文档视界 最新最全的文档下载
当前位置:文档视界 › 汽车悬架系统的动态特性和参数分析

汽车悬架系统的动态特性和参数分析

汽车悬架系统的动态特性和参数分析
汽车悬架系统的动态特性和参数分析

悬架参数的确定1

第三节 悬架主要参数的确定 一、悬架静挠度c f 悬架静挠度c f ,是指汽车满载静止时悬架上的载荷Fw 与此时悬架刚度c 之比, 即c f =Fw /c 。 汽车前、后悬架与其簧上质量组成的振动系统的固有频率,是影响汽车行驶平顺性的主要参数之一。因现代汽车的质量分配系数ε近似等于1,于是汽车前、后轴上方车身两点的振动不存在联系。因此,汽车前、后部分的车身的固有频率n1和n2(亦称偏频)可用下式表示 式中,c1、c2为前、后悬架的刚度(N /cm);m1、m2为前、后悬架的簧上质量(kg)。 当采用弹性特性为线性变化的悬架时,前、后悬架的静挠度可用下式表示 111c g m f c = 2 22c g m f c = 式中,g 为重力加速度(g=981cm /s 2 )。 将1c f 、 2c f 代入式(6—1)得到 分析上式可知:悬架的静挠度c f 直接影响车身振动的偏频n 。因此,欲保证汽车有良好的行驶平顺性,必须正确选取悬架的静挠度。 在选取前、后悬架的静挠度值1c f 和2c f 时,应当使之接近,并希望后悬架的静挠度2c f 比前悬架的静挠度1c f 小些,这有利于防止车身产生较大的纵向角振动。理论分析证明:若汽车以较高车速驶过单个路障,nl /n2<1时的车身纵向角振动要比n1/n2>1时小,故推 荐取2c f =(0.8~0.9) 1c f 。考虑到货车前、后轴荷的差别和驾驶员的乘坐舒适性,取前悬架的静挠度值大于后悬架的静挠度值,推荐2c f =(0.6~0.8) 1c f 。为了改善微型轿车后排乘客的乘坐舒适性,有时取后悬架的偏频低于前悬架的偏频。 用途不同的汽车,对平顺性要求不一样。以运送人为主的轿车对平顺性的要求最高,大客车次之,载货车更次之。对普通级以下轿车满载的情况,前悬架偏频要求在1.00~1.45Hz ,后悬架则要求在1.17~1.58Hz 。原则上轿车的级别越高,悬架的偏频越小。对高级轿车满载的情况,前悬架偏频要求在0.80~1.15Hz ,后悬架则要求在0.98~1.30Hz 。货车满载时,前悬架偏频要求在1.50~2.10Hz ,而后悬架则要求在1.70~2.17Hz 。选定偏频以后,

汽车性能指标及参数

厂商提供的汽车说明书,反映了汽车的基本性能和技术含量,读懂汽车说明书对选购汽车具有指导意义。一般的汽车说明书含有下列内容: (1)发动机的基本参数汽车发动机的基本参数主要包括发动机缸数、气缸的排列形式、气门数、排气量、最高输出功率和最大转矩。 ①缸数——汽车发动机常用缸数有3,4、5,6、8缸。排量1升以下的发动机常用3缸,2.5升以下一般为4缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。 ②气缸的排列形式——一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式排列的。直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速转矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛;缺点是功率较低。直列6缸的动平衡较好,振动相对较小。大多6到12缸发动机采用V形排列,v形即气缸分两列错开角度布置,形体紧凑,v形发动机长度和高度尺寸小\布置起来非常方便。V8发动机结构非常复杂,制造成本很高,所以使用的较少,而V12发动机则过大过重,只有极个别的高级轿车采用。 ③气门数——国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。气门数量并不是越多越好,5气门确实可以提高进气效率,但其结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。 ④排气量——气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积的总和,一般用于升( L)来表示。发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。 ⑤最高输出功率——最高输出功率一般用马力(hp )或千瓦(kW)来表示。发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高;但是到了一定的转速以后,功率反而呈下降趋势。一般在汽车使用说明中最高输出功率用每分钟转速来表示(r/min),如lOOhp/5000r/min,即代表在每分钟5000转时发动机最高输出功率为100马力。 ⑥最大转矩——它指发动机从曲轴端输出的力矩,转矩的表示方法是N·m/r/min,最大转矩一般出现在发动机的中、低转速范围,随着转速的提高,转矩反而会下降。当然,在选择时要权衡一下怎样合理使用、不浪费现有功能。比如,北京冬夏都有必要开空调,在选择发动机功率时就要考虑到不能太小;只是在城市环路上下班交通用车,就没有必要挑过大马力的发动机。因此要尽量做到经济、合理选配发动机。

汽车悬架优化设计_毕业设计论文

4.4.4主销内倾角的优化 (23) 4.4.5轮距优化 (23) 4.4.6各定位参数同时优化 (24) 4.4.6.1前束优化后的图形 (25) 4.4.6.2车轮外倾角优化后的图形 (25) 4.4.6.3主销后倾角优化后的图形 (25) 4.4.6.4主销内倾角优化后的图形 (25) 4.4.6.5轮距变化优化后的图形 (26) 4.4.6.6各参数优化前后的数值表 (26) 4.4.6.7小结 (27) 结论 (27) 致谢 (27) 参考文献 (27)

