文档视界 最新最全的文档下载
当前位置:文档视界 › 雷达目标识别技术

雷达目标识别技术

雷达目标识别技术
雷达目标识别技术

雷达目标识别技术述评

孙文峰

(空军雷达学院重点实验室,湖北武汉430010)

摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。

关键词:雷达目标识别;低分辨雷达

Review on Radar Target Recognition

SUN Wen-feng

(Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service.

Key words: radar target recognition; low resolution radar

1.引言

雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的R TR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。

2.雷达目标识别技术的回顾与展望

雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

原则上,任何一个RTR系统均可模化为图1所示的基本结构[3]。它由目标识别预处理、特征信号提取、特征空间变换、模式分类器、样本学习等模块组成。图中虚线部分的断开和启动,决定RTR系统是否具备自学习功能。

图1 雷达目标识别系统方框图

2.1 雷达目标识别技术简介

下面就从RTR系统的几个主要环节出发,对常用的RTR技术进行简要回顾。

(1)雷达目标特征信号

雷达目标特征信号(RTS—Radar Target Signature)是雷达发射的电磁波与目标相互作用所产生的各种信息,它载于目标散射回波之上,是雷达识别目标的主要信息来源。雷达目标特征信号包括雷达散射截面积(RCS—Radar Cross Section)及其统计参数、角闪烁误差(AGE—Angular Glint Error)及其统计参数、极化散射矩阵、散射中心分布、极点等。但是,不是任何雷达都能获得所有目标特征信号的。早期的雷达由于分辨力不够,只能将探测对象看作点目标,得到目标的距离、方位、速度等简单信息,难以满足目标识别的要求。随着高分辨力雷达的问世,才有条件将探测对象当作扩展目标来研究,获得更多的雷达目标特征信号,使复杂电磁环境中的雷达目标识别成为可能。

雷达目标特征信号的研究手段有仿真实验、暗室测量和外场试验三种,它们各有其优缺点,应根据具体情况进行取舍。仿真实验主要是将目标分解或利用某种近似理论,用计算机对目标的雷达回波进行模拟。其优点是花费少,能产生任意姿态角的目标回波数据,但数据可信度不高;暗室测量主要是在微波(毫米波)暗室中对目标的缩比模型进行测量,花费较大,且由于有近场推远场等近似手段,数据可信度居中。一般目标的方位角可以360度准确控制,但俯仰角受暗室空间的限制,转动范围不大;外场试验就是在简单的电磁环境中对目标实物进行测量,其数据可信度最高,但花费最大,且目标的姿态难以准确控制。

(2)雷达目标识别预处理

雷达目标识别预处理的主要任务是尽量减小各种不确定因素对目标识别性能的影响,包括抑制噪声、杂波及其它有源和无源干扰,虚警鉴别与多目标分辨,成像识别时的目标(载体)运动补偿、斑点效应的抑制和目标分割,等等。有人认为预处理还包括目标类型的粗分类[2]。总之,预处理是雷达目标识别过程中的一个重要环节,其具体过程随雷达体制和应用背景而异。

(3)雷达目标特征抽取

雷达目标特征抽取的任务就是从目标的雷达回波中抽取与目标属性直接相关的一个或多个特征,作为目标识别的信息来源。雷达目标特征抽取的客观依据是目标与环境的雷达特性。目标的雷达特性除了雷达目标特征信号以外,还包括雷达常规测量得到的目标的位置、运动参数等。环境的雷达特性一般是指地(海)面背景杂波的电磁散射特性,这里不予讨论。

雷达目标特征抽取所用的方法与目标和雷达体制二者密切相关,特征抽取时必须分析所有感兴趣目标的雷达特性,比较它们之间的异同,提取区分某种目标与其它目标的最显著特征,用于目标识别。

图2为某金属球在不同波长雷达波照射下的RCS曲线,其横坐标r为目标有效散射尺寸与雷达发射信号波长λ的比值。根据这一曲线可以将目标的雷达特性粗略划分为瑞利区、谐振区和光学区。在瑞利区,目标的尺寸远小于雷达的工作波长λ,目标的RCS与r近似成线性关系,目标的散射特性可以用一个点目标模型来模拟;在谐振区,目标的有效尺寸与雷达的工作波长λ处于同一个数量级,此时

目标产生谐振,其RCS随λ的变化起伏

较大;在光学区,目标的有效尺寸远大

于λ,其RCS随λ的减小而趋于恒定值。

一般来说,频率高端有利于激励出目标

的精细结构信息,频率低端则能携带目

标的总体粗结构信息。就RTR本身而

言,要求雷达发射信号最好能跨越目标

的三个区,此时目标回波携带的信息量

最为丰富,对目标识别最有利,这就是

超宽带雷达用于目标识别的优势。我军图2 金属球的RCS与雷达工作波长的关系

现役雷达装备,除少数米波雷达的波长

标识别常用的特征抽取方法加以说明。

光学区雷达目标识别的重要理论基础是多散射中心理论,即光学区目标的雷达回波可以近似等效为目标物体上少数几个强散射中心回波的矢量和。散射中心是客观存在的,它主要指目标的边缘(棱线)、曲率不连续点、尖端、镜面、腔体、行波及蠕动波等强散射点,它反映了目标的精密结构特征。光学区的雷达目标识别方法可分为宽带高分辨和窄带低分辨两类。宽带高分辨雷达目标识别方法主要有成像识别(即估计散射中心在目标物体上的分布)和散射中心历程识别(即散射中心随目标姿态的变化过程)两种。宽带高分辨成像识别的大体情况和窄带低分辨目标识别的具体思路将在本文后面进行介绍。

