文档视界 最新最全的文档下载
当前位置:文档视界 › 图像拼接原理及方法资料

图像拼接原理及方法资料

图像拼接原理及方法资料
图像拼接原理及方法资料

第一章绪论

1.1图像拼接技术的研究背景及研究意义

图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系

列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。

早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域

――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化

场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以

使IBR从一系列真是图像中快速绘制具有真实感的新视图。

在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很

多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到

超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。

微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双

目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。

这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四

周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图

像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。

从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重

要的意义

1.2图像拼接算法的分类

图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算

法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:

(1) 基于区域相关的拼接算法。

这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法

计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。也可以通过FFT变换将图像由时域

变换到频域,然后再进行配准。对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。

当以两块区域像素点灰度值的差别作为判别标准时,最简单的一种方法是直接把各点灰度的

差值累计起来。这种办法效果不是很好,常常由于亮度、对比度的变化及其它原因导致拼接失败。另一种方法是计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块

图像的匹配程度越高。该方法的拼接效果要好一些,成功率有所提高。

(2) 基于特征相关的拼接算法。

基于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后

以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高

的健壮性和鲁棒性。

基于特征的配准方法有两个过程:特征抽取和特征配准。首先从两幅图像中提取灰度变化明

显的点、线、区域等特征形成特征集冈。然后在两幅图像对应的特征集中利用特征匹配算法

尽可能地将存在对应关系的特征对选择出来。一系列的图像分割技术都被用到特征的抽取和

边界检测上。如ca nny算子、拉普拉斯高斯算子、区域生长。抽取出来的空间特征有闭合的边界、开边界、交叉线以及其他特征。特征匹配的算法有:交叉相关、距离变换、动态编程、结构匹配、链码相关等算法。

1.3本文的主要工作和组织结构

本文的主要工作:

(1) 总结了前人在图像拼接方面的技术发展历程和研究成果。

(2) 学习和研究了前人的图像配准算法。

(3) 学习和研究了常用的图像融合算法。

(4) 用matlab实现本文中的图像拼接算法

⑸总结了图像拼接中还存在的问题,对图像拼接的发展方向和应用前景进行展望。

本文的组织结构:

第一章主要对图像拼接技术作了整体的概述,介绍了图像拼接的研究背景和应用前景,

以及图像拼接技术的大致过程、图像拼接算法的分类和其技术难点。第二章主要介绍讨论了图像预处理中的两个步骤,即图像的几何校正和噪声点的抑制。第三章主要介绍讨论了图像配准的多种算法。第四章主要介绍讨论了图像融合的一些算法。第五章主要介绍图像拼接软

件实现本文的算法。第六章主要对图像拼接中还存在的问题进行总结,以及对图像拼接的发

展进行展望。

1.4本章小结

本章主要对图像拼接技术作了整体的概述,介绍了图像拼接的研究背景和应用前景,以图像拼接算法的分类和其技术难点,并且对全文研究内容进行了总体介绍。

第二章图像拼接的基础理论及图像预处理

2.1图像拼接

图像拼接技术主要有三个主要步骤:图像预处理、图像配准、图像融合与边界平滑,

图像拼接技术主要分为三个主要步骤:图像预处理、图像配准、图像融合与边界平滑,图

像预处理主要指对图像进行几何畸变校正和噪声点的抑制等,让参考图像和待拼接图像不存

在明显的几何畸变。在图像质量不理想的情况下进行图像拼接,如果不经过图像预处理,很容易造成一些误匹配。图像预处理主要是为下一步图像配准做准备,让图像质量能够满足图

像配准的要求。图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出

的信息中寻找最佳的匹配,完成图像间的对齐。图像拼接的成功与否主要是图像的配准。待拼接的图像之间,可能存在平移、旋转、缩放等多种变换或者大面积的同色区域等很难匹配的情况,一个好的图像配准算法应该能够在各种情况下准确找到图像间的对应信息,将图像对齐。图像融合指在完成图像匹配以后,对图像进行缝合,并对缝合的边界进行平滑处理,让缝合自然过渡。由于任何两幅相邻图像在采集条件上都不可能做到完全相同,因此,对于

