文档视界 最新最全的文档下载
当前位置:文档视界 › 无损检测考试试题

无损检测考试试题

无损检测考试试题
无损检测考试试题

一.是非判断题(在每题后面括号内打“X”号表示“错误”,画“○”表示正确)

1.最常用的超声波换1能器是利用压电效应发射和接收超声波的(0)

2.在超声波检测中最常用的超声波换能器是利用磁致伸缩效应发射和接收超声波的(X)

3.质点完成五次全振动所需要的时间,可以使超声波在介质中传播五个波长的距离(0)

4.一般的超声波检测仪在有抑制作用的情况下其水平线性必然变坏(X)

5.脉冲宽度大的仪器其频带宽度窄(0)

6.超声波检测时要求声束方向与缺陷取向垂直为宜(0)

7.在同一固体介质中,纵波的传播速度为常数(0)

8.在同一固体介质中,横波的传播速度为常数(0)

9.在同一固体介质中,瑞利波的传播速度为常数(0)

10.在同一固体介质中,兰姆波的传播速度为常数(X)

11.超声波表面波不能在液体表面传播(0)

12.在同一固体材料中,传播纵,横波时的声阻抗相同(X)

13.声阻抗是衡量介质声学特性的重要参数,温度变化对材料的声阻抗也会有影响(0)

14.第二介质中折射的横波其折射角达到90°时的纵波入射角为第二临界角(0)

15.第二介质中折射的横波其折射角达到90°时的纵波入射角为第一临界角(X)

16.第二介质中折射的纵波其折射角达到90°时的纵波入射角为第二临界角(X)

17.第二介质中折射的纵波其折射角达到90°时的纵波入射角为第一临界角(0)

18.第二介质中折射的横波平行于界面时的纵波入射角为第二临界角(0)

19.第二介质中折射的横波平行于界面时的纵波入射角为第一临界角(X)

20.有机玻璃/铝界面的第一临界角大于有机玻璃/钢界面第一临界角,则前者的第二临界角也一定大于后者。(X)

21.只有当第一介质为固体介质时,才会有第三临界角。(0)

22.频率和晶片尺寸相同时,横波声束指向性不如纵波好(X)

22.在水中不仅能传播纵波,也能传播横波(X)

23.有机玻璃声透镜水浸聚焦探头,透镜曲率半径越小,焦距越大(X)

24.有机玻璃声透镜水浸聚焦探头,透镜曲率越大,焦距越大(X)

25.吸收衰减和散射衰减是材料对超声能量衰减的主要原因(0)

26.钢中声速最大的波型是纵波(0)

27.钢中声速最大的波型是横波(X)

28.钢中声速最大的波型是兰姆波(X)

29.超声波在异质界面上倾斜入射时,同一波型的声束反射角大于入射角(X)

30.超声波在异质界面上倾斜入射时,同一波型的声束反射角小于入射角(X)

31.商品化斜探头标志的角度是表示声轴线在任何材料中的折射角(X)

32.为在试件中得到纯横波,斜探头透声斜楔材料的纵波速度应大于被检试件中的纵波速度(X)

33.超声波在介质中的传播速度与波长成正比(X)

34.超声波在铝中传播时,频率越高,波长越短(0)

35.超声波在钢中传播时,频率越低,波长越短(X)

36.超声波在介质中的传播速度等于质点的振动速度(X)

37.在同种固体材料中,纵,横波声速之比为常数(0)

38.声源面积不变时,超声波频率越高,超声场的近场长度越长(X)

39.采用高频探伤可以改善声束指向性,提高探伤灵敏度(0)

40.不同压电晶体的频率常数不一样,故不同压电晶体作成频率相同的晶片其厚度不同(0)

41.兰姆波波速在一定介质中不为常数(0)

42.超声波探头的近场长度近似与晶片直径成正比,与波长成反比(0)

43.超声波探头的半扩散角近似与晶片直径成正比,与波长成反比(X)

44.超声波探头发射超声波利用的是逆压电效应,而接收超声波则是利用的正压电效应(0)

45.超声波束的指向角是在晶片直径一定的情况下,频率越低,指向角越小(X)

46.超声波束的指向角是在晶片直径一定的情况下,频率越高,指向角越小(0)

47.声透镜的曲率越大,焦距越短(0)

48.声透镜的曲率半径越大,焦距越短(X)

49.波长越短,近场长度越短,晶片直径越大,近场长度也越长(0)

50.不同材料有不同的材料弹性和密度,故同一波型的超声波在不同材料中传播速度不同(0)

51.同一波型的超声波在不同材料中的传播速度是相同的(X)

52.超声波纵波在异质界面上发生反射时,反射波中必定会分离出反射纵波与反射横波(X)

53.根据公式:C=λ·f 可知声速C与频率f成正比,因此同一波型的超声波在高频时传播速度比低频时大(X)

54.压电晶片是利用“逆压电效应”的原理产生超声波的(0)

55.压电晶片是利用“逆压电效应”的原理接收超声波的(X)

56.用声透镜对超声波进行聚焦时,必须选用中间厚度小、边缘厚度大的凹形透镜(0)

57.物体在振动过程中,当外力的频率等与振动系统的固有频率时,物体的振幅达到最大值,这种现象称为谐振(0)

58.物体在振动过程中,当外力的频率等与振动系统的固有频率时,物体的振幅达到最大值,这种现象称为共振(0)

59.波在传播过程中遇到远小于波长的障碍物时,就会发生绕射现象(0)

60.超声波探头所选用压电晶片的频率与晶片厚度有密切关系,频率越高,晶片越薄(0)

61.在钢中测定为某个折射角的探头,移放到铝上测定,该折射角将会变小(X)

62.在超声波检测中,窄脉冲的纵向分辨力高,这是因为它的脉冲宽度大(X)

63.一台垂直线性理想的超声波检测仪,其回波高度与探头接收到的声压成正比例(0)

64.一台垂直线性理想的超声波检测仪,其回波高度与探头接收到的声压成反比(X)

65.当激励探头的脉冲幅度增大时,由探头发射的超声波强度也随之增大(0)

66.超声连续波垂直入射至钢/空气界面时,反射波和入射波可在钢中形成驻波。(0)

67.超声波以角入射到水/钢界面时,反射角等于入射角。(0)

68.水的温度升高时,超声波在水中的传播速度则随着降低(X)

69.所有的液体(水除外),其声速都随着温度的升高而增加(X)

70.超声波垂直入射时,界面两侧介质声阻抗相差愈小,声压往复透过率愈高(0)

71.当钢中的气隙(如裂纹)厚度一定时,超声波频率增加,反射波高将随之降低(X)

72.第一介质为液体介质时,也会有第三临界角(X)

73.超声场的近场长度愈短,声束指向性愈差(0)

74.斜角探伤横波声场中假想声源的面积小于实际声源面积(0)

75.圆晶片斜探头的折射波束上缘折射角大于下缘折射角(X)

76.如斜探头入射点到晶片的距离不变,入射点到假想声源的距离随入射角的增加而增大(X)

77.对空心圆柱体在内圆周面上探伤时,曲底面回波声压比同声程大平面高(0)

78.A型显示探伤仪,利用D.G.S曲线板是不能直观显示缺陷的当量大小和缺陷深度的(X)

79.B型显示探伤仪能够直观显示出缺陷深度(0)

80.压电晶片的压电电压常数大,则说明该晶片发射性能好(X)

81.压电晶片的压电应变常数大,则说明该晶片发射性能好(0)

82.常用的有机玻璃楔探头,当温度升高时,其折射角将变小(X)

83.超声波倾斜入射至缺陷表面时,缺陷反射波高随入射角的增大而减小(0)