引言 汽车悬架是汽车一个非常重要的部件。汽车悬架是汽车的车架与车桥或车 轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和 力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动, 以保证汽车能平顺地行驶。另外,悬架系统能配合汽车的运动产生适当的反应, 当汽车在不同路况作加速、制动、转向等运动时,能提供足够的安全性,保证操 纵不失控。所以,悬架是汽车底盘中最重要、也是汽车改型设计中经常需要进行 重新设计的部件。汽车行驶中路面的不平坦、凸起和凹坑使车身在车轮的垂直作 用力下起伏波动,产生振动与冲击;加减速及制动和转弯使车身产生俯仰和侧倾 振动。这些振动与冲击会严重影响车辆的平顺性和操纵稳定性等重要性能。悬架作为上述各种力和力矩的传动装置,其传递特性能的好坏是影响汽车行驶平顺性 和操纵稳定性最重要、最直接的因素。只有当汽车底盘配备了性能优良的悬架, 才会得到整车性能优良的汽车。 悬架按照结构分大体可以分为独立式悬架和非独立式悬架。非独立悬架具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由 于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。独立悬架是每一侧的车轮都是单独地通过弹性悬架悬挂在车架或车 身下面的。其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附 着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽 车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。不过,独立悬架存在着结构复杂、成本高、维修不便 的缺点。现代轿车大都是采用独立式悬架,按其结构形式的不同,独立悬架又可分为横臂式、纵臂式、多连杆式、烛式以及麦弗逊式悬架等。麦弗逊悬架因为其 结构简单、制造成本低、节省空间方便发动机布置等优点被广泛地运用。大到宝马M3,保时捷911这类高性能车,小到菲亚特STILO,福特FOCUS,甚至国产的哈飞面包车前悬挂都是采用的麦弗逊式设计。 当前,中国汽车企业大多侧重于汽车整车的研发,而忽视了汽车主要零部件和相关配套产业的提供。然而从某种意义上讲,整车对于汽车产业不是最重要的,最重要的还是汽车关键零部件的创新和发展。关键零部件的科技含量综合体现汽车整车的创新能力和品牌建设能力。我国在底盘的集成设计及开发领域开发 设计起步较晚,设计和制造水平远远落后于国外发达国家。国内大多数整车及零部件制造企业都没有掌握悬架系统的自主设计和开发技术,大多数为引进外国技术进行复制开发和生产,几乎可以说国内企业的底盘技术基本上都是照搬过外 的,没有任何自己的技术。 在现代的工程研究领域,计算机仿真己成为热门研究课题。借助计算机的快速计算能力,人们不仅可以求出所需要的数值结果,还可以模拟出工程中的具体情况,以便人们可以直观的进行分析研究,我们称为计算机仿真技术。今天的机械系统仿真技术研究中,大多以多体系统理论作为研究上的理论基础。计算多体系统动力学的产生极大地改变了传统机构动力学分析的面貌,使工程师从传统的手工计算中解放了出来,只需根据实际情况建立合适的模型,就可由计算机自动求解,并可提供丰富的结果分析和利用手段;对于原来不可能求解或求解极为困 难的大型复杂问题,现可利用计算机的强大计算功能顺利求解;而且现在的动力学分析软件提供了与其它工程辅助设计或分析软件的强大接口功能,它与其它工

悬架系统特性之刚度分析

悬架系统力学特性 悬架对车辆性能的影响:转向时,由于悬架系统的存在,使得车身在离心力的作用下会出现侧倾,从而造成左、右车轮的垂直载荷分配不均,引起左、右两侧车轮的地面附着力的变化,而其将对车辆操纵稳定性带来影响,因此,悬架分析又是操纵稳定性分析中的重要内容。 悬架的特性主要体现在刚度上。以下主要分析典型扭杆悬架的刚度特性。 扭杆悬架 扭杆悬架的特点:结构简单、工作可靠、使用寿命长、单位质量变形能大。 扭杆弹簧在A处,垂直纸面向里 (一)参数说明: 1)d-扭杆直径; 2)L-扭杆工作长度; 3)a-平衡肘长度; 4) α-平衡肘的初始安装位置与水平线的夹角; 5)α-负重轮受力后平衡肘的与水平线的夹角,规定在水平线以下为正,水平线以上为负。

(二)受力分析 平衡肘在受到垂直方向的力P 作用时,扭杆一端从0α位置变到了α位置,则在扭杆上作用的扭矩为M : cos M Pa α = 设在扭矩M 作用下,扭杆的扭角为: 0M L G J θαα=-= 式中,J 为扭杆断面的极惯性矩,对实心圆杆有:4 4 0.132 d J d π=≈;G 为扭杆材 料的切变弹性模量(对钢,74530.5~79433.8G M P a =)。 由上两式可得: () 0cos G J P La ααα -= 由于刚度是力对位移的微分,所以要求刚度,还得需要确定位移。 负重轮行程为: ()0sin sin f a αα=- 则可得扭杆悬架的线刚度为: ()022 1cos x dP tg dP G J d m df df La da ααααα--=== 把J 的表达式代入上式得: ()402 2 132cos x tg G d m La ααα πα --= 当0α=时,即平衡肘处于水平位置,此时可得 402 32x G d m La π= (三)扭杆悬架刚度特性的影响因素 1)扭杆直径d 的影响,d 越大,刚度越大; 2)扭杆工作长度L 的影响,L 越长,刚度越小; 3)平衡肘长度a 的影响,平衡肘越长,刚度越小;