一些本应该相同的图像特性,如图像的光照特性等,在两幅图像中就不会表现的完全一样。图像拼接缝隙就是从一幅图像的图像区域过渡到另一幅图像的图像区域时,由于图像中的某

些相关特性发生了跃变而产生的。图像融合就是为了让图像间的拼接缝隙不明显,拼接更自

22图像的获取方式

图像拼接技术原理是根据图像重叠部分将多张衔接的图像拼合成一张高分辨率全景图。这些有重叠部分的图像一般由两种方法获得:一种是固定照相机的转轴,然后绕轴旋转所拍摄的照片;另一种是固定照相机的光心,水平摇动镜头所拍摄的照片。其中,前者主要用于远景或遥感图像的获取,后者主要用于显微图像的获取,它们共同的特点就是获得有重叠的二维图像。

2.3图像的预处理

2.3.1图像的校正

当照相系统的镜头或者照相装置没有正对着待拍摄的景物时候,那么拍摄到的景物图像

就会产生一定的变形。这是几何畸变最常见的情况。另外,由于光学成像系统或电子扫描系统的限制而产生的枕形或桶形失真,也是几何畸变的典型情况。几何畸变会给图像拼接造成

很大的问题,原本在两幅图像中相同的物体会因为畸变而变得不匹配,这会给图像的配准带

来很大的问题。因此,解决几何畸变的问题显得很重要。

图象校正的基本思路是,根据图像失真原因,建立相应的数学模型,从被污染或畸变的图象信号中提取所需要的信息,沿着使图象失真的逆过程恢复图象本来面貌。实际的复原过

程是设计一个滤波器,使其能从失真图象中计算得到真实图象的估值,使其根据预先规定的

误差准则,最大程度地接近真实图象。

232图像噪声的抑制

图像噪声可以理解为妨碍人的视觉感知,或妨碍系统传感器对所接受图像源信息进行理

解或分析的各种因素,也可以理解成真实信号与理想信号之间存在的偏差。一般来说,噪声

是不可预测的随机信号,通常采用概率统计的方法对其进行分析。噪声对图像处理十分重要,

它影响图像处理的各个环节,特别在图像的输入、采集中的噪声抑制是十分关键的问题。若输入伴有较大的噪声,必然影响图像拼接的全过程及输出的结果。根据噪声的来源,大致可

以分为外部噪声和内部噪声;从统计数学的观点来定义噪声,可以分为平稳噪声和非平稳噪

声。各种类型的噪声反映在图像画面上,大致可以分为两种类型。一是噪声的幅值基本相同,

但是噪声出现的位置是随机的,一般称这类噪声为椒盐噪声。另一种是每一点都存在噪声,但噪声的幅值是随机分布的,从噪声幅值大小的分布统计来看,其密度函数有高斯型、瑞利型,分别成为高斯噪声和瑞利噪声,又如频谱均匀分布的噪声称为白噪声等。

1?均值滤波

所谓均值滤波实际上就是用均值替代原图像中的各个像素值。均值滤波的方法是,对将处

理的当前像素,选择一个模板,该模板为其邻近的若干像素组成,用模板中像素的均值来替

代原像素的值。如图 2.4所示,序号为0是当前像素,序号为1至8是邻近像素。求模板中所有像素的均值,再把该均值赋予当前像素点((x, y),作为处理后图像在该点上的灰度g(x,y),即

g(x,y)=^df 劭(2-2-2-1)

其中,s为模板,M为该模板中包含像素的总个数。

2?中值滤波

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。它的核心算法是将模板中的数据进行排序,这样,如果一个亮点(暗点)的噪声,就会在排序过程中被排在数据序列的最右侧或者最左侧,因此,最终选择的数据序列中间位置上的值一般不是

