经预付了货款,目的是防止生产线停工。 生产蓝宝石晶棒的工艺主要有泡生法(KY法、凯氏长晶法)、提拉法(CZ法、柴氏拉晶法)、温度梯度法(TGT法)等,其中泡生法为主流工艺,生产的蓝宝石晶体约占70%,钻取率约30%。

宝石加工工艺简介

宝石加工工艺简介 1、宝石成品的加工 宝石成品的加工包括从原材料选用至琢磨等环节。 选用材料者必须懂得宝石的各种特性和评价要领。选料标准包括原料的质地、颜色、透明度、硬度、块体大小,形状的可利用程度等因素,目的是看其能加工出何种价值的宝石。 习惯上,宝石界将钻石、红蓝宝石、祖母绿、金绿猫眼宝石等归为高档宝石;将绿柱石、翡翠、碧玺(电气石)、海蓝宝石、珍珠等归为中档宝石;黄玉、水晶、绿松石、玛瑙、琥珀等为低档宝石。而同一品种的宝石又根据质地、颜色等分高、中、低档,最明显的例子是翡翠,一块艳绿玻璃地的优质翡翠戒面价值万元以上,而低档的翡翠手镯一只也不过数百元。由于宝石的这些特性,故加工时常按品种选料,下料时应由经验丰富的人员进行。 选料后一般要对原料进行仔细观察,了解原料的内在质量、裂纹、包裹体、晶体光学方位、解理等情况,确定可利用的部分和需剔除的部分,再依照具体宝石的习性、具体形状、加工习惯来设计切割宝石。宝石形状的设计要有利于宝石对光线的折射、反射或特殊光学效应的显现,使珍贵的宝石能通过一系列的光面和棱表现出其内在的和外观的美,更加绚丽光彩。此外,还要考虑能否最大限度地保持宝石的体积。 款式方面,经过长时期的实践和研究,国际上已出现了大量流行的宝石设计款式,各种款式中宝石的光面数量、角度、形状均有一定的要求,款式也常有自己的命名,如钻石常被设计成四方八角形、弗罗朗廷(双玫瑰)形、钻圆形等流行款式。

设计好款式之后,要对宝石进行切割、研磨、抛光。切割宝石也叫“开料”,通常用带有金刚砂圆锯的宝石切割机进行。研磨和抛光可在专用的宝石研磨抛光机上进行,该机上有一可以粘信宝石坯料的机械手[vovi插图],机械手可以调节角度、压力;还有一电动磨盘,可以配粗细不同的的金刚石磨片和抛光盘,一般程序是先粗磨后细磨,再加氧化铝、氧化铈或硅藻土等抛光剂进行抛光。虽然现在有半自动化的切磨机械,但宝石加工是很难实行规格化的,主要还是要靠有丰富、良好的切磨技术及一定的宝石学知识的磨工来完成。 世界上的一些名宝石,都由名人名匠设计加工。如20世纪初世界上最大的金刚石“库利南”,即是用8万英镑的重金聘请当时荷兰阿姆斯特丹著名工匠约阿斯查尔来劈开和琢磨的,当巨大的钻石被成功地劈成两块时,可怜的工匠竟紧张得昏了过去。 玉和玉石的加工与一般的宝石不同,它一般被制作成非平面几何形态的各种饰物和工艺品。如翡翠原料(称“仔料”)要由行家开料,尽量能够大块利用,不能大块利用时就要取出价值高(如翠绿)的部分单独加工,或利用天然原料中不同质地和颜色的“翠”和“地”的分布巧妙地设计形象逼真的工艺雕刻品,如绿叶白骨的小白菜等。 琢玉的过程包括了选料、设计、粗绘、铡(切割)、錾(凿)、冲(平)、磨(大样)、轧(细部)、勾(纹)、光(上光)等步骤。玉雕师可以用数年时间雕刻规模巨大的翡翠作品,使其成为无价之宝。如全国人大代表、物级工艺美术大师李博生等的“岱岳奇观”等几件巨型翡翠雕刻,就是利用几块大型原料,集中了北京玉器厂近40名高手,在6年内完成的,其价值不可估量。 款式方面,除了各种表现山水、鸟兽、神话和器物的大型雕刻之外,翡翠玉器常见“旧饰”和“时饰”两类装饰品。旧饰指清末以前的各种官饰和贵族饰,如“翎管”、“帽正”、“烟壶”、“龙勾”、“朝珠”、“扇坠”、“喜字”等;时饰指晚清以来流行的款式,如蛋戒面、鸡心、杏仔、玉镯等。国际目前流行的款式有底平顶弧的龟背形、祖母绿型两种戒面。其他玉石一般以工艺品雕刻为主,兼有玉镯、玉坠等器物,极少拿来制作戒面等个体较小的首饰。 珍珠的加工也具有其特殊性。其中圆形且有光泽,可以作宝石用的,只不过占总产量的小部分,称之为原珠。原珠的加工一般有如下的工序:(1)漂白、泡水、浸中和剂;(2)利用灯光进行恒温加热,使其色正发亮,显现光泽;(3)品质分级、大小筛选;(4)穿洞,其中瑕疵少者可钻单洞,用于戒指、耳环等,价值较高;瑕疵多者则钻双洞,用于珍珠串项链;(5)镶嵌或串珠。 2、镶嵌

相关文档