RTR中的特征抽取至今仍未形成完整的理论体系,个别特征对于目标识别的作用难以量化。因此,现阶段的RTR研究都是在现有目标识别理论的指导下,不断尝试各种特征抽取手段,最后根据所掌握数据的分类效果对目标特征抽取方法进行取舍。但是,经过大量的研究可以肯定的一点是,用于目标识别的特征数目并非越多越好。因为从同一目标回波中抽取的特征难免存在一定的相关性,而这种相关性往往是不易觉察的。冗余特征不仅会使运算量增大,而且还可能引入不必要的噪声。避免冗余特征的唯一途径是从目标电磁散射的机理出发,抽取与目标属性直接相关的特征,使每个特征都能得到合理的解释,但实际上很难做到这一点。此外,在光学区,由于目标特征对姿态角比较敏感,为了使特征抽取能够得到目标所有姿态下的完整信息,训练数据应来自目标所有的姿态,理论上相邻姿态角之间的间隔应越小越好。

(4)特征空间变换

特征空间变换是RTR中的另一个重要环节,其目的是应用各种优化的变换技术改善特征空间中原始特征的分布结构,压缩特征维数,去除冗余特征。常用的特征空间变换技术有四种,即卡南-洛伊夫(K-L)变换、沃尔什(Walsh)变换、梅林(Mellin)变换和基于离散度(Fisher)准则的维数压缩

方法。前三种特征空间变换方法的主要思想是通过正交变换消除特征之间的相关性,达到去除冗余特征、减小计算量的目的。其中梅林变换还具有尺度不变性的特点,在RTR识别中有助于部分消除特征矢量对目标姿态的敏感性。基于离散度准则的维数压缩方法则是通过正交投影提高同类目标特征之间的聚合性和异类目标特征之间的可分离性,同时达到大幅度压缩特征矢量维数的目的。

(5)目标模式分类

目标各种姿态的训练数据,经过特征抽取和特征空间变换后就形成了目标识别时资用的若干个模板。实测数据经过同样的处理过程也会成为一个与模板矢量维数相同的矢量,将该矢量与所有目标类型的所有模板进行比较,最终确定目标属性,就是模式分类算法需要解决的问题。常用的模式分类算法有统计模式识别算法、人工神经元网络(ANN)模式分类算法、基于专家系统的人工智能识别算法、模糊模式分类算法及其它复合分类算法。其中统计模式识别算法最为稳定可靠;模糊模式识别算法智能化程度高,容错性较强,但隶属度函数的得到和修正往往需要人的经验,不便于RTR系统的自学习;基于专家系统的人工智能识别算法容错性不强;人工神经元网络模式分类算法有较强的容错性,较高的智能化水平,高度的并行处理和较强的自学习能力,可能是RTR系统设计模式分类器的最佳选择;模糊推理与神经网络复合等类似的复杂分类器还有待进一步研究。

2.2现代信息处理理论和方法在RTR中的应用

近二十年,各种非线性信号处理、非平稳信号处理和智能信号处理理论与方法得到了蓬勃发展,极大地拓展了信息处理的手段,这些理论和方法在RTR领域也得到了一些成功应用。

(1)小波变换。小波变换是一种分析非平稳信号的数学理论,在RTR中的应用主要是提取宽带响应多尺度特征和雷达图像的数据压缩。

(2)分形与分维几何。分形与分维几何是研究和处理自然与工程中不规则图形的强有力的理论工具。它在RTR中主要用于合成孔径雷达图像的处理,包括图像压缩与特征抽取两方面。目标的分形特征具有抗干扰、抗畸变、复杂自然环境下性质不变的优点。

(3)模糊集理论。模糊集理论是一种处理因“因果律”破缺而造成的模糊现象的有力数学工具,在RTR中主要用于模式分类器的设计,以提高系统对环境的适应能力。

(4)人工神经元网络。人工神经元网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态响应而进行信息处理。ANN在RTR中主要用于分类判决,完成目标特征信号与目标属性的关联。以及完成矩阵特征值求解等一些耗时运算,提高信息处理的实时性。

2.3 RTR研究领域的基本结论

(1)RTR研究的主要难点[1]

①目标特征信号敏感于姿态角。采用特征空间变换可以在很小的姿态角范围内消除目标特征对姿态的敏感性,但最终的解决方法还在于利用目标全姿态角的训练数据进行建模,由此引起的模板数目过多,存储和实时检索困难等问题是目标识别的难点之一。

②强杂波以及各种干扰的存在。象其它雷达系统一样,目标识别系统也必须考虑到杂波和干扰对其性能的影响。虽然采用空域和时域滤波可以一定程度地抑制杂波和各种干扰,但空域和时域都难以区分的杂波和各种干扰不仅会大幅提高雷达检测的虚警率,而且会破坏目标回波所携带的特征,使目标识别系统的性能下降。

③成像识别时的目标分割问题。利用高分辨雷达对目标进行成像识别是RTR的发展趋势之一。由于雷达接收机的带宽有限,目标的雷达图像不象可见光图像那样具有连续的边界。目标的二维合成孔径雷达图像往往表现为目标物体上散射强度的等高线图,此时沿用光学图像处理中的目标分割算法

往往是失效的,必须研究专用的雷达图像理解算法。

④目标被遮蔽时残缺特征的联想。当雷达从空中识别地面目标时,地面目标可能被树林、建筑物等物体部分遮蔽,此时雷达图像出现了残缺现象,目标识别算法必须对残缺特征进行联想,这是非常困难的。