实验一汽车结构参数及特性参数测量 精品

实验一汽车结构参数及特性参数测量 一、实验内容 二、实验目的要求 三、仪器设备 四、准备工作 五、实验步骤 六、注意事项 一、实验内容 汽车外廓尺寸、内部尺寸、质量及技术特性参数测量。 二、实验目的、要求 熟悉汽车主要结构参数和特性参数的实际含义,并能正确的进行测量。 三、仪器设备 1.主要结构参数测量仪器设备 1)高度尺:量程0~1000mm,最小刻度:0.5mm; 2)离地间隙仪:量程0~500mm,最小刻度:0.5mm; 3)角度尺:量程0~180°,最小刻度: 1°; 4)钢卷尺:量程0~20mm,最小刻度:1mm; 5)水平仪及三维H点装置(可用三维坐标仪代替)。 2.汽车质量参数测量设备 1)使用地秤时,秤台面积应能容纳全部实验车车轴,秤台出入口地面应与台面保持同一水平面; 2)使用车轮负荷计时,应使各车轮负荷计的上平面在同一水平面内。 3.汽车最小转弯直径测量设备 1)行驶轨迹显示装置; 2)钢卷尺,量程0~30m,精度1mm。 4.实验车 四、准备工作 1.实验车应按《使用说明书》规定,达到完好技术状态。 2.按规定值添加汽车用油、水。 五、实验步骤 1.汽车结构参数测量步骤 1)基准面和基准点确定,见附表1-1、附表1-2; 2)测量基准点相对于支承平面的距离,见附表1-3; 3)测量前排座位R点位置及后排座位R点位置,见附表1-4、附表1-5。 4)外部尺寸测量 (1)外部宽度尺寸编码、名称及测量部位,见附表1-6; (2)外部高度尺寸编码、名称及测量部位,见附表1-7; (3)外部长度尺寸编码、名称及测量部位,见附表1-8; (4)离地间隙尺寸编码、名称及测量部位,见附表1-9。 2.汽车质量参数测量步骤 1)使用地秤测量时,汽车先从一个方向低速行驶入秤台面,依次测量前轴轴载质量、整车质量、后轴轴载质量,然后汽车调头,从相反方向驶入秤台面,依次重复测量前述几个参数。 2)使用车轮负荷计测量时,首先将车轮负荷计标零,再将汽车驹向车轮负荷计,分别测量各轴轴载质量并计算整车质量。

汽车悬架系统设计毕业设计和分析

轿车动力总成悬置系统优化设计研究 摘要 随着社会的日益进步和科学技术的不断发展,人们对汽车舒适性的要求也越来越高,良好的平顺性和低噪声是现代汽车的一个重要标志。NVH已经成为衡量汽车质量水平的重要指标之一。而动力总成是汽车最重要的振源之一。如何合理设计动力总成悬置系统能明显降低汽车动力总成和车体的振动已经成为一个重要的课题。 本课题研究的目的是在现有动力总成悬置系统的基础上,优化动力总成悬置系统参数,达到提高整车平顺性和降低噪声的目的。 对动力总成悬置系统进行优化仿真,通过比较优化前的性能可知,优化后悬置系统隔振性能明显改善。 关键词:动力总成;悬置系统;优化

Investigation on Optimization Design of Plant Mounting System of a Passenger Car Abstract With the increasing social progress and the continuous development of science and technology, people on the requirements of automotive comfort become more sophisticated and good ride comfort and low noise is an important sign of the modern automobile. NVH levels have become an important measure of vehicle quality indicator. The vehicle powertrain is one of the most important vibration source. How to design mounting system can significantly reduce the vehicle powertrain and body vibration has become an important issue. This study is aimed at existing powertrain mounting system, based on parameters optimization of powertrain mounting system, to improve vehicle ride comfort and reduce noise. On the optimization of powertrain mounting system simulation, the performance by comparing the known before the optimization, the optimized mounting system significantly improved. Key words: Powertrain;Mounting system;Optimization

悬架系统KC特性综述

万方数据

万方数据

表3侧向力加载试验测试参数及定义 侧向力加载测试参数定义 侧向力变形轮胎接地点侧向力和车轮中心侧向变形 侧向力转向轮胎接地点侧向力和车轮转角 侧向力外倾轮胎接地点侧向力和车轮外倾 轮胎侧向刚度轮胎侧向变形和侧向力关系 接地点侧向力变形轮胎接地点侧向力和侧向力变形关系 的是研究车轮受到回正力时悬架系统的性能。试 验如图4所示。加载范围:每个轮胎上轮胎接地 面加载+/一150Nm。表4为回正试验主要测试图5纵向力加载试验示意图参数及定义。 图4回正力矩试验示意图 表4回正试验测试参数及定义 l回正试验测试参数定义II回正力矩转向轮胎接地点同正力矩和车轮转角关系ll回正力矩外倾轮胎接地点回正力矩和车轮外倾角关系I 2.5纵向力试验 同时同向对两轮加载纵向力。主要测试悬架系统在受到纵向力之后的性能,试验如图5所示。在进行纵向力试验时由于受到轮胎和托盘表面摩擦力的制约,纵向力很难加载到较大范围,悬架变形只能在线性范围内很难到达非线性区域。所以为了考察非线性区域特性,需要通过夹具将车轮和托盘固定,从而满足大纵向力加载的要求。纵向力试验主要测试参数及定义见表5。 2.6转向系统几何测试 手动转动方向盘,测量转向主销各参数。加载范围:车轮转动+/一50。主要测试结果见表6。 上海汽车2009.08 表5纵向力加载试验测试参数及定义 纵向力加载测试参数定义 制动力或牵引力变形轮胎接地点纵向力和车轮中心纵向变形 制动力或牵引力转向轮胎接地点纵向力和车轮转角 制动力或牵引力后倾轮胎接地点纵向力和后倾角 制动力外倾轮胎接地点纵向力和车轮转角关系 制动力抗点头和 轮胎接地点纵向力和垂向力关系 牵引力抗抬头 表6转向系统几何测试参数及定义 转向系统几何测试参数定义 主销后倾角车轮转角和主销后倾角关系 主销内倾角车轮转角和主销内倾角关系 主销内倾内置量车轮转角和轮胎接地点纵向变形 主销后倾偏置量车轮转角和轮胎接地点侧向变形关系主销拖距车轮转角和胎接地点变形关系 3K&C参数评价 以某车型开发为实例,对前、后悬架主要K&C特性参数的最优设计范围进行概括,见表7和表8,分K和C两个方面。 上面关于某轿车前后悬架K&C参数的最优设计范围,主要基于所开发的特定车型。该结果对其它车型具有一定的参考价值,但具体车型还需要具体对待。 4结语 本文对影响整车操纵稳定性的悬架K&C特性进行了论述。阐述了K&C试验方法及所测试 ?21?万方数据