84.一般情况下,对于薄层反射体,能得到最大反射信号的厚度为(λ/4的奇数倍)(0)

85.一般情况下,对于薄层反射体,能得到最大反射信号的厚度为(λ/4的偶数倍)(X)

86.一般情况下,对于薄层反射体,能得到最大反射信号的厚度为(λ/2的奇数倍)(X)

87.一般情况下,对于薄层反射体,能得到最大反射信号的厚度为(λ/2的偶数倍)(X)

88.为了在工件中得到纯横波,对于斜探头的选择除了合适的入射角以外还应考虑合适的斜楔材料的横波声速(X)

89.为了在工件中得到纯横波,对于斜探头的选择除了合适的入射角以外还应考虑合适的斜楔材料的纵波声速(0)

90.为了在工件中得到纯横波,对于斜探头的选择除了合适的入射角以外还应考虑斜楔材料的纵波声速小于工件中的横波声速(0)

91.为了在工件中得到纯横波,对于斜探头的选择除了合适的入射角以外还应考虑斜楔材料的纵波声速大于工件中的横波声速(X)

92.为了给tgβ=2.5的斜探头设计一个适合1:1水平定位法,并使得第一次回波前沿出现在第三格,第二次回波前沿出现在第九格的半圆试块,该试块的半径应是32.3mm(0)

93.超声检测常用压电晶体石英、钛酸钡、铌酸锂、硫酸锂中接收效率最高的是铌酸锂(X)

94.超声检测常用压电晶体石英、钛酸钡、铌酸锂、硫酸锂中居里点最高的是硫酸锂(X)

95.超声波检测常用压电晶体石英、钛酸钡、铌酸锂、硫酸锂中接收效率最高的是硫酸锂(0)

96.超声波检测常用的压电晶体石英、钛酸钡、铌酸锂、硫酸锂中居里点最高的是铌酸锂(0)

97.在人工反射体平底孔、矩形槽、横孔、V形槽中,回波声压只与声程有关而与探头折射角度无关的是矩形槽(X)

98.在人工反射体平底孔、矩形槽、横孔、U形槽中,回波声压只与声程有关而与探头折射角度无关的是平底孔(X)

99.在人工反射体平底孔、矩形槽、横孔、U形槽中,回波声压只与声程有关而与探头折射角度无关的是U形槽(X)

100.在人工反射体平底孔、矩形槽、横孔、V形槽中,回波声压只与声程有关而与探头折射角度无关的是横孔(0)

101.在人工反射体平底孔、矩形槽、横孔、V形槽中,回波声压只与声程有关而与探头折射角度无关的是V形槽(X)

102.在超声波试块中,和入射波束角度无关的人工反射体是U型缺口槽(X)

103.在超声波试块中,和入射波束角度无关的人工反射体是V型缺口槽(X)

104.在超声波试块中,和入射波束角度无关的人工反射体是平底孔(X)

105.在超声波试块中,和入射波束角度无关的人工反射体是柱孔(X)

106.在超声波试块中,和入射波束角度无关的人工反射体是横孔(0)

107.在超声波检测中最常用的超声波是有多种频率成分的正弦波叠加而成的机械波(0) 108.在超声波检测中最常用的超声波是单纯的正弦波(X)

109.在超声波检测中最常用的超声波是方波脉冲(X)

110.在超声波检测中最常用的超声波是驻波(X)

111.用sinθ=1.22λ/D公式计算的指向角是声束边缘声压P1与声束中心声压P0之比等于0%时的指向角(0)

112.用sinθ=1.22λ/D公式计算的指向角是声束边缘声压P1与声束中心声压P0之比等于50%时的指向角(X)

113.用sinθ=1.22λ/D公式计算的指向角是声束边缘声压P1与声束中心声压P0之比等于10%时的指向角(X)

114.用sinθ=1.22λ/D公式计算的指向角是声束边缘声压P1与声束中心声压P0之比等于1%时的指向角(X)

115.水平线性、垂直线性、动态范围属于超声波检测仪的性能指标(0)

116.频带宽度、探测深度、重复频率属于超声波检测仪的性能指标(0)

117.灵敏度余量、盲区、分辨力属于超声波检测仪的性能指标(X)

118.入射点、近场长度、扩散角属于超声波检测仪的性能指标(X)

119.在普通常用的超声波检测仪上,使用“抑制”旋钮的抑制作用,可以减少杂波显示,与此

同时也会导致垂直线性变差,动态范围减小(0)

120.在普通常用的超声波检测仪上,使用“抑制”旋钮的抑制作用,可以减少杂波显示,与此同时也会导致其他回波幅度一并下降(0)

121.在普通常用的超声波检测仪上,使用“抑制”旋钮的抑制作用,可以减少杂波显示,与此同时也会导致回波宽度变小(0)

122.超声波通过两种材料的界面时,如果第一种材料的声阻抗较大,但其声速与第二材料相同,则在第二种材料中的折射角大于入射角(X)

123.超声波通过两种材料的界面时,如果第一种材料的声阻抗较大,但其声速与第二材料相同,则在第二种材料中的折射角小于入射角(X)

124.超声波通过两种材料的界面时,如果第一种材料的声阻抗较大,但其声速与第二材料相同,则在第二种材料中的折射角等于入射角(0)

125.超声波通过两种材料的界面时,如果第一种材料的声阻抗较大,但其声速与第二材料相同,则在第二种材料中的折射角等于临界角(X)

126.超声波检测仪在单位时间内产生的脉冲数量叫做脉冲的重复频率(0)

127.超声波检测仪在单位时间内产生的脉冲数量叫做超声波频率(X)

128.如果超声波频率增加而晶片直径不变,则声束扩散角将减小(0)

129.如果超声波频率增加而晶片直径不变,则声束扩散角将增大(X)

130.单位时间内垂直通过单位面积上的声能叫做声强,它与声压的平方成正比(0)

131.单位时间内垂直通过单位面积上的声能叫做声压,它与声强的平方成正比(X)

132.在传播超声波的介质中,由于交变振动产生的附加压强叫做声压(0)

133.在传播超声波的介质中,由于交变振动产生的附加压强叫做声强(X)

134.超声波仪器的B、C型显示都属于二维显示(0)

135.超声波仪器的B、C型显示都属于三维立体显示(X)

136.在超声波检测中,如果使用的探测频率过高,在探测粗晶材料时会出现林状回波(0)137.为提高分辩力,在满足探伤灵敏度要求情况下,仪器的发射强度应尽量调得高一些(X) 138.超声波检测使用的试块,其功能不仅仅是用于调整检测灵敏度和评估缺陷大小(0) 139.管子超声波探伤必须采用水浸聚焦方法是因为管子曲率对超声波有散射作用(X) 140.焊缝的超声波检测都是采用斜探头进行探伤(X)

141.焊缝的超声波检测不应当采用直探头进行探伤(X)

142.锻件的超声波检测都是采用直探头进行探伤(X)

143.锻件的超声波检测不采用组合双晶探头进行探伤(X)

144.锻件的超声波检测不采用斜探头进行探伤(X)

145.用直探头在轴类锻件的圆周面上进行周向扫查时,如果有游动信号出现,就可以肯定存在径向缺陷(X)

146.用斜探头对大口径钢管作接触法周向探伤时,其跨距比同厚度平板小(X)

147.直接用缺陷波高比较缺陷大小,仪器的“抑制”和“深度补偿”旋钮应置于(开)的位置(X) 148.直接用缺陷波高比较缺陷大小,仪器的“抑制”和“深度补偿”旋钮应置于(关)的位置(0) 149.采用当量法确定的缺陷尺寸一般大于缺陷的实际尺寸(X)