⑤目标识别系统缺乏统一的评估标准。RTR系统的最终性能受到目标类型、目标姿态、电磁环境、雷达体制、天气变化等诸多因素的影响,要使两套RTR系统处于相同的工作状态是困难的。一个可行的方法是建立测试RTR系统的标准数据库,但它要耗费大量的人力物力,且由于环境的千差万别,RTR系统的最终的测试结果与实际性能仍会有一定差距。

(2)RTR研究的基本结论

①不存在具有姿态角不变性的特征参量。由于目标姿态改变时目标的反射面结构发生了变化,因此,一般认为具有姿态角不变性的特征参量是不存在的。但是学术界少数人也存在另一种观点,认为具有姿态角不变性的特征参量不是不存在,只是目前还没有找到。

②不存在对所有目标类型和复杂环境普遍使用的RTR系统。从目标识别的机理看,对不同目标在不同的电磁环境中必须采用不同的特征抽取手段,不可能用一组特征解决所有的目标识别问题。现有的RTR系统都只能对有限个特定目标在比较单纯的电磁环境中发挥预期的作用。

(3)RTR研究领域的错误认识

①盲目进行特征抽取。出现这类错误的根本原因是缺乏对目标识别机理的足够认识,表现为将目标回波的能量等不稳定的量作为目标识别的特征,或在光学区雷达目标识别中试图抽取目标的极点,或抽取一组明显相关性很强的特征进行目标识别,等等。

②将RTR等同于信号处理。出现这类错误的主要原因也同样是缺乏对目标识别机理的足够认识,不去分析目标回波中包含哪些有用信息,把目标对雷达发射信号的散射看作是一个黑箱,将改善RTR 系统性能的希望寄托在神经网络、小波变换、遗传算法、分形几何等所谓的“先进”信息处理算法和“智能”模式分类算法上。

③利用少量样本或训练样本进行性能测试。RTR系统受目标姿态改变、环境变迁、雷达性能不稳定等多种不确定因素的影响,目标属性的判决过程实际上是一个随机事件,在性能测试实验中必须用到大量的不同时间、不同背景、不同姿态的样本,少量的样本得到的测试结果是没有说服力的。测试样本与训练样本相同时,也无法验证系统对多种目标姿态和环境等的适应能力。

(4)RTR研究的发展趋势

①一维或多维成像识别

传统的窄带低分辨雷达不能分辨目标物体上不同的散射部位,只能得到目标的位置和运动参数等少量信息,利用这些信息在复杂的战场环境中可靠地自动识别大量的军事目标是不可能的。为了得到目标的精细结构信息,必须提高雷达的分辨力,对目标进行成像识别,同时提高计算机对雷达图像的理解能力。可以这样说,未来的自动目标识别系统,一定是由具有高质量的成像算法和高智能的计算机图像理解算法的高分辨力雷达组成。现有的雷达成像识别算法可以按维数分为三类: 一维成像识别

雷达一维成像一般是指雷达发射宽带信号,在径向距离上对目标进行高分辨成像。一维成像识别的优点是径向分辨力与目标和雷达之间的距离无关,而且不受目标相对雷达的转角的限制,相对多维成像识别具有运算量小、实时性好的优点。目前,多数比较成熟的自动目标识别系统都是采用这种体制。其主要缺陷是:⑴一维距离像敏感于目标的姿态,目标识别时必须采取全方位的建模方式,且不

同类型目标之间的特征差别不够明显,识别率不会很高;⑵目标识别系统易受强杂波和各种干扰的影响,对环境的适应能力有限;⑶由于角度分辨力没有提高,当多个目标在距离上不可分时会对目标识别系统的性能产生严重影响。

●二维成像识别

雷达二维成像一般是指雷达在发射宽带信号,改善径向距离分辨力的同时,采取合成孔径或实孔径改善横向分辨力。二维成像识别方式由于在横向上改善了分辨力,克服了一维成像识别的不足,同时大量增加了信息处理的复杂性,至今二维成像仍不能做到实时处理,而且基于雷达图像的计算机视觉理论还远未完善。

●三维成像识别

三维成像识别方式有两种。一种是在合成孔径雷达的基础上增加一维实孔径改善第三维的分辨力,该成像识别方式已经在美国的卫星侦察雷达中得到成功应用;另一种是在宽带高距离分辨的基础上,在距离较近(如导弹末制导)时,结合单脉冲高角分辨改善两维横向分辨力。该成像方式尚有很多难点需要攻关。

②多传感器融合识别

多传感器融合识别是为了弥补单一传感器在信息获取能力上的不足,综合两种或更多种传感器获取的信息进行判决,达到大幅度改善目标识别性能的目的。RTR中常见的融合方式有不同波段的雷达融合、有源雷达与无源雷达的融合、单基地雷达与双多基地雷达的融合、主动雷达与被动雷达的融合等四种。融合算法有数据层融合、特征层融合和决策层融合三种。

③人机交互识别

在RTR系统中,依靠机器算法的智能化系统,要完全适应战场复杂的电磁环境是不可能的,在一些实时性要求不高的场合,如星载或机载雷达侦察、防空警戒雷达目标识别等,完全可以利用人脑对图像和声音强大的理解能力,来提高系统的识别率和适应环境的能力。前苏联曾研制出一种专门用于探测和识别直升机的雷达系统,其主要原理是将直升机的主旋翼调制谱转换成音频信号,输出到专用耳机中,借助人脑实现了几种已知型号直升机的准确识别。