噪声点值,由此便可以达到抑制噪声的目的。

取某种结构的二维滑动模板,将模板内像素按照像素值的大小进行排序,生成单调上升(或

下降)的二维数据序列。二维德中值滤波输出为

(2-2-2-2 )

其中,f(x,y) , g (x,y)分别为原图像和处理后的图像,w二维模板,k ,1为模板的长宽,Med为

取中间值操作,模板通常为 3 3、55区域,也可以有不同形状,如线状、圆形、十字形、

圆环形。

2.4本章小结

本章主要介绍了图像几何畸变校正和图像噪声抑制两种图像预处理

第三章图像配准算法

3.1图像配准的概念

图像配准简而言之就是图像之间的对齐。图像配准定义为:对从不同传感器或不同时间或

不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程。为了更清楚图像配准的任务,我们将图像配准问题用更精确的数学语言描述出来。配准可以用描述为如下的问题:

给定同一景物的从不同的视角或在不同的时间获取的两个图像I ,1和两个图像间的相似度

量S(I ,I ),找出I ,I中的同名点,确定图像间的最优变换T,使得S(T(I ),I )达到最大值。

图像配准总是相对于多幅图像来讲的,在实际工作中,通常取其中的一幅图像作为配准的

基准,称它为参考图,另一幅图像,为搜索图。图像配准的一般做法是,首先在参考图上选取以某一目标点为中心的图像子块,并称它为图像配准的模板,然后让模板在搜索图上有秩序地

移动,每移到一个位置,把模板与搜索图中的对应部分进行相关比较,直到找到配准位置为止。

如果在模板的范围内,同一目标的两幅图像完全相同,那么完成图像配准并不困难。然而, 实际上图像配准中所遇到的同一目标的两幅图像常常是在不同条件下获得的,如不同的成像

时间、不同的成像位置、甚至不同的成像系统等,再加上成像中各种噪声的影响,使同一目标的两幅图像不可能完全相同,只能做到某种程度的相似,因此图像配准是一个相当复杂的技术过程。

3.2基于区域的配准

3.2.1逐一比较法

设搜索图为s待配准模板为T,如图3.1所示,S大小为M N , T大小为U V,如图所示。

3.1搜索图S 与模板T 示意图

逐一比较法的配准思想是 :

在搜索图S 中以某点为基点(i,j),截取一个与模板 T 大小一样的分块图像,这样的基点有 (M-U+1) il (N-V+1)个,配准的目标就是在(M-U+1) (N-V+1)个分块图像中找一个与待配准 图像最相似的图像,这样得到的基准点就是最佳配准点。

设模板T 在搜索图s 上移动,模板覆盖下的那块搜索图叫子图

S ,(i,j)为这块子图的左上角

点在S 图中的坐标,叫做参考点。然后比较T 和S 1」的内容。若两者一致,则T 和之 差为零。在现实图像中,两幅图像完全一致是很少见的,一般的判断是在满足一定条件下,

a h

T 和S 之差最小。

根据以上原理,可采用下列两种测度之一来衡量 T 和S 的相似程度。

窗口越匹配。

式中等号右边第三项表示模板总能量,是一常数,与 (i,j)无关;第一项是与模板匹配区域的

能量,它随((i,j)的改变而改变,当 T 和S 匹配时的取最大值。因此相

关函数为:

V

z

— … PT

】(m,n)-T(m,n)] ?

D(i,j)

(3-1)

?

z S n in

-

D(i,j)

=

1

(3-2)

或者利用归一化相关函数。将式

(3-1)展开可得:

U

11

V

1

I I I E

I s

D(i,j)=

[S (m,n)] -2 J*-1—— S (m,n )*T(m, n)+ 丨7 [T(m, n)] (3-3) 捜索冬s

https://www.docsj.com/doc/7e3956881.html,

D(i,j)的值越小,则该

X

Z Z L 何qvo”)

根据Cauchy-Schwarz 不等式可知式(3-5)中01 R(i,j) _ 1,并且仅当值 S (m, n)/T (m, n)=常数 时,R(i,j)取极大值。 该算法的优点:

(1) 算法思路比较简单,容易理解,易于编程实现。

⑵选用的模板越大,包含的信息就越多,匹配结果的可信度也会提高,同时能够对参考 图像进行全面的扫描。 该算法的缺点: (1)

很难选择待配准图像分块。因为一个如果分块选择的不正确,

缺少信息量,则不容易 正确的匹配,即发生伪匹配。同时, 如果分块过大则降低匹配速度,如果分

块过小则容易降 低匹配精度。?