150.只有当工件中缺陷在各个方向的尺寸均大于声束截面时,才需要采用测长法确定缺陷长度(X)

151.Φ50x10mm的钢管,如果采用常规斜探头作接触法周向横波探伤将无法扫查到内壁(0) 152.焊缝斜角探伤中,裂纹等危害性缺陷的反射波幅一定会是很高的(X)

153.钢板探伤中,当同时存在底波和伤波时,说明钢板中存在小于声场直径的缺陷(0) 154.钢板探伤中,当同时存在底波和伤波时,说明钢板中存在大于声场直径的缺陷(X) 155.探测工件侧壁附近的缺陷时,探伤灵敏度往往会明显偏低,这是因为有侧壁干扰所致(0) 156.探测工件侧壁附近的缺陷时,探伤灵敏度往往会明显偏高,这是因为有侧壁干扰所致(X) 157.焊缝超声探伤中,由于焊缝加强高的存在,探头一般不放在焊缝上,而是将探头放在钢板上,超声波倾斜射入焊缝进行探伤(0)

158.网格扫查法是使用单斜探头横波检测焊缝的基本扫查方法之一(X)

159.锯齿型扫查法是使用单斜探头横波检测焊缝的基本扫查方法之一(0)

160.转角扫查法是使用单斜探头横波检测焊缝的基本扫查方法之一(0)

161.环绕扫查法是使用单斜探头横波检测焊缝的基本扫查方法之一(0)

162.斜平行扫查法是使用单斜探头横波检测焊缝的基本扫查方法之一(0)

163.螺旋转圈扫查法是使用单斜探头横波检测焊缝的基本扫查方法之一(X)

164.网格扫查法是使用单直探头纵波检测钢板的基本扫查方法之一(0)

165.厚板上进行焊缝探伤时,如焊缝磨平,为发现焊缝的横向缺陷,应在焊缝上,沿焊缝的

纵向探测(0)

166.厚板上进行焊缝探伤时,如焊缝磨平,为发现焊缝的横向缺陷,应在焊缝上,沿焊缝的横向探测(X)

167.超声波检测时要求声束方向与缺陷取向平行为宜(X)

168.在中薄板的直探头多次反射法探伤中,常会发现小缺陷的多次反射回波中第二次要比第一次高,这是由于多次回波之间的叠加作用所致(0)

169.当用双晶直探头在平面上扫查时,应尽可能使探头隔声片的放置方向与探头扫查方向平行(X)

170.当用双晶直探头在平面上扫查时,应尽可能使探头隔声片的放置方向与探头扫查方向垂直(0)

171.超声波检测仪上的衰减器精度用每12dB中的误差表示(0)

172.超声波检测仪上的衰减器精度用每2dB中的误差表示(0)

173.超声波检测仪上的衰减器精度用每6dB中的误差表示(X)

174.超声波检测仪上的衰减器精度用每10dB中的误差表示(X)

175.频率和晶片尺寸相同时,横波声束指向性比纵波好(0)

176.两束频率不同的声波在同一介质中传播时,如果相遇可产生干涉现象(0)

177.两束频率相同但行进方向相反的连续声波的叠加可形成驻波(0)

178.在同一固体介质中,纵波,横波,瑞利波,兰姆波的传播速度均为常数(X)

179.表面波亦可在液体表面传播(X)

180.波的叠加原理说明,几列波在同一介质中传播并相遇时,都可以合成一个波继续传播(0) 181.在同一固体材料中,传播纵,横波时的声阻抗不一样(0)

182.声阻抗是衡量介质声学特性的重要参数,温度变化对材料的声阻抗无任何影响(X) 183.以有机玻璃做声透镜的水浸聚焦探头,其透镜形状为凹透镜(0)

184.以有机玻璃做声透镜的水浸聚焦探头,其透镜形状为凸透镜(X)

185.超声波探伤中所指的衰减仅为材料对声波的吸收作用(X)

186.材料对声波的吸收作用仅是超声波检测中所说的超声波衰减原因之一(0)

187.声源辐射的超声波的能量主要集中在主声束内(0)

188.超声波检测法不能用于混凝土结构材料(X)

189.由于水中只能传播纵波,所以水浸探头只能进行纵波探伤(X)

190.有机玻璃声透镜水浸聚焦探头,透镜曲率半径越大,焦距越大(0)

191.有机玻璃声透镜水浸聚焦探头,透镜曲率越小,焦距越大(0)

192.材料对超声能量衰减的主要原因是吸收衰减和散射衰减(0)

193.钢中声速最大的波型是表面波(X)

194.超声波在异质界面上倾斜入射时,同一波型的声束反射角等于入射角(0)

195.商品化斜探头标志的角度是表示声轴线在钢中的折射角(0)

196.超声波探伤仪的脉冲重复频率越高,探伤频率也越高(X)

197.完整地说,超声波的材质衰减包括了吸收衰减,扩散衰减和散射衰减(0)

198.超声波在介质中的传播速度即为质点的振动速度(X)

199.由于在远场区超声束会扩散,所以探伤应尽可能在近场区进行(X)

200.为了在试件中得到纯横波,斜探头透声斜楔材料的纵波速度应小于被检试件中的纵波速度(0)

无损探伤常见问题汇总

无损探伤常见问题汇总 资料整理:无损检测资源网 沧州市欧谱检测仪器有限公司

物理探伤就是不产生化学变化的情况下进行无损探伤。 一、什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,无损检测资源网可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。

七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某些零件的剩磁将会使附近的仪表指示失常。因此某些零件在磁粉探伤后为什么要退磁处理。 十、超声波探伤的基本原理是什么? 答:超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。 十一、超声波探伤与X射线探伤相比较有何优的缺点? 答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。 十二、超声波探伤的主要特性有哪些? 答:1、超声波在介质中传播时,在不同质界面上具有反射的特性,如

常见的无损探伤方法

无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种: 常规无损检测方法有: ●超声检测 Ultrasonic Testing(缩写 UT); ●射线检测 Radiographic Testing(缩写 RT); ●磁粉检测 Magnetic particle Testing(缩写 MT); ●渗透检验 Penetrant Testing (缩写 PT); ●涡流检测Eddy current Testing(缩写 ET); 非常规无损检测技术有: ●声发射Acoustic Emission(缩写 AE); ●泄漏检测Leak Testing(缩写 UT); ●光全息照相Optical Holography; ●红外热成象Infrared Thermography; ●微波检测 Microwave Testing X光射线探伤、超声波探伤对内部探伤适用,不适用表面探伤.磁粉探伤主要探表层深度3mm内缺陷.渗透探伤.着色探伤主要探工件表面缺陷(对不锈钢探伤比较适用). 常见的无损探伤方法 常见的无损探伤方法 VT-Visual Testing目测 RT-Radiographic Testing射线检测 UT-Ultrasonic Testing超声检测 PT-(Dye) Penetrant Testing渗透检测 MT-Magnetic particle Testing磁粉检测 ST-Spectrum Testing光谱测试 ET-Eddy Current Testing涡流检测 HT-Hardness Testing硬度检测 -Hydrostatic Testing 水压试验 MPT-Mechanical performance test机械性能 WT-Wall thickness Testing测厚 DT-Diameter Testing管径测试 MST-Metallographic inspection金相检验 ORT-Out of roundness testing不圆度检查 MMT-磁记忆