④极化信息用于雷达目标识别

如果雷达的发射和接收极化都是可变的,则可以通过测量目标的极化散射矩阵,获取目标的极化信息用于目标识别。其优势在于:一是增加了信息来源。极化信息与其它途径得到的目标信息一般是不相关的;二是目标的极化信息具有改变极化基或目标绕雷达视线旋转不变性的特点。因此,利用极化信息进行目标识别可以消除三位姿态变化中的一维。极化理论证明,与目标视线旋转和雷达极化基无关的一组极化不变量是存在的,它们是:行列式的值、功率矩阵迹、去极化系数、本征方向角和最大极化方向角。利用极化信息进行目标识别的缺陷,是极化特征对雷达的工作频率和其它两维姿态的变化仍十分敏感。

3.低分辨雷达目标识别研究的思考

与高分辨雷达相比,低分辨雷达具有原理和结构简单等优点。可以想见,在今后相当长一段时间内,低分辨雷达仍是对空警戒雷达的主体。我军现役的地面防空警戒雷达都是采用低分辨体制。因此,对低分辨雷达目标识别进行研究对于改善我军防空警戒雷达的信息获取能力,圆满完成防空预警任务具有十分重要的意义。

近半个世纪,国外对低分辨雷达目标识别进行了大量的研究,取得了很多成功的经验和失败的教

训,总的结论是:低分辨雷达的目标特征信号的测量能力不够,无法在复杂战场环境中完成对目标进行稳定识别的任务。目前国外绝大部分的精力都已转向高分辨力雷达及其目标识别的研究。国内国防科技大学、哈尔滨工业大学、西安电子科技大学等单位对低分辨雷达目标识别进行过一些理论研究,基本上同意国际主流看法,但同时也认为低分辨雷达在目标识别方面有潜力可挖,对该领域的研究一直没有中断。

3.1低分辨RTR研究的不利因素

一是分辨力不够,目标回波中包含的目标特征信息量少。这是最根本的一点;二是必须识别飞机的型号,这是由防空警戒雷达的任务决定的;三是雷达作用距离远,识别信噪比(未积累前)较低;四是天线波束宽,主瓣干扰往往很强;五是雷达全天候工作,气候变化大。环境的变化会使目标识别系统性能发生较大的起伏。

3.2 低分辨RTR研究的有利条件

一是目标识别系统的实时性要求不高,允许秒级的处理时间,这就为人机交互识别和多扫描周期融合识别提供了可能;二是目标类型较少,有一定的先验信息可以利用;三是在警戒阶段,目标的运动状态比较平稳,可近似为匀速直线运动。

3.3 低分辨RTR研究的具体思路

(1)目标。主要目的是压缩目标空间的维数,可以采用三种手段:一是将所有感兴趣目标类型按威胁程度排队,将威胁程度高的目标作为识别的重点,将威胁程度相近、结构和战术性能相似的目标归为一类;二是对目标参数进行压缩。远程警戒时,目标的航迹可近似为匀速直线运动,其战术使用特点也可以事先部分了解到;三是将实在无法识别的几种目标归为一类。

(2)雷达。就雷达而言,就是要认真分析雷达的信号处理特点,充分挖掘雷达能够提供的目标信息,并分析雷达性能不稳定对目标识别系统可能造成的影响。理论上应尽可能避免目标识别效果受雷达性能变化的影响,保证只要雷达能够正常发挥警戒功能就能识别目标。当然,实际上很难做到这一点。必须指出,雷达发射功率的变化是正常的,其对目标识别的影响也是必须消除,而且完全可以消除的。雷达发射功率的变化与目标距离的变化、天气的变化等因素最终都会改变目标回波信号的能量。消除其影响的方法是避免使用与回波信号的绝对能量值有关的特征进行目标识别,换之以回波不同部位的能量的比值。

(3)目标特征抽取。低分辨对空警戒雷达目标识别可资利用的特征有七类:①RCS及其起伏特征。如均值、方差、极大值、极小值、极差等;②波形特征。如波形宽度、凹陷度等,必要时可以向有经验的雷达操纵员请教;③运动特征。如飞行速度、高度、编队形式、螺旋桨调制等;④瞬时频响特征。如付立叶系数、小波系数等;⑤多周期关联特征。即不同扫描周期得到的目标信息进行关联,以增加目标识别的信息来源;⑥极化特征。前提是雷达的发射和接收极化是可变的;⑦其它情报信息。如二次雷达情报、敌方飞机转场情报等其它侦察手段获取的情报,可以通过人机交互的方式被目标识别系统有效利用。

(4)目标模式分类算法。统计分类器和人工神经网络分类器二者进行比较后选定一种。

(5)人机交互的运用。人在目标识别系统中的作用可能在以下三个方面体现:一是可以用于鉴别直升机目标的旋翼调制谱;二是数据采集和处理时辅助鉴别杂波和各种干扰;三是综合利用其它情报信息。

3.4 RTR系统性能的评价

RTR系统最终识别效果受电磁环境变化,目标类型、姿态以及战术使用情况的改变,雷达性能不

稳定,天气变化等多种因素的影响。因此,同一个RTR系统在不同的环境、不同的时间和地点会有不同的识别效果。RTR系统的平均识别率能够达到70%就很不错了。其最终价值体现在:作为一种参考信息源,在不同的战场环境下,提高了对空警戒雷达所提供情报的信息量。这一点很象伦敦的天气预报系统,虽然经常预报不准,但有总比没有好。