汽车主要参数的选择.(DOC)

汽车主要参数的选择 一、汽车主要尺寸的确定 汽车的主要尺寸有外廓尺寸、轴距、轮距、前悬、后悬、货车车头长度和车箱尺寸等。 1、外廓尺寸 GBl589—89汽车外廓尺寸限界规定汽车外廓尺寸长:货车、越野车、整体式客车不应超过12m,单铰接式客车不超过18m,半挂汽车列车不超过16.5m,全挂汽车列车不超过20m;不包括后视镜,汽车宽不超过2.5m;空载、顶窗关闭状态下,汽车高不超过4m;后视镜等单侧外伸量不得超出最大宽度处250mm;顶窗、换气装置开启时不得超出车高300mm。 不在公路上行驶的汽车,其外廓尺寸不受上述规定限制。 轿车总长 L是轴距L、前悬F L和后悬R L的和。它与轴距L a 有下述关系: L=L/C。式中,C为比例系数,其值在O.52~ a O.66之间。发动机前置前轮驱动汽车的C值为O.62~O.66,发动机后置后轮驱动汽车的C值约为O.52~O.56。 轿车宽度尺寸一方面由乘员必需的室内宽度和车门厚度来决定,另一方面应保证能布置下发动机、车架、悬架、转向系和车轮等。轿车总宽 B与车辆总长a L之间有下述近似 a 关系: B=(a L/3)+(1 95+60)mm。后座乘三人的轿车,a B不 a 应小于1410mm。

影响轿车总高a H 的因素有轴间底部离地高度m h ,板及下部零件高p h ,室内高B h 和车顶造型高度t h 等。 轴间底部离地高m h 应大于最小离地间隙min h 。由座位高、乘员上身长和头部及头上部空间构成的室内高B h 一般在1120~1380mm 之间。车顶造型高度大约在20~40mm 范围内变化。 2、轴距L 轴距L 对整备质量、汽车总长、最小转弯直径、传动轴长度、纵向通过半径有影响。当轴距短时,上述各指标减小。此外,轴距还对轴荷分配有影响。轴距过短会使车厢(箱)长度不足或后悬过长;上坡或制动时轴荷转移过大,汽车制动性和操纵稳定性变坏;车身纵向角振动增大,对平顺性不利;万向节传动轴的夹角增大。 原则上轿车的级别越高,装载量或载客量多的货车或客车轴距取得长。对机动性要求高的汽车轴距宜取短些。为满足市场需要,工厂在标准轴距货车基础上,生产出短轴距和长轴距的变型车。不同轴距变型车的轴距变化推荐在O.4-0.6m 的范围内来确定为宜。 汽车的轴距可参考表1-5提供的数据选定。 表l 一5 各类汽车的轴距和轮距 车型 类别 轴距L /mm 轮距B /mm

汽车悬架系统动力学研究剖析

(研究生课程论文) 汽车动力学 论文题目:汽车悬架系统动力学研究指导老师:乔维高 学院班级: 学生姓名: 学号: 2015年1月

汽车悬架系统动力学研究 摘要:汽车悬架类型的选择和悬架参数的差异对汽车的操纵稳定性和行驶平顺性具有重要的影响。主要分析了麦弗逊悬架的结构特点,并通过ADAMS软件建立麦弗逊悬架的3D模型,对其进行仿真分析,得出悬架参数的优化设计方法。关键词:麦弗逊悬架;ADAMS多刚体动力学;仿真分析 The automobile suspension system dynamics research Caisi Vehicle 141 1049721402344 Abstract:Different kinds of suspension systems and of differences in suspension parameters on the vehicle steering stability and riding comfort have important influence. Mainly analyzed the structure characteristics of Macpherson suspension, and by using ADAMS software to establish 3D model of Macpherson suspension, carry on the simulation analysis, the method of optimal design parameters of the suspension. Key words:Macpherson suspension; ADAMS /Car; multi-rigid-body dynamics; simulation and analysis 引言 汽车悬架是汽车车轮与车身之间一切装置的总称。其功用在于:在垂直方向能够衰减振动和起悬挂作用;在侧向可防止车身侧倾和左右车轮载荷转移;在行驶方向上能够保证驱动与制动的实现并保持行驶方向的稳定性。不同的悬架设置会使驾驶者有不同的感受。看似简单的悬架系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。悬架系统起着传递车轮和车身之间的力和力矩、引导与控制汽车车轮与车身的相对运动、缓和路面传递给车身的冲击、衰减系统的振动等作用,汽车悬架系统对汽车的操