残余应力检测方法概述

第1 页 共 2页 残余应力检测方法概述 目前国际上普遍使用的残余应力检测方法种类十分繁多,为便于分类,人们往往根据测试过程中被测样品的破坏与否将测试方法分为:应力松弛法(样品将被破坏)和无损检测法(样品不被破坏)两类。以下我们简单归纳了现阶段较为常用的一些残余应力检测方法。 一、常见的残余应力检测方法: 1. 应力松弛法 (1) 盲孔法 该方法最早由Mather 于1934年提出,其基本原理就是通过孔附近的应变变化,用弹性力学来分析小孔位置的应力,孔的位置和尺寸会影响最终的应力数值。由于这类设备操作起来非常简单,近年来被广泛使用。 (2) 切条法 Ralakoutsky 在1888年提出了采用该方法测量材料的残余应力。在使用这种方法时需要沿特定方向将试件切出一条,然后通过测量试件切割位置的应变来计算残余应力。 (3) 剥层法 该方法是通过物理或化学的方法去除试件的 一层并测量其去除后的曲率,根据测定的试件表面曲率变化就能计算出残余应力。该方法常用于形状简单的试件,且测试过程快捷。 2. 无损检测方法 (1) X 射线衍射法 X 射线方法是根据测量试件的晶体面间距变化来确定试件的应变,进而通过弹性力学方程推导计算得到残余应力,目前最被广泛使用的是Machearauch 于1961提出的sin2ψ方法。日本最早研制成功了基于该方法的X 射线残余应力分析仪,为该方法的推广做出了巨大的贡献。 (2) 中子衍射法。 中子衍射方法的原理和X 射线方法本质上是一样的,都是根据材料的晶体面间距变化来求得应变,并根据弹性力学方程计算残余应力。但中子散射能量更高,可以穿透的深度更大,当然中子衍射的成本也是最昂贵的。 (3) 超声波法。 该方法的物理和实验依据是S.Oka 于1940年发现的声双折射现象,通过测定声折射所导致的声速和频谱变化反推出作用在试件上的应力。试件的晶体颗粒及取向会影响数据的准确度,尽管超声波方法也属无损检测方法,但其仍需进一步完善。 二、最新的残余应力检测方法 cos α方法早在1978年就由S.Taira 等人提出, 但真正应用于残余应力测试设备中还是近几年的事情。日本Pulstec 公司于2012年研制出了世界上首款基于cos α方法的X 射线残余应力分析仪,图1是设备图片(型号:μ-x360n )。

无损检测综合试题

无损检测综合试题 选择题(选择一个正确答案) 1.超声波检测中,产生和接收超声波的方法,通常是利用某些晶体的(c ) a.电磁效应 b.磁致伸缩效应 c.压电效应 d.磁敏效应 2.目前工业超声波检测应用的波型是(f ) a.爬行纵波 b.瑞利波 c.压缩波 d.剪切波 e.兰姆波 f.以上都是 3.工件内部裂纹属于面积型缺陷,最适宜的检测方法应该是(a ) a.超声波检测 b.渗透检测 c.目视检测 d.磁粉检测 e.涡流检测 f.射线检测 4.被检件中缺陷的取向与超声波的入射方向(a )时,可获得最大超声波反射: a.垂直 b.平行 c.倾斜45° d.都可以 5.工业射线照相检测中常用的射线有(f ): a.X射线 b.α射线 c.中子射线 d.γ射线 e.β射线 f.a和d 6.射线检测法适用于检验的缺陷是(e ) a.锻钢件中的折叠 b.铸件金属中的气孔 c.金属板材中的分层 d.金属焊缝中的夹渣 e. b和d 7.10居里钴60γ射线源衰减到1.25居里,需要的时间约为(c ): a.5年 b.1年 c.16年 d.21年 8.X射线照相检测工艺参数主要是(e ): a.焦距 b.管电压 c.管电流 d.曝光时间 e.以上都是 9.X射线照相的主要目的是(c ): a.检验晶粒度; b.检验表面质量; c.检验内部质量; d.以上全是 10.工件中缺陷的取向与X射线入射方向(b )时,在底片上能获得最清晰的缺陷影 像:a.垂直 b.平行 c.倾斜45°d.都可以 11.渗透检测法适用于检验的缺陷是(a ): a.表面开口缺陷 b.近表面缺陷 c.内部缺陷 d.以上都对 12.渗透检测法可以发现下述哪种缺陷?(c ) a.锻件中的残余缩孔 b.钢板中的分层 c.齿轮的磨削裂纹 d.锻钢件中的夹杂物 13.着色渗透探伤能发现的缺陷是(a ): a.表面开口缺陷 b.近表面缺陷 c.内部未焊透

五大常规无损检测

五大常规无损检测 PT=渗透探伤 MT=磁粉探伤 UT=超声波探伤 RT=射线探伤 ET=涡流探伤 五大常规无损检测:渗透探伤、磁粉探伤、超声波探伤、射线探伤、涡流探伤, 1.射线探伤也就是X光拍片简称RT, 2.超声波检查简称UT,射线探伤和超声波探伤一般适用于主甲板,外板,横舱壁,内底板,上下边柜斜板等对接的焊缝。施工者对要求射线探伤的焊缝及热影响区域进行打磨处理,消除焊缝表面的凹凸不平对底片影像显示的影响,确保无油污、无油漆、无飞溅。射线探伤有一定的杀伤性,船方及各施工部门在X 光射线探伤时段、不得靠近X光射线探伤位置半径三十米范围的警示区域,防止射线伤害人员。 3.磁粉探伤又称MT或者MPT(Magnetic Particle Testing),一般适用于对接焊缝,角焊缝,尾轴及锻钢件,铸钢等磁性材料的表面附近进行探伤的检测方法。利用铁受磁石吸引的原理进行检查。在进行磁粉探伤检测时,使被测物收到磁力的作用,将磁粉(磁性微型粉末)散布在其表面。然后,缺陷的部分表面所泄漏出来泄露磁力会将磁粉吸住,形成图案。指示图案比实际缺陷要大数十倍,因此很容易便能找出缺陷。磁粉探伤检测一般按照前处理→磁化→喷淋磁粉→观察→后处理的步骤进行 4.渗透探伤简称PT,着色一般适用于船体对接焊缝,角焊缝等,螺旋桨叶根部,锻钢件、铸钢件表面。当机械零部件需磁粉探伤或着色探伤时,则要将被探物件表面的油污清洁干净并摆放整齐,如果焊缝做磁粉探伤或着色探伤时,则需将焊道清洁干净,要求无油污、无油漆、无飞溅。 5.涡流检测(ET)的英文名称是:Eddy Current Testing工业上无损检测的方法之一。给一个线圈通入交流电,在一定条件下通过的电流是不变的。如果把线圈靠近被测工件,像船在水中那样,工件内会感应出涡流,受涡流影响,线圈电流会发生变化。由于涡流的大小随工件内有没有缺陷而不同,所以线圈电流变化的大小能反映有无缺陷。适用于导电材料..由于导体自身各种因素(如电导率,磁导率,形状,尺寸和缺陷等)的变化,会导致感应电流的变化,利用这种现象而判知导体性质,状态的检测方法叫做涡流检测方法.属于表面探伤法,适用于钢铁、有色金属、石墨等导电体工件,因为并不需要接触工件,所以检测速度很快,但设备昂贵。 UT,RT认证 国家标准国标的,欧标的?协会的,军品方面的,技术监督局的, 行业不一样 需要认证的机构也不一样