参考文献

[1]孙文峰,宽带毫米波雷达精确制导信息处理方法研究,[博士学位论文],长沙:国防科技大学,1998

[2]V.G. Nebabin, Methods and Techniques of Radar Recognition, Artech House, 1997

[3]黄培康主编,《雷达目标特征信号》,北京:宇航出版社,1993

附:作者简历

孙文峰(1970-),湖南汉寿人,空军雷达学院重点实验室副教授,博士,主要从事雷达信号处理与目标识别的研究。

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

雷达微弱目标检测的有效方法[1]

49642009,30(21)计算机工程与设计Computer Engineering and Design 0引言 复杂背景下低信噪比运动目标的检测和跟踪是雷达信号处理系统的关键技术之一。在微弱运动目标检测和跟踪的应用中,雷达接收的远距离目标回波强度非常弱,信噪比很低,目标易被噪声淹没,单个脉冲回波的信噪比甚至是负的,若仅对单帧图像处理,不能可靠地检测目标。在预警雷达应用中,由于运动目标距离雷达较远,又处在强杂波环境中,对微弱运动目标的检测与跟踪是雷达信号处理的一个重要课题。早期算法主要有Kalman滤波等方法,主要采用检测后跟踪(detect before track,DBT)方法,这类方法在信噪比较高时可以取得很好的效果,否则不能检测出目标。要想对微弱目标进行有效的检测及跟踪,除了抑制杂波和降低系统噪声等方法外,一种有效的方法是检测前跟踪(track before detect,TBD)方法,即对单次观测信号先不进行判断,而是结合雷达图像特点,对目标进行多次观测,计算出目标在各帧图像之间的移动规律,预测目标在下一帧图像的可能位置,同时在帧与帧之间将多次扫描得到的数据沿着预测轨迹进行几乎没有信息损失的相关处理,从而改善目标的信噪比,提高检测性能,在得到检测结果的同时获得目标航迹。 目前,用于微弱目标检测的TBD方法主要有极大似然法、粒子滤波法、动态规划(dynamic programming,DP)法、Hough变换法,等[1-2]。其中,Hough变换法对检测沿径向做匀速直线运动的目标具有较好的检测性能,目标在直线轨迹上的能量集中在Hough变换后的单点上,目标轨迹的能量远大于其它点的能量,但计算量和存储量都较大[3],难以实现。动态规划算法对目标信噪比要求较低,可以探测各种运动形式的目标[4-5]。 动态规划算法是美国Y.Barniv于1985年提出的,利用动态规划的分段优化思想,将目标轨迹搜索问题分解为分级优化的问题[6]。将其应用到雷达微弱目标检测中,可将雷达回波信号在多普勒频率和距离二维方向的幅度排列成图像,在多帧相继的图像序列中,运动目标轨迹可看作是一条连续变化的曲线,利用动态规划算法,检测是否存在着这样一条曲线,从而判断目标是否存在。 基于动态规划的检测前跟踪的关键在于沿目标运动航迹积累能量[7-8],可以看出,搜索目标航迹的计算量非常大,在实际应用中存在不足。在预警雷达中,来袭目标比远离雷达的目标更具有威胁性,更需早期发现和预防,所以单独针对来袭目标进行探测,可以大大减少动态规划法搜索的运算量,提高预警雷达的探测能力。本文针对动态规划算法计算量大的缺 收稿日期:2009-02-26;修订日期:2009-06-10。

【CN110133630A】一种雷达目标检测方法及应用其的雷达【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910344449.2 (22)申请日 2019.04.26 (71)申请人 惠州市德赛西威智能交通技术研究 院有限公司 地址 516006 广东省惠州市仲恺高新区和 畅五路西8号投资控股大厦 (72)发明人 孙靖虎 曾迪 黄力 温和鑫  盘敏容 蒋留兵  (74)专利代理机构 惠州创联专利代理事务所 (普通合伙) 44382 代理人 韩淑英 (51)Int.Cl. G01S 13/02(2006.01) G01S 13/08(2006.01) G01S 13/58(2006.01) G01S 7/41(2006.01) (54)发明名称 一种雷达目标检测方法及应用其的雷达 (57)摘要 本发明涉及一种雷达目标检测方法。本发明 提供了一种运行速度快、探测精度高的雷达目标 检测方法,本发明中,雷达的一帧检测中第二发 射波的发射次数可与第一发射波不同,可通过设 置较少的第二发射波的发射次数来缩短雷达的 检测帧周期;本发明中第二发射波只需要进行一 次一维FFT而无需进行二维FFT,降低了计算复杂 度, 提高了数据处理速度。权利要求书2页 说明书7页 附图4页CN 110133630 A 2019.08.16 C N 110133630 A