(2) 对图像的旋转变形不能很好的处理。算法本身只是把待配准图像分块在标准参考图像 中移动比较,选择一个最相似的匹配块,但是并不能够对图像的旋转变形进行处理, 因此对

照片的拍摄有严格的要求。

3.2.2分层比较法

图像处理的塔形(或称金字塔:Pyramid)分解方法是由Burt 和Adels on 首先提出的,其早 期主要用于图像的压缩处理及机器人的视觉特性研究。 该方法把原始图像分解成许多不同空

间分辨率的子图像,高分辨率 (尺寸较大)的子图像放在下层,低分辨率 (尺寸较小)的图像放

在上层,从而形成一个金字塔形状。

在逐一比较法的思想上,为减少运算量,弓I 入了塔形处理的思想,提出了分层比较法。禾U 用图像的塔形分解, 可以分析图像中不同大小的物体。同时, 通过对低分辨率、尺寸较小的 上层进行分析所得到的信息还可以用来指导对高分辨率、 尺寸较大的下层进行分析,从而大

大简化分析和计算。在搜索过程中,首先进行粗略匹配,每次水平或垂直移动一个步长,计 算对应像

素点灰度差的平方和,

记录最小值的网格位置。其次,以此位置为中心进行精确匹

配。每次步长减半,搜索当前最小值,循环这个过程,直到步长为零,最后确定出最佳匹配

算法的具体实现步骤如下

(3-4)

R(i,j)=

3S-1

亠1

<嵌」

(3-5)

图像记忆的原理和方法[图像拼接原理及方法]

图像记忆的原理和方法[图像拼接原理及方法] 第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR )成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR 从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说

360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和 仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键 环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

360°全景拼接技术简介

本文为技术简介,详细算法可以参考后面的参考资料。 1.概述 全景图像(Panorama)通常是指大于双眼正常有效视角(大约水平90度,垂直70度)或双眼余光视角(大约水平180度,垂直90度),在一个固定的观察点,能够提供水平方向上方位角360度,垂直方向上180度的自由浏览(简化的全景只能提供水平方向360度的浏览),乃至360度完整场景范围拍摄的照片。 生成全景图的方法,通常有三种:一是利用专用照相设备,例如全景相机,带鱼眼透镜的广角相机等。其优点是容易得到全景图像且不需要复杂的建模过程,但是由于这些专用设备价格昂贵,不宜普遍适用。二是计算机绘制方法,该方法利用计算机图形学技术建立场景模型,然后绘制虚拟环境的全景图。其优点是绘制全景图的过程不需要实时控制,而且可以绘制出复杂的场景和真实感较强的光照模型,但缺点是建模过程相当繁琐和费时。三是利用普通数码相机和固定三脚架拍摄一系列的相互重叠的照片,并利用一定的算法将这些照片拼接起来,从而生成全景图。 近年来随着图像处理技术的研究和发展,图像拼接技术已经成为计算机视觉和计算机图形学的研究焦点。目前出现的关于图像拼接的商业软件主要有Ptgui、Ulead Cool 360及ArcSoft Panorama Maker等,这些商业软件多是半自动过程,需要排列好图像顺序,或手动点取特征点。 2.全景图类型: 1)柱面全景图 柱面全景图技术较为简单,发展也较为成熟,成为大多数构建全景图虚拟场景的基础。这种方式是将全景图像投影到一个以相机视点为中心的圆柱体内表面,