汽车悬架检测技术研究综述

汽车悬架检测技术研究综述 悬架性能影响车辆的动态附着性能,对整车的平顺性、安全性、操纵稳定性、制动性、动力性、经济性等均有很大的影响。文章在分析汽车悬架检测技术的基本设备和检测方法的基础上,研究了未来汽车悬架检测技术的发展趋势,并指出了我国汽车悬架检测技术的弱点所在。文章的研究对我国汽车悬架检测技术的发展具有指导意义。 标签:汽车悬架;检测技术;发展趋势 引言 悬架装置是汽车的一个重要组成,汽车悬架装置通常由弹性元件、导向装置和减振器三部分组成。其主要功能是:缓和由路面不平引起的振动和冲击,以保证汽车具有良好的平顺性;迅速衰减车身和车桥的振动;传递作用在车轮和车身之间的各种力和力矩;保证汽车行驶时必要的安全性和操纵稳定性。 悬架性能影响车辆的动态附着性能,对整车的平顺性、安全性、操纵稳定性、制动性、动力性、经济性等均有很大的影响。车辆悬架系统原始设计不合理,减震器漏油,弹性元件及联结接头的过度磨损等均会使悬架系统的性能变差,导致制动点头,俯仰和测倾振动加剧,轮胎磨损加剧,转向系统及悬架系统和车身零件的振动加剧等,因而悬架系统的检测评定就显得尤为重要。在汽车悬架系统的检测技术,对汽车运动学、动力学的计算分析和验证占有十分重要的地位。 1 汽车悬架检测技术 1.1 汽车悬架检测设备与检测方法 汽车悬架装置工作性能的检测方法有经验法、按压车体法和试验台检测法三种类型。经验法是通过人工外观检视的方法,主要从外部检查悬架装置的弹簧是否有裂纹,弹簧和导向装置的连接螺栓是否松动,减振器是否漏油、缺油和损坏等项目。按压车体法既可以人工按压车体,也可以用试验台的动力按压车体。按压使车体上下运动,观察悬架装置减振器和各部件的工作情况,凭经验判断是否需要更换或修理减振器和其他部件。 检测台能快速检测、诊断悬架装置工作性能,并能进行定量分析。根据激振方式不同,悬架装置检测台可分为跌落式和共振式两种类型。其中,共振式悬架装置检测台根据检测参数的不同,又可分为测力式和测位移式两种类型。跌落式悬架装置检测台在测试中,先通过举升装置将汽车升起一定高度,然后突然松开支撑机构,车辆落下产生自由振动。用测量装置测量车体振幅或者用压力传感器测量车轮对台面的冲击压力,对振幅或压力分析处理后,评价汽车悬架装置的工作性能。共振式悬架装置检测台如图1所示,通过试验台的电动机、偏心轮、蓄能飞轮和弹簧组成的激振器,迫使试验台台面及其上被检汽车悬架装置产生振

汽车悬架对整车性能的影响

郑州电子信息职业技术学 院 毕业论文 课题名称:________________________ 作者:________________________ 学号:________________________ 系别:________________________ 专业:________________________ 指导教师:________________________ 2010年

第四章汽车悬架设计 悬架是保证车轮或车桥与汽车承载系统(车架或承载式车身)之间具有弹性联系并能传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等有关装置的总称。 悬架最主要的功能是传递作用在车轮和车架(或车身)之间的一切力和力矩,并缓和汽车驶过不平路面时所产生的冲击,衰减由此引起的承载系统的振动,以保证汽车的行驶平顺性。为此必须在车轮与车架或车身之间提供弹性联接,依靠弹性元件来传递车轮或车桥与车架或车身之间的垂向载荷,并依靠其变形来吸收能量,达到缓冲的目的。采用弹性联接后,汽车可以看作是由悬挂质量(即簧载质量)、非悬挂质量(即非簧载质量)和弹簧(弹性元件)组成的振动系统,承受来自不平路面、空气动力及传动系、发动机的激励。为了迅速衰减不必要的振动,悬架中还必须包括阻尼元件,即减振器。此外,悬架中确保车轮与车架或车身之间所有力和力矩可靠传递并决定车轮相对于车架或车身的位移特性的连接装置统称为导向机构。导向机构决定了车轮跳动时的运动轨迹和车轮定位参数的变化,以及汽车前后侧倾中心及纵倾中心的位置,从而在很大程度上影响了整车的操纵稳定性和抗纵倾能力。在有些悬架中还有缓冲块和横向稳定杆。 尽管一百多年来汽车悬架从结构型式到作用原理一直在不断地演进,但从结构功能而言,它都是由弹性元件、减振装置和导向机构三部分组成。在有些情况下,某一零部件兼起两种或三种作用,比如钢板弹簧兼起弹性元件及导向机构的作用,麦克弗逊悬架(McPherson strut suspension,或称滑柱摆臂式独立悬架)中的减振器柱兼起减振器及部分导向机构的作用,有些主动悬架中的作动器则具有弹性元件、减振器和部分导向机构的功能。 根据导向机构的结构特点,汽车悬架可分为非独立悬架和独立悬架两大类。非独立悬架的鲜明特色是左、右车轮之间由一刚性梁或非断开式车桥联接,当单边车轮驶过凸起时,会直接影响另一侧车轮。独立悬架中没有这样的刚性梁,左右车轮各自“独立”地与车架或车身相连或构成断开式车桥,按结构特点又可细分为横臂式、纵臂式、斜臂式等等,各种悬架的结构特点将在以下章节中进一步讨论。 除上述非独立悬架和独立悬架外,还有一种近似半独立悬架,它与近似半刚性的非断开式后支持桥相匹配。当左右车轮跳动幅度不一致时,后支持桥中呈V形断面并与左右纵臂固结在一起的横梁受扭,由于其具有一定的扭转弹性,故此种悬架既不同于非独立悬架,也与独立悬架有别。该弹性横梁还兼起横向稳定杆的作用。 按照弹性元件的种类,汽车悬架又可以分为钢板弹簧悬架、螺旋弹簧悬架、扭杆弹簧悬架、空气悬架以及油气悬架等。 按照作用原理,可以分为被动悬架、主动悬架和介于二者之间的半主动悬架。 如前所述,汽车悬架和悬挂质量、非悬挂质量构成了一个振动系统,该振动系统的特性很大程度上决定了汽车的行驶平顺性,并进一步影响到汽车的行驶车速、燃油经济性和运营经济性。该振动系统也决定了汽车承载系和行驶系许多零部件的动载,并进而影响到这些零件的使用寿命。此外,悬架对整车操纵稳定性、抗纵倾能力也起着决定性的作用。因而在设计悬架时必须考虑以下几个方面的要求: (1)通过合理设计悬架的弹性特性及阻尼特性确保汽车具有良好的行驶平顺性,具有较低的振动频率、较小的振动加速度值和合适的减振性能,并能避免在悬架的压缩伸张行程极限点发生硬冲击,同时还要保证轮胎具有足够的接地能力; (2)合理设计导向机构,以确保车轮与车架或车身之间所有力和力矩的可靠传递,保证车轮跳动时车轮定位参数的变化不会过大,并且能满足汽车具有良好的操纵稳定性要求; (3)导向机构的运动应与转向杆系的运动相协调,避免发生运动干涉,否则可能引起转向轮摆振;