ut无损检测考试试题新版

无损检测考试试题 选择题(将认为正确的序号字母填入题后面的括号内,只能选择一个答案) 1.下列材料中声速最低的是(a):a.空气 b.水 c.铝 d.不锈钢 2.一般来说,在频率一定的情况下,在给定的材料中,横波探测缺陷要比纵波灵敏,这是因为(a)a.横波比纵波的波长短 b.在材料中横波不易扩散 c.横波质点振动的方向比缺陷更为灵敏 d.横波比纵波的波长长 3.超声波探伤用的横波,具有的特性是(a)a.质点振动方向垂直于传播方向,传播速度约为纵波速度的1/2 b.在水中传播因波长较长、衰减小、故有很高的灵敏度c.因为横波对表面变化不敏感,故从耦合液体传递到被检物体时有高的耦 合率 d.上述三种都不适用于横波 4.超过人耳听觉范围的声波称为超声波,它的频率高于(b):a.20赫 b.20千 赫 c.2千赫 d.2兆赫 5.超过人耳听觉范围的声波称为超声波,它属于(c):a.电磁波 b.光波 c.机 械波 d.微波 6.波长λ、声速C、频率f之间的关系是(a):a.λ=c/f b.λ=f/c c.c=f/λ 7.应用2P20x20 60°的探头探测钢时,钢材中超声波的波长是(b):a.1.43m m b.1.6mm c.2.95mm d.2.34mm 8.可在固体中传播的超声波波型是(e):a.纵波 b.横波 c.表面波 d.板波 e. 以上都可以 9.可在液体中传播的超声波波型是(a):a.纵波 b.横波 c.表面波 d.板波 e.

以上都可以 10.超声波的波阵面是指某一瞬间(b)的各质点构成的空间曲面:a.不同相位振 动 b.同相位振动 c.振动 11.介质中质点振动方向和传播方向垂直时,此波称为(b):a.纵波 b.横波 c. 表面波 d.板波 e.爬波 12.介质中质点振动方向和波的传播方向平行时,此波称为(a):a.纵波 b.横 波 c.表面波 d.板波 e.爬波 13.横波的声速比纵波的声速(b):a.快 b.慢 c.相同 14.纵波的声速比瑞利波的声速(a):a.快 b.慢 c.相同 15.超声波在介质中的传播速度就是(a):a.声能的传播速度 b.脉冲的重复频 率 c.脉冲恢复速度 d.物质迁移速度 16.对同种固体材料,在给定频率的情况下,产生最短波长的波是(d):a.纵波 b.压缩波 c.横波 e.表面波 17.频率为2.5MHZ的纵波在探测钢时的波长是(a):a.2.34mm b.1.3mm c.2.6 mm d.1.26mm 18.频率为2.5MHZ的横波,在探测钢时的波长是(b):a.2.34mm b.1.3mm c.2. 6mm d.1.26mm 19.频率为2.5MHZ的纵波在探测铝时的波长(c):a.2.34mm b.1.3mm c.2.6m m d.1.26mm 20.频率为2.5MHZ的横波,在探测铝时的波长是(d):a.2.34mm b.1.3mm c.2. 6mm d.1.26mm 21.钢中声速最大的波型是(a):a.纵波 b.横波 c.表面波 d.在给定材料中声

承压类特种设备常用无损检测方法

承压类特种设备常用无损检测方法 发表时间:2019-07-02T15:56:47.013Z 来源:《基层建设》2019年第10期作者:王新磊许世强王尚峰 [导读] 摘要:现如今各类承压类特种设备被广泛应用到各大企业实际生产过程中,在给人们生活提供便捷的同时,其危险系数也不容小觑。 新疆心连心能源化工有限公司新疆昌吉 832200 摘要:现如今各类承压类特种设备被广泛应用到各大企业实际生产过程中,在给人们生活提供便捷的同时,其危险系数也不容小觑。无损检测就是不损害被检测对象的使用性能的高级测试方法,通过物理化学手段对被检测对象的结构、性质、状态进行充分检查,进而生成恰当的报告。 关键词:承压;特种设备;常用;无损检测 前言:进入21世纪后,我国特种设备数量也进入了一个快速增长的时期。特种设备数量的增长在一定程度上折射出我国工业化水平的提升,同时也在一定程度上给政府的监管带来了巨大的挑战。日常监督检查和专项监督检查都是特种设备监管必不可少的方式,但在特种设备数量激增的大背景下,显得效率低下、力不从心。尤其是在面对辖区内一些大型石油化工企业动辄数以千计的特种设备,传统的监管方式急需改进升级。 1 承压设备无损检测与评价的重要性 无损检测通常来说是在保障检测目标不受损害的情况下进行的综合评价,这种检测方法不影响检测对象的使用性能,对检测对象的构成材料、涉及结构同样不产生影响。其起到的主要作用是通过综合的技术手段评价设备表面及内部存在的问题,对设备的所有性能、状态进行科学评估,对于承压设备来说,进行无损检测可以使用的技术手段包括目测、渗透、泄漏、射线、超声波、涡流等。从目前的实际应用来看,比较成熟的技术包括辐射检测、声学检测以及电磁检测等。 承压设备的安全性依赖于生产的各个环节,设备生产环节,材料的选用、设计的合理性、制造安装的正确性都是保障承压设备最终能投入安全生产的因素。在上述各个环节进行无损检测,及时发现存在的问题,例如原材料的生产缺陷、焊接过程的疏漏等,都可以成功避免问题的产生。采用无损检测技术,可以在设备的使用过程中发现开裂、受腐蚀、机械疲劳、高温蠕变等。及时发现才能及时弥补,科学的无损检测可以对问题的严重程度进行分析,及时采取有效措施,不会造成资源的二次浪费。 2 承压类特种设备无损检测方法分析 2.1 射线检测技术(RT) 射线检测技术是通过射线与被检测对象发生的相互作用得到射线信号,形成检测对象的内部图像,从而显现出被检测对象的有效信息,反映出存在的问题。 CR技术:这项技术是通过光线激励荧光粉,在成像板上记录X射线穿透设备形成的影像,形成一个潜影,再利用激光扫描技术,激发与潜影能量一致的可见光,通过技术手段,将光信号转化为电信号,进而生成数字图像。与传统的无损检测方法相比,其成本更低、所需时间更短,同时,数字图像的传输更为便捷直观。一般来说,在承压设备的检测中,这项技术主要用于焊接接头及铸件的检测过程。 DR技术:其技术支撑基础依然是x射线检测法。检测设备的改进基础源于电荷耦合图像传感器。最新型的DR技术应用的是探测器与X 射线交互介质材料,将X射线闪络晶体安装在二极管阵列,同时连接图像采集系统,这种技术可以使计算机与检验设备同步,数据实时传输及存储,便于综合分析。这种设备的优点在于检测效率高、环境辐射小的特点,与此同时,可以高速处理图像和数据,存储和输出的效率极高。 CT技术:这项技术发展的根源在医学领域。其组成系统包括射线源、探测装置及精密器械。相关的配套软件可以帮助我们在检测的过程中获取有效的数据、进行图像的高清重建,同时对图像进行有效应用。这项技术的优点在于分辨率高、高精度定位,成像的过程中没有影像的重叠。同时需要的设备便捷,适于携带。在科技不断进步的前提下,CT检测技术也在飞速发展,根据不同的需求,更小更便捷及大型高能是两个发展方向。结合其他检测技术,必将有更好的发展。 2.2 超声检测技术(UT) 超声检测技术主要针对承压类设备的内部环境进行检测,面对设备焊缝内部所隐藏的缺陷,人类肉眼无法观测,也不容易拆解设备验伤。承压类设备外部覆盖保温层,利用超声检测技术可从设备裂缝处实施无损检测,检测的部位有设备的锻件、高压螺栓、焊缝表层等。超声检测技术相对与其他几种仪器体积小,便于携带,重量较轻在操作上十分方便。同时,超声检测技术对人体伤害最小,它在检测时所发出的声波对人体基本无害,这些年技术的更新演替给超声检测技术带来了发展新契机,TOFD等先进的超声检测技术层出不穷,给承压类特种设备的无损检测带来新光彩。 2.3 磁粉检测技术(MT) 磁粉检测技术是承压类设备常用的检测技术,属于无损检测常规检测方法,它通过表面检测法对设备的表层进行重点检测,像设备的角焊缝、对接焊缝、高强螺栓等都是磁粉检测技术的勘察对象,部分设备有焊疤情况,在表面检测中将作为核心检查。相对于其他几种检测方式,磁粉检测技术更为成熟,它作为传统的承压类特种设备检测方式有悠久的检测历史,也有相配套的全系列主机和附件,我国磁粉检测技术是最接近国际无损检测水平的一种,由磁粉技术开始,计算机的承压类特种设备中的无损检测才得到更广泛的使用。 2.4 渗透检测技术(PT) 渗透检测又称为渗透探伤检测,它是以毛细作用为原理对承压类特种设备的内里进行检测的方法,它的着色渗透在无损检测中发挥重要作用,在很多工业、机械业中,利用着色渗透检查设备表面的光照度和内里环境,以此确定特总设备的使用情况。渗透检测又分为荧光和非荧光两种,两者皆以物理化学与材料科学为基础,对设备的零件和产品进行有效检验,尤其对锅炉、压力容器的使用频繁,也是维护特种设备的必要手段。 2.5 涡流检测技术(ET) 涡流检测的原理在于把交流电的线圈放置于待测的金属板上,让线圈周边产生磁场,磁场恒定后设备能感应到磁场带来的电流,因此涡流检测技术就形成了。涡流检测技术与设备的大小、线圈的匝数、交流电流有直接关系,同时与设备的电导率与磁导率有间接关系。使用涡流检测技术对承压类特种设备进行无损检测,要按照设备的形状选择线圈,譬如穿过式、插入式,每一种线圈的管材、线材不同,像