视线的旋转运动即转化为柱面上的坐标平移运动。这种全景图可以实现水平方向360度连续旋转,而垂直方向的俯仰角度则由于圆柱体的限制要小于180度。柱面全景图有两个显著优点:一是圆柱面可以展开成一个矩形平面,所以可以把柱面全景图展开成一个矩形图像,而且直接利用其在计算机内的图像格式进行存取;二是数据的采集要比立方体和球体都简单。在大多数实际应用中,360度的环视环境即可较好地表达出空间信息,所以柱面全景图模型是较为理想的一种选择。 2)立方体全景图 立方体全景图由六个平面投影图像组成,即将全景图投影到一个立方体的内表面上。这种方式下图像的采集和相机的标定难度较大,需要使用特殊的拍摄装置,依次在水平、垂直方向每隔90度拍摄一张照片,获得六张可以无缝拼接于一个立方体的六个面上的照片。这种方法可以实现水平方向360度旋转、垂直方向180度俯仰的视线观察。 3)球面全景图 球面全景图是指将源图像拼接成一个球体的形状,以相机视点为球心,将图像投影到球体的内表面。与立方体全景图类似,球面全景图也可以实现水平方向360度旋转、垂直方向180度俯仰的视线观察。球面全景图的拼接过程及存储方式较柱面全景图大为复杂,这是因为生成球面全景图的过程中需要将平面图像投影成球面图像,而球面为不可展曲面。因此这是一个平面图像水平和垂直方向的非线性投影过程,同时也很难找到与球面对应且易于存取的数据结构来存放球面图像。目前国内外在这方面提出的研究算法较其他类型全景图少,而且在可靠性和效率方面也存在一些问题。 3.主要内容

图像拼接算法及实现.doc

图像拼接算法及实现(一) 来源:中国论文下载中心 [ 09-06-03 16:36:00 ] 作者:陈挺编辑:studa090420 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this paper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration. Key words: image mosaic, image registration, image fusion, panorama 第一章绪论

图像拼接论文

基于特征点的图像拼接算法研究指导教师: 学生姓名:学号: 专业:计算机技术 院(系):信息工程学院 完成时间:2013年11月

摘要: 图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接的过程由图像获取,图像配准,图像合成三步骤组成。其中图像配准是整个图像拼接的基础。本文研究了基于特征图像配准算法。 利用基于特征Harris角点检测算法提取出初始特征点对,实现实现特征点对的精确匹配。最后用加权平均对实现图像融合。实验证明该算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。同时该算法准确率高,鲁棒性强,具有较高的使用价值。 关键词::图像拼接图像配准特征点图像合成

Abstract: Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other,and finally builds a seamless and high quality image which has high resolution and big eyeshot.The image mosaic process consists of the following steps.Image acquisition,image registration,image fusion.fusion.Image registration is the important foundation of image mosaic.This article has studied a image registration algorithrm feature-based image registration algorithm. Firstly,corners are extracted using improved Harris operator to extract the initial feature point pairs.Then,the correct matching feature point pairs are used to realize the image registration.Finally,use the Weighted Average Fusion Rule to fuse the images.The experiment results indicate this algorithmhas better registration results under a variety of conditions such as different light,bigger rotation and repetitive texture.At the same time,this algorithm has good effect in image registration,high accurate rate,strong robustness,higher use value. Key words:Image mosaic Image registration Feature points Image fusion