悬架系统的测试调查

悬架系统测试调查 一.悬架系统的功能 悬挂系统作用是将车轮所受的各种力和力矩传递给车架和车身,并能吸收、缓和路面传来的振动和冲击,减少驾驶室内噪声,增加乘员的舒适性,以及保持汽车良好的操作性和平稳和行驶性。另外,悬挂系统能配合汽车的运动产生适当的反应,当汽车在不同路况作加速、制动、转向等运动时,能提供足够的安全性,保证操纵不失控。 二.悬架系统的种类 一、汽车悬挂按控制力分类 汽车悬挂按控制力分类,可分为被动悬挂、半主动悬挂和主动悬挂三大类。 1、被动悬挂 一般的汽车绝大多数装有由弹簧和减振器组成的机械式悬挂。由于这种常规悬挂系统内无能源供给装置,悬挂的弹性和阻尼参数不会随外部状态而变化,因而称这种悬挂为被动悬挂。这种悬挂虽然往往采用参数优化的设计方法,以求尽量兼顾各种性能要求,但在实际上由于最终设计的悬挂参数是不可调节的,所以在使用中很难满足高的行驶要求。 2.半主动悬挂 半主动悬挂可视为由可变特性的弹簧和减振器组成的悬挂系统,虽然它不能随外界的输入进行最优控制和调节,但它可按存贮在计算机内部的各种条件下弹簧和减振器的优化参数指令来调节弹簧的刚度和减振器的阻尼状态。半主动悬挂又称无源主动悬挂,因为它没有一个动力源为悬挂系统提供连续的能量输入,所以在半主动悬挂系统中改变弹簧刚度要比改变阻尼状态困难得多,因此在半主动悬挂系统中以可变阻尼悬挂系统最为常见。半主动悬挂系统的最大优点是工作时几乎不消耗动力,因此越来越受到人们的重视。 3.主动悬挂 主动悬挂是一种具有作功能力的悬挂,通常包括产生力和扭矩的主动作用器(油缸、汽缸、伺服电机、电磁铁等)、测量元件(如加速度、位移和力传感器等)和反馈控制器等。因此,主动悬挂需要一个动力源(液压泵或空气压缩机等)为悬挂系统提供连续的动力输入。当汽车载荷、行驶速度、路面状况等行驶条件发生变化时,主动悬挂系统能自动调整悬挂刚度(包括整体调整和各轮单独调整),从而同时满足汽车的行驶平顺性,操纵稳定性等各方面的要求,其优点可归纳为如下几个方面:

悬架主要参数的确定

悬架结构形式的选择 汽车的悬架主要有独立悬架和非独立悬架,独立悬架的结构特点是,左右车轮通过各自的悬架与车架连接;非独立悬架的结构特点是,左右车轮用一根整体轴连接,再经过悬架与车架连接。 独立悬架与非独立悬架的优缺点对照见表1: 表1 独立悬架与非独立悬架的优缺点对照 所以前后轴都用非独立悬架。从表格中可以看出可以可以方便维修,制造成本也低。 目前在客车上普遍应用的是空气弹簧做弹性元件的悬架。悬架是连接车身和车轮之间一切传力装置的总称,主要由空气弹簧,减振器和导向机构三部分组成。弹性元件用来传递垂直力,并和轮胎一起缓和路面不平引起的冲击和振动,减振器将振动迅速衰减。导向机构用来确定车轮相对于车架或车身的运动,传递除垂直力以外的各种力矩和力。 空气弹簧与机械弹簧悬架的目的是一样的,都是为了保护车辆不受振动和路面冲击振动的影响。但是,机械弹簧悬架也可能加强振动,因为一些小的来自路面的跳动都可能引起共振。而空气弹簧消除振动的性能从而提高车辆的行驶平顺性-乘坐柔软性和舒适性是机械弹簧悬架系统所无法比拟的。机械弹簧悬架的吸振相差太大,在俯仰摆动时,机械弹簧悬架的减振效果更差,只有空气弹簧悬架的25%。 空气悬架在客车的应用上具有许多优点,比如空气弹簧可以设计的比较柔软,可以得到较低的固有振动频率,同时空气弹簧的变刚度特性使得这一频率在较大的载荷变化范围内保持不变,从而提高汽车的行驶平顺性。空气悬架的另一个优点在于通过调节车身高度使大客车的地板高度随载荷的变化基本保持不变。 空气弹簧的优点 1.性能优点:由于空气弹簧可以设计得比较柔软,因而空气悬架可以得到较低的固有振动频率,同时空气弹簧的变刚度特性使得这一频率在较大的载荷变化范围内保持不变,从而