五大常规探伤方法概述及其特点

五大常规探伤方法概述及其特点 工业无损探伤的方法很多,目前国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法。本文将首先介绍五大常规探伤方法及其特点,并结合汽车维修中的特定条件和需求,选出更适合于汽车维修的探伤方法。 一、五大常规探伤方法概述 五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。 1、射线探伤方法 射线探伤是利用射线的穿透性和直线性来探伤的方法。这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。当这些射线穿过物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越校此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。 2、超声波探伤方法 人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音频。频率低于20Hz的称为次声波,高于20kHz的称为超声波。工业上常用数兆赫兹超声波来探伤。超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。根据超声波在介质中传播的速度和传播的时间,就可知道缺陷的位置。当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷的大校常用的探伤波形有纵波、横波、表面波等,前二者适用于探测内部缺陷,后者适宜于探测表面缺陷,但对表面的条件要求高。 3、磁粉探伤方法 磁粉探伤是建立在漏磁原理基础上的一种磁力探伤方法。当磁力线穿过铁磁材料及其制品时,在其不连续处将产生漏磁场,形成磁极。此时撒上干磁粉或浇上磁悬液,磁极就会吸附磁粉,产生用肉眼能直接观察的明显磁痕。因此,可借助于该磁痕来显示铁磁材料及其制品的缺陷情况。磁粉探伤法可探测露出表面,用肉眼或借助于放大镜也不能直接观察到的微小缺陷,也可探测未露出表面,而是埋藏在表面下几毫米的近表面缺陷。用这种方法虽然也能探查气孔、夹杂、未焊透等体积型缺陷,但对面积型缺陷更灵敏,更适于检查因淬火、轧制、锻造、铸造、焊接、电镀、磨削、疲劳等引起的裂纹。 磁力探伤中对缺陷的显示方法有多种,有用磁粉显示的,也有不用磁粉显示的。用磁粉显示的称为磁粉探伤,因它显示直观、操作简单、人们乐于使用,故它是最常用的方法之一。不用磁粉显示的,习惯上称为漏磁探伤,它常借助于感应线圈、磁敏管、霍尔元件等来反映缺陷,它比磁粉探伤更卫生,但不如前者直观。由于目前磁力探伤主要用磁粉来显示缺陷,因此,人们有时把磁粉探伤直接称为磁力探伤,其设备称为磁力探伤设备。 4、涡流探伤方法

无损检测MT示范题

选择题(将正确答案的序号填在括号内,答案不一定是唯一的) 1、能够进行磁粉探伤的材料是(AC )。 A、碳钢 B、奥氏体不锈钢 C、马氏体不锈钢 D、铝 2、磁敏元件探测法所使用的磁电转换元件有(CD )。 A、三极管 B、电阻 C、霍尔元件 D、磁敏二极管 3、硬磁材料具有(ABC )。 A、低磁导率 B、高剩磁 C、高矫顽力 D、低磁阻 4、下列有关磁化曲线的错误叙述为(BCD)。 A、磁化曲线表示磁场强度与磁感应强度的关系 B、由磁化曲线可以看出,磁场强度与磁通密度呈线性关系 C、经过一次磁化后,磁场强度最大时的磁通密度称为饱和磁通密度 D、经过一次磁化后,磁场强度为零时的磁通密度称为矫顽力 5、下列关于缺陷漏磁场的叙述,错误的是(CD)。 A、漏磁场的大小与试件上总的磁通密度有关 B、漏磁场的大小与缺陷自身高度有关 C、磁化方向与缺陷垂直时漏磁场最小 D、以上都对 6、下列关于磁化方法和磁场强度的叙述中,错误的是(ABD)。 A、在磁轭法中,磁极连线上的磁场方向垂直于连线 B、在触头法中,电极连线上的磁场方向平行于连线 C、在线圈法中,线圈轴线上的磁场方向与线圈轴线平行 D、在芯棒法中,磁场方向与芯棒轴线平行 7、在旋转磁场磁化法中,不能采用下列哪种磁化电流。(ABD ) A、分别采用交流电和全波直流电 B、分别采用半波直流电和交流电 C、全部采用交流电但相位有差异 D、全部采用恒稳直流电 8、以下关于特斯拉计的叙述,正确的是(ABC) A、特斯拉计又称高斯计 B、特斯拉计的用途是测量磁场强度 C、特斯拉计的原理是霍尔效应 D、特斯拉计可以测量磁化电流大小 9、以下关于紫外灯的叙述,正确是(BCD) A、为延长紫外灯的寿命,应做到用时即开,不用即关 B、电源电压波动对紫外灯寿命影响很大 C、有用的紫外光波长范围在320~400nm之间 D、要避免紫外灯直射人眼 10、以下关于磁粉探伤标准试块的叙述正确的是(ABC) A、磁粉探伤试块不能用于确定磁化规范