图像匹配与拼接方法

图像匹配与拼接 分匹配和拼接两部分 一、匹配 当然匹配的方法,有sift,surf什么的,这里主要就介绍一下我自己的方法啦! 特征点提取是必须的,不然搜索范围太大哇!并且可能不可靠,所以特征点提取是必须的。什么点适合做特征点呢?这方面的论文很多啦,主要还是看你用什么方法匹配了,如果是用互相关作为相似性准则的话,那自相关系数随各个方向变化大的点就适合作特征点了,当然还要考虑稳定性,即特征点应该不太受光照、噪声、缩放、旋转等的影响,这样的才是好的特征点。当然,如果确定了应用坏境,不一定要满足不受上四个因素影响的,比如平行的双目匹配、全景图的匹配等,具体问题具体分析吧!角点特征是个人比较喜欢的特征。这里我自己定义了一种局部特征,效果还行,匹配采用互相关为准则的匹配,大概效果如下: 目测这几个匹配点还是正确的哇!在一些应用中,可能需要的匹配点数相当多,这就需要较密集的匹配了。密集的匹配可以根据初始的匹配结果估计搜索范围,这可以加速搜索,同时也要提取更多的特征点呀!话不多说了,下面是密集的匹配:

虽然这样的密度对于三维重构来说还不够,但对于一般的图像拼接来说足够了。匹配完了,下面就要将第二步了。 二、矫正 匹配好两幅图像了,接下来干啥呢?把它们对准呗。可惜了,两幅图像之间不但存在平移,还存在旋转缩放什么的,更复杂的,可能还存在所谓的3D变换,那就复杂啦!不管怎么样,所谓的对准,也就是矫正,总是基于一定的模型的,即基于相机拍摄两幅图像的相对姿态。对于全景图拼接(个人觉得是最简单的且较实用的拼接),需要根据相机焦距或者视场角投影到柱面上,然后两幅图像间的位置就只有一维的平移关系了。但是这对拍摄的相机也是有要求的,就是要保证拍摄两幅图像时,物防焦点是重合的,这样才能根据稀疏的几个点确定所有重叠区域内点的相对位置呀!但实际中很难做到物方焦点重合,比如数码相机或者所谓的智能手机的全景图拍摄,一般人都是拿着相机或者手机绕人旋转,而非绕物方焦点旋转拍摄的,这样拼接起来是绝对有误差的呀!特别是拼接近景,误差就更大了,远景还好。怎么克服这个缺点呢?简单的改进方法就是绕着摄像头旋转吧,虽然这也不是严格绕物方焦距旋转,但起码误差小得多啦,拼接的效果当然也就好得多了,可以试一试哦! 不扯了,第二种模型就是认为两幅图像间存在的变换关系是有2D旋转、缩放、平移的,可以通过一个旋转、缩放、平移矩阵来矫正,这个也不难,但是应用范围却相当有限,不详说了。 第三种模型就是不用模型,或者说认为两幅图像间的对应点存在的是一种线性变换关系,这样只要解一个线性方程组就可以了,似乎也挺简单的。但可惜的是,不是任给的两幅图像间都只存在线性变换呀!它可能是一个3D的线性变换,那就麻烦了,这个必须需要密匹配呀!不然就一定是有误差的,即不能通过稀疏的匹配点来矫正两幅图像的所有对应点的。 还有更多的模型,比如各方位的全景图,需要投影到球面上的哇!不过这个模型也不难。最难的当然是拍摄两幅图像时,相机不同,相机姿态也不同了,这个是很有挑战的,我也很惧怕这个。下面展示三种矫正结果: 1、2D线性模型: 2D矫正,认为匹配点之间存在线性变换,X=ax+by+c,Y=dx+ey+e这样的模型,业内称之放射变换,其中x,y是第一幅点的坐标,X,Y是对应的第二幅图像中的点坐标,使用最小二乘法计算a、b、c、d、e、f,第二幅图相对于第一幅图矫正的结果就是这样的了