汽车的一些参数的意义

1、轴距(mm):轴矩,是通过车辆同一侧相邻两车轮的中点,并垂直于车辆纵 向对称平面的二垂线之间的距离。简单的说,就是汽车前轴中心到后轴中心的距离。 在车长被确定后,轴距是影响乘坐空间最重要的因素,因为占绝大多数的2 厢和3厢乘用车的乘员座位都是布置在前后轴之间的。长轴距使乘员的纵向空间 增大,将大大增加影响车辆乘坐舒适性的脚部空间。虽然轴距并非决定车内空间 的唯一因素,但却是根本因素。同时,轴距的长短对轿车的舒适性、操纵稳定性 的影响很大。一般而言,轿车级别越高轴距越长。轴距越大,车厢长度越大,乘 员乘坐的座位空间也越宽敞,抗俯仰和横摆性能越好,长轴距在提高直路巡航稳 定性的同时,转向灵活性下降、转弯半径增大,汽车的机动性也越差。因此在稳 定性和灵活性之间必须作出取舍,找到合适的平衡点。当然在高档长轴距的轿车 上,这样的缺点已经被其他高科技装置所弥补。 2、轮距: 轮距是车轮在车辆支承平面(一般就是地面)上留下的轨迹的中心线之间的 距离。如果车轴的两端是双车轮时,轮距是双车轮两个中心平面之间的距离。 汽车的轮距有前轮距和后轮距之分,前轮距是前面两个轮中心平面之间的距 离,后轮距是后面两个轮中心平面之间的距离,两者可以相同,也可以有所差别。

一般来说,轮距越宽,驾驶舒适性越高,但是有些国产轿车没有方向助力的,如果前轮距过宽其方向盘就会很“重”,影响驾驶的舒适性。 此外,轮距还对汽车的总宽、总重、横向稳定性和安全性有影响。 一般说来,轮距越大,对操纵平稳性越有利,同时对车身造型和车厢的宽敞程度也有利,横向稳定性越好。但轮距宽了,汽车的总宽和总重一般也加大,而且容易产生向车身侧面甩泥的问题。如果轮距过宽还会影响汽车的安全性,因此,轮距应与车身宽度相适应。 3、最小离地间隙 最小离地间隙是指:汽车在满载(允许最大荷载质量)的情况下,底盘最低点距离地面的距离。最小离地间隙反映的是汽车无碰撞通过有障碍物或凹凸不平的地面的能力。

悬架设计优化

悬架参数优化设计 概述 悬架是车架与车轮之间的一切传力连接装置的总称,主要功能是改善车辆的动态表现,传递车轮和车架之间的一切力和力矩,缓和抑制路面对车身的冲击和振动,保证车轮在路面不平和载荷变化时有理想的运动特性。 汽车悬架的形式分为非独立悬架和独立悬架两种: 非独立悬架的车轮装在一根整体车轴的两端,当一边车轮跳动时,影响另一侧车轮也作相应的跳动,使整个车身振动或倾斜,汽车的平稳性和舒适性较差,但由于构造较简单,承载力大,目前仍有部分轿车的后悬架采用这种型式。 独立悬架的车轴分成两段,每只车轮用螺旋弹簧独立地安装在车架(或车身)下面,当一边车轮发生跳动时,另一边车轮不受波及,汽车的平稳性和舒适性好。但这种悬架构造较复杂,承载力小。由于独立悬架具有比较好跳动性能,故赛车选用的悬架类型为独立悬架。 具体的独立悬架,有麦弗逊、双横臂和多连杆式三种主要类型。双横臂式独立悬架由于其布置灵活,结构比较简单,其在FSAE赛车上应用比较广泛。根据总体设计中赛车的布置方案和对悬架的要求,参考FSAE车队赛车悬架的方案,最终确定我们的方程式赛车采用双叉臂推杆导向式独立悬架。前悬架的具体形式为四连杆式,后悬架为五连杆式。 性能要求 “6.1 悬架 6.1.1 赛车必须在前后轮装配有可以自由工作的、并有减震器的悬架,并且悬架在坐有车手的情况下可以在分别抬起和压下25.4mm。如果赛车没有严谨的悬架运行表现,或不能表现出适合比赛的操控能力,检察官员保留有取消赛车参赛资格的权利。 6.1.2 悬架的所有的接合点必须可以被技术检查官员看到,无论是可以直接看到或是通过移除覆盖件来实现。 6.2 离地间隙 必须有足够的离地间隙来防止赛车在行驶时的任何部分(除了轮胎)接触地