混凝土结构常用无损检测方法

混凝土结构常用无损检测方法 摘要:介绍了回弹法、超声波法、雷达法等各种混凝土无损检测方法的工作原理,分析了各自的特点及适用范围。在实际工程中,宜使用两种或两种以上方法进行检测,以互相验证,提高检测的效率及可靠性。? 无论是工业及民用建筑,还是公路、铁路、水利及水电工程等都广泛使用混凝土材料,混凝土的质量关系到整个工程的质量。传统的混凝土强度检验方法是在浇筑地点随机抽取试样,对试样进行抗压强度试验,由试验结果来评定混凝土的强度。由于试样的制作条件、养护环境及受力状态与原位混凝土均存在着明显的差异,试样的实验结果难以全面、准确地反映原位混凝土的质量状况,显然无损检测是获得原位混凝土真实质量的有效方法。早在20 世纪30 年代,人们就开始研究混凝土无损检测技术。1948 年,瑞士科学家施密特( E. Schmidt )研制成回弹仪;1949 年莱斯利(Leslie )等人用超声脉冲成功检测混凝土;60年代费格瓦洛(I. Facaoaru)提岀用声速、回弹综合法估算混凝土强度;80年代中期,美国的Mary Sansalone 等用机械波反射法进行混凝土无损检测;90 年代以来,随着科学技术的快速发展,涌现岀一批新的测试方法,如微波吸收、雷达扫描、红外线谱、脉冲回波等方法。我国从50年代开始引进瑞士、英国、波兰等国的超声波仪器和回弹仪,并结合工程应用开展了一定的研究工作;60 年代初我国研制成功多种型号的超声波仪器,随后广泛进行了混凝土无损检测技术的研究和应用;80 年代混凝土无损检测技术在我国得到快速发展,并取得了一定的研究成果,除了超声、回弹等无损检测方法外,还进行了钻芯法、后装拔岀法的研究;90 年代以来,雷达技术、红外成像技术、冲击回 波技术等进入实用阶段,同时超声波检测仪器也由模拟式发展为数字式,可将测试数据传入计算机进行各种数据处理,以进一步提高检测的可靠性。 混凝土无损检测的方法主要有回弹法、超声法、超声回弹综合法、雷达法、冲击回波法、红外成像法、钻芯法、拔岀法及超声波CT 法等,其中钻芯法和拔岀法属局部破损或半破损检测方法。以下就各种方法的工作原理、特点及适用范围作以述评。 各种无损检测方法工作原理及其特点述评 1.1 回弹法 回弹法是以在混凝土结构或构件上测得的回弹值和碳化深度来评定混凝土结构或构件强度的一种方法,它不会对结构或构件的力学性质和承载能力产生不利影响,在工程上已得到广泛应用。 回弹法使用的仪器为回弹仪,它是一种直射锤击式仪器,是用一弹击锤来冲击与混凝土表面接触的弹击杆,然后弹击锤向后弹回,并在回弹仪的刻度标尺上指示岀回弹数值。回弹值的大小取决于与冲击能量有关的回弹能量,而回弹能量则反映了混凝土表层硬度与混凝土抗压强度之间的函数关系,即可以在混凝土的抗压强度与回弹值之间建立起一种函数关系,以回弹值来表示混凝土的抗压强度。回弹法只能测得混凝土表层的质量状况,内部情况却无法得知,这便限制了回弹法的应用范围,但由于回弹法操作简便,价格低廉,在工程上还是得到了广泛应用。 回弹法的基本原理是利用混凝土强度与表面硬度之间的关系,通过一定动能的钢杆件弹击混凝土表 面,并测得杆件回弹的距离(回弹值),利用回弹值与强度之间的相关关系来推定混凝土强度。 通常采用试验的方法得到回弹值与强度之间的相关关系,即建立混凝土强度f c cu与回弹值R之间 的一元回归公式,或混凝土强度与回弹值R及主要影响因素(如碳化深度)之间的二元回归公式。回归 的公式可采用各种不同的函数方程形式,根据大量试验数据进行回归拟合,择其相关系数较大者作为实用经验公式。目常常用的形式主要有以下几种: 直线方程 f c cu A BR 幂函数方程 f c cu AR B

无损探伤标准

无损探伤标准 一、通用基础 1、GB 5616-1985 常规无损探伤应用导则 2、GB/T 9445-1999 无损检测人员技术资格鉴定通则 3、GB/T 14693-1993 焊缝无损检测符号 4、GB 16357-1996 工业X射线探伤放射卫生防护标准 5、JB 4730-1994压力容器无损检测 6、DL/T675-1999 电力工业无损检测人员资格考核规则 二、射线检测 1、GB 3323-1987 钢熔化焊对接接头射线照相和质量分级 2、GB 5097-1985 黑光源的间接评定方法 3、GB 5677-1985 铸钢件射线照相及底片等级分类方法 4、GB/T 11346-1989 铝合金铸件X射线照相检验针孔(图形)分级 5、GB/T 11851-1996压水堆燃料棒焊缝X射线照相检验方法 6、GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求和缺陷分类 7、GB/T 无损检测术语射线检测 8、GB/T 12605-1990 钢管环缝熔化焊对接接头射线透照工艺和质量分级 9、GB/T 16544-1996 球形储罐γ射线全景曝光照相方法 10、GB/T 16673-1996 无损检测用黑光源(UV-A)辐射的测量 11、JB/T 7902-2000 线型象质计 12、JB/T 7903-1995工业射线照相底片观片灯 13、JB/T 泵产品零件无损检测泵受压铸钢件射线检测方法及底片的等级分类 14、JB/T 9215-1999 控制射线照相图像质量的方法 15、JB/T 9217-1999射线照相探伤方法 16、DL/T 541-1994 钢熔化焊角焊缝射线照相方法和质量分级 17、DL/T 821-2002 钢制承压管道对接焊接接头射线检验技术规程 18、TB/T6440-92 阀门受压铸钢件射线照相检验 三、超声波检测㈠

无损探伤方法

五大常规探伤方法概述 五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。 1、射线探伤方法 射线探伤是利用射线的穿透性和直线性来探伤的方法。这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。 2、超声波探伤方法 人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音(声)频。频率低于20 Hz的称为次声波,高于20 kHz的称为超声波。工业上常用数兆赫兹超声波来探伤。超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷(当量)的大小。常用的探伤波

无损检测超声波二三考试复习题库

无损检测超声波二、三级考试 复习题库 1、超声波是一种机械震动波,描述机械震动波的特征量是(e) a.频率; b.周期; c.波速; d.波长; e.以上都是 2反映超声波特征的重要物理量是(d) a.声压; b.声强; c.声阻抗; d.以上都是 3、波动的形式(波形)可以分为(e) a.声压; b.声强; c.声阻抗; d.以上都是 4、声波在无限大且各向同性的介质中传播时,同一时刻介质中振动相位相同的所有质点所联成的面称为(a)。 a.波振面; b.波前; c.波线; d.以上都不是 5、声波在无限大且各向同性的介质中传播时,某一时刻振动所传到的距离最远的各点所联成的面称为(b) a.波阵面; b.波前; c.波线; d.以上都不是 6、两列振幅相同的相干波在同一直线上沿相反方向彼此相同传播时会产生(c)现象 a.叠加; b.干涉; c.驻波; d.以上都不是 7、产生明显驻波的条件是(d) a. 介质厚度有限; b. 介质厚度等于半波长; c. 介质厚度为半波长的整数倍; d.以上都是 8、单位时间内通过超声波传播方向垂直截面单位面积上,并且与声压的振幅平方成正比的声能称为(b) a. 声压; b.声强; c.声强; d.声能 9、在有声波传播的介质中,某一点在某一瞬间所具有的压强与没有声波存在时该点的静压强之差称为(a)。 a. 声压; b.声强; c.声强; d.声能 10、声压P与声强I的关系式是(c) a.I=P/2Z; b. I=P2/Z2; c. I=P2/2Z; d. I=P2/4Z(式中Z为传声介质的声阻抗) 11、声压P、介质ρ、声速C、质点振动速度V之间的关系是(d) a. P=ρ2CV; b. P=ρC2V; c. P=ρ2CV2; d. P=ρCV