1.一种雷达目标检测方法,其特征在于,包括以下步骤: 步骤一、发射K1次周期为T1、的第一发射波,所述第一发射波被目标反射后被天线接收得到第一回波; 步骤二、对每个周期的第一回波进行N点采样一维FFT变换得到第一回波一维FFT结果; 步骤三、对所述第一回波一维FFT结果进行二维FFT变换得到坐标对应第一距离单元号、第一模糊速度号的距离多普勒谱,其中第一距离单元号为对单个周期的第一回波进行一维FFT采样的序号,第一模糊速度号为所述第一发射波的发射周期的序号;根据第一回波的目标检测距离、目标检测模糊速度与所述距离多普勒谱的峰值的对应关系求第一回波的目标检测距离及目标检测模糊速度; 步骤四、发射K2次与所述第一发射波频率互质的周期为T2的第二发射波,所述第二发射波被目标发射后被所述天线接收得到第二回波,对每个周期的第二回波进行N点采样一维FFT变换得到对应不同第二距离单元号、第二模糊速度号的第二回波一维FFT结果,其中第二距离单元号为对单个周期的第二回波进行一维FFT采样的序号,第二模糊速度号为所述第二发射波的发射周期的序号; 步骤五、根据步骤三得到的第一回波的目标检测模糊速度与目标真实速度可能值之间的关系求目标真实速度可能值的速度旋转因子,并将该速度旋转因子与步骤四得到的第二回波一维FFT结果形成关联,然后对该关联结果进行解模糊,再根据解模糊的结果对步骤2求得的第一回波的目标检测距离、目标检测模糊速度进行修正从而求得目标真实速度及目标真实距离;以及 步骤六、输出步骤四获得的目标真实速度及目标真实距离。 2.根据权利要求1所述的一种雷达目标检测方法,其特征在于,步骤三中求第一回波的目标检测距离及目标检测模糊速度方法为: 在所述距离多普勒中寻找峰值,该峰值对应的距离单元号、模糊速度号即为目标所处 的第一距离单元号 第一模糊速度号 再根据目标所处的第一距离单元号电磁波的传播速度C、第一发射波的射频带宽B1计算第一回波的目标检测距离以及 根据目标所处的第一模糊速度号所述天线中心频率对应的波长λ、步骤1中所述第一发射波的发射次数K1及周期T1计算第一回波的目标检测模糊速度 3.根据权利要求2所述的一种雷达目标检测方法,其特征在于,所述步骤五具体包括: 定义目标真实速度可能值的速度旋转因子V DFT : 式中V r为目标真实速度可能值;z为所述第二模糊速度号; 将第一回波的目标检测模糊速 度与目标真实速度可能值V r之间的关 系代入步骤4.1中目标真实速度可能值的速度旋转因子V DFT的定义公式中, 式中m为取值范围为[-d,d]的模糊数单元号,其中d为正整数,从而求得目标真实速度可能值的速度旋转因子; 权 利 要 求 书1/2页 2 CN 110133630 A

智能雷达光电探测监视系统单点基本方案..

智能雷达光电探测监视系统单点基本方案
一、 系统概述
根据监控需求: 岸基对海 3~10 公里范围内主要大小批量目标; 主动雷达光电探测和识别; 多目标闯入和离去自动报警智能职守; 系统接入指挥中心进行远程监控管理; 目标海图显示管理; 系统能够自动发现可疑目标、跟踪锁定侵入目标、根据设定条件进行驱散、 同时自动生成事件报告记录,可以实现事故发生后的事件追溯,协助事故调查。 1. 项目建设主要目的 ? 为监控区域安全提供综合性的早期预警信息; ? 通过综合化监测提高处置和应对紧急突发事件的指挥能力。 2. 基本需求分析: 需配置全自动、全量程具备远距离小目标智能雷达探测监视和光电识别系 统,系统具备多目标自动持续稳定跟踪、多种智能报警功能、支持雷达视频实 时存储、支持留查取证的雷达视频联动回放功能等;同时后期系统需具备根据 用户需求的功能完善二次开发能力。同时支持后续相关功能、扩点组网应用需 求。 根据需求和建设主要目的,选型国际同类技术先进水平,拥有相关技术自 主知识产权,具备二次技术深化开发的北京海兰信数据科技股份有限公司 (2001 年成立,2010 年国内创业板上市,股票代码:300065,致力于航海智 能化与海洋防务/信息化的国内唯一上市企业)的智能监视雷达光电系统。该系 统在国内外有众多海事相关成熟应用案例,熟悉国内海事、海监、海警、渔政

公务执法及救捞业务需求特点等。同时,该系统近期成功中标国内近年来相关 领域多套(20 套)雷达光电组网项目,充分说明该系统的技术领先及成熟应 用的市场广泛接受度。
3. 项目建成后的主要特点 ? 全天候、全覆盖、全自动的立体化监控。该系统具备对多传感器信息 融合的能力,确保对探测范围内雷达信息源、光电、AIS、GPS 等设备信号源 进行有机的融合和整合。 ? 系统具备了预警、报警、实时录取回放的综合功能。任何目标物进入 雷达视距时,系统即开始进行监测。目标物触碰警报规则后,指挥室获得报警 信号,同时联动设备综合光电锁定警报目标,以便驱离。整个过程系统实时记 录、方便随时调用回放。 ? 系统技术水平国内领先。该系统中创新地采用了国际先进的“先跟踪 后探测”算法技术对目标进行探测和跟踪,保证了在严苛条件下满足对目标地 探测与持续跟踪能力。 ? 该系统采用先进的设计思想,开放灵活的系统网络架构,能够根据需 求进行不同的组合和配置,系统可扩展性强。 ? 维护便捷,由于采用网络架构,获得用户授权后能连接到用户网络, 可以远程支援维修维护系统,从而提高维护效率,减少维护成本。 ? 可靠性高,充分适应不同的海洋环境。
二、 系统设备清单
序号 1
2
材料名称
规格型号
X 波段雷达,IP65(含安装支架) HLD800/900;8ft,25kw
小目标雷达数据处理器及显示 HLD-STTD-1000
终端软件
Radpro V1.6.0.0
数量 1套
1套