汽车悬架系统优化设计

目录 摘要 (1) 前言 (2) 1.双筒式减振器国内外发展状况和发展趋势 (2) 2.研究的主要内容及方法 (2) 3.减振器的类型和工作原理 (2) 3.1 减振器的类型 (2) 3.2 减振器的工作原理 (2) 3.3双向作用筒式液力减振器的工作原理及优点 (3) 4双向作用筒式液力减振器的设计 (3) 4.1双向作用筒式液力减振器的设计总体要求 (3) 4.2双向作用筒式液力减振器的外特性与设计的原则 (4) 4.2.1汽车悬架与减震器的匹配与减震器的放置 (4) 4.2.2悬架减振器的外特性 (4) 4.3双向作用筒式液力减振器参数和尺寸的确定 (4) 结论 (5) 参考文献 (6)

汽车悬架系统优化设计 摘要:随着我国经济的迅速发展,人民生活水平日渐提高,汽车已经成为人们的生活中必不可少的交通工具,并且对乘车的安全性和舒适性也有了更高的要求,本文对双筒液压减振器的优化。 关键词:汽车悬架减震优化

前言:世界上第一个有记载、比较简单的减振器是1897年由两个姓吉明的人发明的。他们把橡胶块与叶片弹簧的端部相连,当悬架被完全压缩时,橡胶减振块就碰到连接在汽车大梁上的一个螺栓,产生止动。这种减振器在很多现代汽车悬架上仍有使用,但其减振效果很小。 减振器的结构发展主要经历了以下几种发展形式:加布里埃尔减振器, 平衡弹簧式减振器,空气弹簧减振器,液压减振器,麦弗逊支柱式减振器,充气式减振器 1.双筒式减振器国内外发展状况和发展趋势 目前国内汽车减振器大部分是筒式液阻减振器,其阻尼力主要通过油液流经空隙的节流作用产生。减振器的设计开发也由基于经验设计加实验修整的传统方法向基于CAD/CAE技术的现代优化设计方法转变。20世纪50年代发展起来了液压减振器技术,在双筒式减振器内充入油液(0.3~0.5MPa)减振器的临界工作速度相应提高,后来又发展了双筒式减振器,它采用活塞阀体与底阀相配合的结构,在浮动活塞在缸筒间的一端形成的补偿室内充入一定量的高压气体(2.0~2.5MPa)氮气。与双筒式减振器比,单筒充气式减振器质量显著减轻,安装角度不受限制,但其制造精度要求和成本较高。 2研究的主要内容及方法 通过对减振器的参数和结构上的优化,设计一种用于微型汽车并且符合技术要求,具有良好经济性与实用性的减振器。通过大量的查阅资料,设计计算以及老师的指导下,按照任务书的要求最终完成设计工作。在设计的过程中参考国内外相关的文献资料以及借鉴相关的产品的信息,使预期的设计产品能够符合理论设计要求,各项技术指标符合要求。 3减振器的类型和工作原理 3.1减振器的类型 减振器大体上分为两大类,即摩擦式减振器和液力减振器。摩擦式减振器利用两个紧压在一起的盘片之间相对运动时的摩擦力提供阻尼。但是由于库仑摩擦力随相对运动速度的提高而减小,并且很容易受到油、水等的影响,无法正常工作,无法满足平顺性的要求,因此虽然具有质量小、造价低、容易调整等优点,但现在汽车上已经不再采用这类减振器。 3.2减振器的工作原理 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器用来衰减振动。液力减振器在汽车悬架系统中广泛应用,其作用原理是利用液体流动的阻力来消耗振动的能量。当车架与车桥相对运动时,活塞在缸筒内上下移动,减振器壳体内的油压便反复地从一个内腔通过一

adams悬架性能分析

Adams/car的悬架分析(Suspension Analyses),共提供悬架38种性能。对所有悬架均提供: ? Aligning Torque - Steer and Camber Compliance //单位回正力矩的转角或外倾角 ? Camber Angle //外倾角 ? Caster Angle //后倾角 ? Dive Braking/Lift Braking //制动点头/制动抬头 ? Fore-Aft Wheel Center Stiffness //悬架纵向刚度 ? Front-View Swing Arm Length and Angle //前视图(虚拟)摆臂长度和角度 ? Kingpin Inclination Angle //主销内倾角 ? Lateral Force - Deflection, Steer, and Camber Compliance // ? Lift/Squat Acceleration //抬头(一般指启动时前悬架抬升,后悬架压缩) ? Percent Anti-Dive Braking/Percent Anti-Lift Braking //(前悬架)防点头/(后悬架)防抬升

? Percent Anti-Lift Acceleration/Percent Anti-Squat Acceleration // ? Ride Rate //悬架动刚度 ? Ride Steer //悬架转向性能 ? Roll Camber Coefficient //侧倾轮倾系数(车身侧倾时车轮侧倾角与车身侧倾角的比值) ? Roll Caster Coefficient // ? Roll Center Locatio n //侧倾中心位置 ? Roll Steer //Ride steer is the slope of the steer angle versus the vertical wheel travel curve. Ride steer is the change in steer angle per unit of wheel center vertical deflection due to equal vertical forces at the wheel centers. Positive ride steer implies that the wheels steer to the right, as the wheel centers move upward. ? Side-View Angle // The side-view angle is the wheel carrier side-view rotation angle. It is positive for a clockwise rotation, as seen from the left side of the vehicle. ? Side-View Swing Arm Length and Angle // The swing arm is an imaginary arm extending from the wheel's side elevation instant center of rotation to the wheel center. For front suspensions, the sign convention is that when the instant center is behind the wheel center, the swing arm has a positive length. For rear suspensions, the sign convention is the opposite: when the instant center is ahead of the wheel center, the swing arm has a positive length. The angle of the swing arm is the angle it makes to

相关文档
相关文档 最新文档