五大常规无损检测技术之一:超声检测(UT)的原理和特点

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 五大常规无损检测技术之一:超声检测(UT)的原理和 特点 五大常规无损检测技术之一: 超声检测(UT)的原理和特点五大常规无损检测技术之一:超声检测(UT)的原理和特点超声检测(Ultrasonic Testing),业内人士简称 UT,是工业无损检测(Nondestructive Testing)中应用最广泛、使用频率最高且发展较快的一种无损检测技术,可以用于产品制造中质量控制、原材料检验、改进工艺等多个方面,同时也是设备维护中不可或缺的手段之一。 超声检测主要的应用是检测工件内部宏观缺陷和材料厚度测量。 按照不同特征,可将超声检测分为多种不同的方法: (1)按原理分类: 超声波脉冲反射法、衍射时差法(Time of Flight Diffraction,简称 TOFD)等。 (2)按显示方式分类: A 型显示、超声成像显示(B、C、D、P 扫描成像、双控阵成像等)。 A 型显示的超声波脉冲反射法是五大常规无损检测技术之一,其他四种是: 射线检测(Radiographic Testing): 射线照相法、磁粉检测(Magnetic Particle Testing)、渗透检 1 / 5

测(Penetrant Testing)、涡流检测(Eddy Current Testing)。 超声检测原理超声检测,本质上是利用超声波与物质的相互作用: 反射、折射和衍射。 (1)什么是超声波?我们把能引起听觉的机械波称为声波,频率在 20-20190Hz 之间,而频率高于 20190Hz 的机械波称为超声波,人类是听不到超声波的。 对于钢等金属材料的检测,我们常用频率为 0.5~10MHz 的超声波。 (1MHz=10 的六次方 Hz)(2)如何发出和接收超声波?超声检测用探头的核心元件是压电晶片,其具有压电效应:在交变拉压应力的作用下,晶体可以产生交变电场。 当高频电脉冲激励压电晶片时,发生逆压电效应,将电能转换成声能(机械能),探头以脉冲的方式间歇发射超声波,即脉冲波。 当探头接受超声波时,发生正压电效应,将声能转换成电能。 超声检测所用的常规探头,一般由压电晶片、阻尼块、接头、电缆线、保护膜和外壳组成,一般分为直探头和斜探头两个类别,后者的话通常还有一个使晶片与入射面成一定角度的斜锲块。 下图为典型的斜探头结构图(图片来源于网络)。 下图为斜探头的实物图: 该探头型号:2.5P8*12 K2.5,其参数为: a)2.5 代表频率 f:

五大常规无损检测原理

五大常规无损检测原理 无损检测技术不破坏零件或材料,可以直接在现场进行检测,而且效率高。目前,最常用的无损检测主要有五种:超声检测(Ultrasonic Testing)、射线检测(Radiographic Testing)、磁粉检测(Magnetic particle Testing)、渗透检测(Penetrant Testing)、涡流检测(Eddy current Testing)。 超声检测原理 超声波是频率高于20千赫的机械波。在超声探伤中常用的频率为0.5-5兆赫。这种机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射。 这种反射现象可被用来进行超声波探伤,最常用的是脉冲回波探伤法探伤时,脉冲振荡器发出的电压加在探头上(用压电陶瓷或石英晶片制成的探测元件),探头发出的超声波脉冲通过声耦合介质(如机油或水等)进入材料并在其中传播,遇到缺陷后,部分反射能量沿原途径返回探头,探头又将其转变为电脉冲,经仪器放大而显示在示波管的荧光屏上。

根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。除回波法外,还有用另一探头在工件另一侧接受信号的穿透法。利用超声法检测材料的物理特性时,还经常利用超声波在工件中的声速、衰减和共振等特性。 射线检测原理 射线的种类很多,其中易于穿透物质的有X射线、γ射线、中子射线三种。这三种射线都被用于无损检测,其中X射线和γ射线广泛用于锅炉压力容器焊缝和其他工业产品、结构材料的缺陷检测,而中子射线仅用于一些特殊场合。 射线检测最主要的应用是探测试件内部的宏观几何缺陷(探伤)。按照不同特征,例如使用的射线种类、记录的器材、工艺和技术特点等,可将射线检测分为许多种不同的方法。射线照相法是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损的检测方法。 该方法是最基本的,应用最广泛的一种射线检测方法。射线检测适用于绝大多数材质和产品形式,如焊件、铸件、复合材料等。射线检测胶片对材质内部结构可生成缺陷的直观图象,定性

金属材料表面缺陷及残余应力的无损检测研究

金属材料表面缺陷及残余应力的无损检测研究 摘要:新的时代不断的涌现出新的科技和工艺,引起人们的生产和生活的巨大 改善。新材料的出现预示着新工艺的产生,对新材料的各种物理表征的监测都引 起了广大人们的重视。传统的检测技术都会对材料进行损害,因此无损检测技术 的出现,更为满足现代人的生产需求。无损检测技术就是指在不破坏检测材料的 基础上,对这些材料进行质量以及工艺性能、安全性能的检测。 关键词:激光超声;无损检测;金属材料;表面缺陷;残余应力 一、金属材料表面缺陷和残余应力检测概述 金属材料在加工过程中难免会出现材料变形,并且会在材料内部产生残余应力。这部分残余应力会造成材料出现开裂以及变形的情况,与此同时也会严重影 响到材料疲劳性能,这在一定程度上会影响到材料的工艺性能与强度,所以,检 测金属材料残余应力一直以来都是学界研究的重点内容,同时也是金属质量以及 工艺标准的重要保证。伴随着科学技术以及工业水平的持续发展,金属材料残余 应力无损检测手段也出现了多种类型,包括了电学法、X射线法、磁测法以及光 学法等,可是相较而言,利用激光超声技术检测金属材料的表面波是成本最低, 同时也是最为精确的一种检测手段。通过激光与超声的有效结合,对声波渡越时 间进行测量,从而探测残料表面缺陷以及残余应力。 二、扫描线光源缺陷检测机制研究 超声表面波检测材料表面的缺陷已经在金属材料无损检测方面发挥了巨大的 作用,但是这种检测方法一般都是分析反射信号的脉冲回波或者是信号衍射的渡 越时间分析,具有一定的局限性。利用利用激光源来激发超声波而不是利用压电 换能器,这样就具备了非接触式检测法以及远距离激发超声波的优点,而且激发 光源还可以自由的进行移动,奠定了对大面积的工件进行高效率无损害的检测的 坚实基础。在早期的研究中,仅仅是利用了表面波的透射、折射、反射等依据, 并没有将激光声源的优势真正的发挥,然而提高激光声源的利用率是一个艰难的 研究。21世纪以后,激光源得到了充分的利用,高效率的实现了无损检测,这就是扫描激光源技术。扫描激光源技术就是对样品的表面利用激光源进行扫描检查,如图1所示,超声探测可以选择传统的接触式压电换能器,也可以选择光学检测法;对于超声探测的位置,可以固定,也可以随着光源一起移动,只要保持激光 源和探测位置的距离是固定的就可以,当激光源扫描到缺陷位置的时候,探测到 的材料表面波就会发生变化。扫描激光源技术会出现以下三种特征的结果:图1扫描激光源法缺陷探测示意图 1.当检测样品的表面没有缺陷或者是激光源与缺陷的距离比较远的时候,探 测到的表面波的波幅几乎保持不变,如果出现缺陷,则反射回来的表面波的信号 就会减弱(样品表面有微小缺陷的情况下); 2.当激光源扫描到样品上的缺陷时,探测到的声波信号会很明显的放大; 3.当激光源的扫描位置移动到缺陷位置的后面时,由于散射现象,到达探测 点的信号就会减小。根据探测点收到的回波信号的时间和幅度,可以对材料表面 的缺陷位置和深度进行探测。 三、无损检测技术实际应用的过程中遇到的问题 在缺陷精准定量以及精准定性领域当中,现存的超声检测技术比方说 A 型脉 冲实际应用的过程当中,可以精准的将缺陷找寻出来,但是对缺陷的定量及定性

相关文档
相关文档 最新文档