雷达技术综述

雷达技术综述 Overview of Radar Technology 摘要: 雷达被广泛用于军事预警、导弹制导、民航管制、地形测量、气象、航海等众多领域。本文首先概述了雷达发展历程并总结了雷达技术发展的成因,然后对雷达的基本工作原理和基本雷达方程作了简要的介绍。最后介绍了几种实际雷达并指出了雷达的未来发展方向。 关键词: 雷达技术;工作原理;雷达应用;发展趋势 Abstract: Radar is widely used in many fields of military early warning, missile guidance, aviation control, topographic surveying, meteorology, navigation and so on.This paper outlines the development process of radar and summarizes the causes of the development of radar technology,then briefly introduces the basic principle of radar and basic radar equation.Finally, introduces several kinds of practical radar and points out the future development direction of radar. Key words: radar technology; working principles; radar applications; trend in development 引言 雷达是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达最先是作为一种军事装备服务于人类,主要用来实施国土防空警戒,指挥和引导己方作战飞机以及各种地面防空武器。随着雷达技术的不断改进,如今雷达被广泛用于民航管制、地形测量、气象、航海等众多领域。随着高科技的不断发展,雷达技术将在21世纪得到更广泛的应用。 1 雷达的发展历程 雷达诞生于20世纪30年代,从美、欧等发达国家的雷达装备技术发展来看,雷达的发展历程大致经历了4个阶段:第1个阶段是从20世纪30年代到50年代,为实施国土防空警戒,指挥和引导己方作战飞机以及各种地面防空武器(高炮、高射机枪、探照灯等),西方大量研制部署米波段雷达和以磁控管为发射机的微波雷达。当时雷达探测目标的种类简单,主要是飞机,此外还有少量的飞艇和气球,雷达的典型技术特征是电子管、非相参,这种雷达被称为第1代。 第2个阶段是从20世纪50年代到80年代,防空作战对雷达提出了由粗略

雷达空间目标识别技术综述

2006年10月第34卷 第5期 现代防御技术 MODERN DEFENCE TECHNOLOGY O ct.2006 V o.l34 N o.5雷达空间目标识别技术综述* 马君国,付 强,肖怀铁,朱 江 (国防科技大学ATR实验室,湖南 长沙 410073) 摘 要:随着人类航天活动的增加,对于卫星和碎片等空间目标进行监视变得非常重要。为了实现空间监视任务,对空间目标进行识别是非常必要的。对空间目标的轨道特性与动力学特性进行了介绍,对雷达空间目标识别技术的研究现状和发展趋势进行了详细的综述。 关键词:空间目标识别;低分辨雷达;高分辨雷达成像 中图分类号:TN957 52 文献标识码:A 文章编号:1009 086X(2006) 05 0090 05 Survey of radar space target recognition technology MA Jun guo,F U Q iang,X I AO Huai tie,Z HU Jiang (ATR L ab.,N ationa lU n i versity o f De fense T echno l ogy,Hunan Changsha410073,Ch i na) Abst ract:W ith t h e deve l o pm ent of spacefli g ht acti v ity of hum an,surveillance of space tar get such as sate llite and debris beco m es very i m portan.t In or der to i m p le m ent surveillance task,space target recogni ti o n is ver y necessary.Orb it property and dyna m ics property of space targe t are i n troduced,a deta iled sur vey is set forth about current research state and developi n g trend of radar space target recogn iti o n techno l ogy. K ey w ords:space tar get recogniti o n;lo w reso lution radar;h i g h reso lution radar i m aging 1 引 言 自从前苏联发射了第1颗人造地球卫星以来,卫星在预警、通信、侦察、导航定位、监视和气象等方面具有不可替代的优势。随着人类航天活动的增加,空间碎片日益增多,对于卫星等航天器的安全造成极大的威胁,因此对于卫星和碎片等空间目标进行监视变得非常重要。其中空间目标识别是空间监视任务中不可或缺的基本条件,空间目标识别主要是利用雷达等传感器获取空间目标的回波信号,从中提取目标的位置、速度、结构等特征信息,进而实现对空间目标的类型或属性进行识别。 2 空间目标的轨道特性与动力学特性 (1)轨道特性[1,2] 空间目标在轨道上的运动是无动力惯性飞行,本质上空间目标与自然天体的运动是一致的,故研究空间目标的运动可以用天体力学的方法。空间目标在运动时受到地球引力、月球引力、太阳及其他星体引力、大气阻力和太阳光辐射压力等的作用,轨道存在摄动。但是对轨道的实际分析表明,空间目标受到的主要力是地球引力。假设空间目标只是受到地球引力的作用,同时假设地球是一个质量均匀分布的球体,则空间目标与地球构成二体运动系统,开 *收稿日期:2005-12-15;修回日期:2006-01-23 作者简介:马君国(1970-),男,吉林长春人,博士生,主要从事目标识别与信号处理研究。 通信地址:410073 湖南长沙国防科技大学ATR实验室 电话:(0731)4576401

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

复杂电磁环境中雷达目标识别

复杂电磁环境中雷达目标识别 1.1复杂电磁环境的定义以及与信息化条件的关系信息化作战背景主要是指复杂电磁干扰环境下的作战环境,即所谓的复杂电磁环境。对复杂电磁环境的严格定义目前还没有统一,但各种非学术性的刊物上出现了不少对复杂电磁环境的定义。所谓复杂电磁环境,概括的说,就是在一定的作战时期内人为电磁发射和多种电磁现象的总和。构成复杂电磁环境的主要因素主要有敌、我双方的电子对抗,各种武器装备所释放的高密度、高强度、多频谱的电磁波,民用电磁设备的辐射和自然界产生的电磁波等。具体地说,所谓的复杂电磁环境是指信息化战场上在交战双方激烈对抗条件下所产生的多类型、全频谱、高密度的电磁辐射信号,以及己方大量使用电子设备引起的相互影响和干扰,从而造成在时域上突发多变、空域上纵横交错、频域上拥挤重叠,严重影响武器装备效能、作战指挥和部队作战行动的无形战场环境。复杂电磁环境主要包括军用装备电磁辐射及侦搜环境、民用电子设备电磁辐射环境、自然电磁辐射环境。 1.2复杂电磁环境的特点 电磁环境的复杂化是随着电子技术的发展和电子技术在武器装备的不断运用而随之产生的。复杂化主要体现在军用、民用的电磁使用活动增多;交战双方对电磁频谱的依赖使得双方为争夺制电磁权而使用的干扰和反干扰的装备和技术手段增多;电磁频谱波段增多,几乎涵盖了整个电磁频谱波段等等。除了这些人为的电磁活动以外,还存在自然电磁活动,主要有太阳系和星际电磁辐射,地球和大气层电磁场,雷电及其电磁脉冲等。所有这些共同构成了复杂的电磁环境,其中人为的有意干扰造成的电磁环境是主要部分,也是对信息化条件下作战影响最大的部分。其主要特征是: (1)广泛性 交战双方为削弱对方电子战能力、降低或破坏对方电子设备的使用效能,同时保障己方设备效能的正常发挥,将会采取各种措施,在陆地、海上、空中乃至太空等多维空间展开争夺电磁频谱主导权的斗争,对象涉及无线电通信、雷达、制导、导航、声纳和电信、广播、电视等各种电子设备,范围遍及整个电磁频谱空间。

雷达目标识别技术

雷达目标识别技术述评 孙文峰 (空军雷达学院重点实验室,湖北武汉430010) 摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。 关键词:雷达目标识别;低分辨雷达 Review on Radar Target Recognition SUN Wen-feng (Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service. Key words: radar target recognition; low resolution radar 1.引言 雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的R TR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。 2.雷达目标识别技术的回顾与展望 雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

雷达种类

?雷达种类 ?雷达 英文缩略语“RADAR”的音译,全称为“radio detection and ranging”,原意是“无线电探测和定位”。利用电磁波发现目标并测定其位置、速度和其他特征的电子信息设备。 典型的雷达主要由同步器、激励器、发射机、收发开关、天线、接收机、信号处理器、终端显示控制设备和电源等组成。它向空间定向发射电磁波并接收目标反射的回波信号来探测目标。通过测定电磁波从雷达到目标,又经目标反射回雷达的传播时间来确定目标的距离;利用雷达天线的定向辐射和定向接收特性,测定目标的方位角和仰角,根据目标的距离和仰角计算目标的高度。雷达通常能够测定目标的方位、距离或方位、距离、高度;有的雷达还能测量目标速度和运动轨迹,判断目标类型、数量等。按发射的信号形式,可分为脉冲雷达和连续波雷达;按接收信号的性质,分为一次雷达、二次雷达和无源雷达;按架设位置,分为地面雷达、舰艇雷达、机载雷达、系留气球载雷达、飞艇载雷达、弹载雷达和航天雷达等;按技术体制,可分为单脉冲雷达、动目标显示雷达、脉冲压缩雷达、脉冲多普勒雷达、频率捷变雷达、相控阵雷达、三坐标雷达、合成孔径雷达、逆合成孔径雷达、超视距雷达和多基地雷达等;按军事用途,主要有对空情报雷达、导弹制导雷达、炮瞄雷达、弹道导弹预警雷达、战场侦察雷达、地形测绘雷达、航行雷达、防撞雷达、探地雷达、气象雷达、多功能雷达和雷达敌我识别系统等。雷达具有发现目标距离远、测定目标参数速度快、能全天候工作等特点,是现代战争中一种重要的电子信息设备。 ?综合脉冲孔径雷达 亦称“稀布阵雷达”。应用数字技术综合形成天线波束与测距脉冲的雷达。可形成多个波束搜索和探测空中多个目标,并能同时对目标进行跟踪。综合脉冲孔径雷达角分辨力高,反电子侦察反干扰能力强,反隐身性能较好,对架设场地要求不高,天线单元构造简单、易于伪装,具有较好的抗轰炸性能;但信号处理技术较复杂。 ?超宽带雷达 探测信号的相对频带宽度(信号的瞬时带宽与其中心频率之比)大于25%的雷达。主要应用在髙精度测量、髙分辨目标成像识别、探测隐藏于树丛里的军事目标和地下工事等方面。 超宽带雷达具有低截获概率特性,反侦察反干扰能力强;距离分辨力髙,综合利用合成孔径雷达技术,可实现对目标的二维成像。 ?冲击雷达 亦称“基带脉冲雷达”或“无载波脉冲雷达”。发射宽度极窄且无载波的冲击脉冲的雷达。 军事上主要用来探测埋入地下、墙内或任意分层媒质中的地雷、电缆、管道、军事设施和伪装工事等。其脉冲宽度为纳秒或皮秒量级,瞬时频谱宽度从数百兆赫至数吉赫。特点是:具有超短距离探测能力;能穿透树丛、地面或墙壁探测目标;距离分辨力可达厘米量级。 按运载平台,分为便携式、车载式和机载式三类。

相关文档