基于经验模态分解的图像融合研究

基于经验模态分解的图像融合研究 图像融合是对不同渠道摄取的同一景物的多幅图像进行处理,以得到更清晰更实用的图像的过程。它是图像处理过程中的一个重要环节,比如图像拼接就离不开图像融合,因而研究图像融合具有一定的现实和理论意义。目前,以小波分析为代表的多分辨率图像融合技术是一个研究热点,但小波基函数的选取是小波分析的难点,也是小波分析这种信号分析方法的最大瓶颈。经验模态分解则能突破这种障碍,它根据自身的特性自适应的进行信号分解,显示出极大的优越性。把经 验模态分解用于图像融合,取得了良好的效果。 标签:图像融合;多分辨率分析;经验模态分解;固有模态函数 1 引言 数字图像融合(Digital Image Fusion)是以图像为主要研究内容的数据融合技术,是把来自不同时刻或不同成像设备对同一目标检测的多幅图像数据采用某种方法进行处理,生成一幅能够有效表示出该图像检测信息的图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术处理后可以获取对同一场景的更为精确、更为全面、更为可靠的图像描述。正是由于这一特点,图像融合作为信息融合的一种有力工具,已广泛地应用于军事、遥 感、机器人视觉和医学图像处理等领域。 图像融合包含图像配准和无缝合成两个部分。由于成像时受到各种变形因素的影响,得到的各幅图像间存在着相对的几何差异,所以需要对待融合的图像进行配准。图像配准是通过数学模拟来对图像间存在着的几何差异进行校正,把相邻两幅图像合成到同一坐标系下,并使得相同景物在不同的局部图像中对应起来,以便于图像无缝合成。图像配准之后,在某些情况下,由于拍摄时光照、环境条件(如噪声、云、烟雾、雨等)、视野、地点的差异,两幅待拼接图像地重叠区域可能会有较大的差别。如果直接对这样的图像进行简单的叠加拼合,得到的拼接图在拼接位置上会存在明显的接缝以及重叠区域的模糊和失真现象。因此需要一种技术 修正待拼接图像拼接缝附近的颜色值,使之平滑过渡,实现无缝合成。 根据图像的表征层来划分,图像融合可分为三类:像素级融合、特征级融合和决策级融合。常用的融合方法有HIS融合法、KL变换融合法、高通滤波融合法、样条变换融合法、金字塔变换融合法、小波变换融合法等,尤其是多分辨率分析方法(金字塔变换,小波变换等)具有明显的优势。小波变换融合算法主要是利用人眼对局部对比度的变化比较敏感这一事实,根据一定的融合规则,在多幅原

图像拼接算法及实现(一).

图像拼接算法及实现(一) 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this

图像拼接技术的研究历史悠久

图像拼接技术的研究历史悠久。早期用于航空遥感照片合成,由于飞机或卫星上相机和地面景物之间距离很远,这种图像配准采用简单的模板匹配法。这种方法在现在也有广泛应用,可应用于航空图片合成、大文档扫描合成,视频压缩。在20世纪90年代随全视函数、全景建模、光场与光照图、同心拼图、全景图概念的提出,模型维数不断下降。自1994年Chen等人提出全景图拼接技术,国内外出现很多关于全景图生成技术的文章。 全景图生成技术的基本思想是通过普通相机或摄像机对场景信息进行照片图像或视频图像采样,在固定的视点,使相机在水平面内旋转一周拍摄场景,得到一组具有重叠区域的连续环视图像序列:将图像由相机坐标投影到空间坐标:利用图像配准方法寻找将环绕一周的这组图像中,两两相邻的图像间的重叠的区域;将确定的重叠区域利用图像融合方法进行图像序列的无缝拼合,得到一幅全景图像。全景图像根据其选取视点空间的不同可分为:平面、柱面、球表面、立方体表面。 目前图像配准的研究方法主要集中为基于灰度相关的方法、相位相关法、基于特征的方法。基于灰度相关方法的计算量较大,很多力求缩小模版配准计算量的改进算法被提出来。国防科大开发的HVS系统,采用的是一种基于特征线段的图像匹配算法。封静波提出相似曲线的拼接算法通过匹配两幅图像重叠区域每列梯度最大值曲线完成拼接,大大减少了传统模板匹配方法的计算量。薛峰综合基于灰度相关和特征相关算法的优点提出了基于最大梯度和灰度相关的两步配接方法。于乱采用形状模板对模板内图像的边缘点与模板边界的最短距离统计实现特征点匹配。李文辉提出采用基于粒子群优化(POS)的多分辨率算法。 1975年相位相关法由Kuglin和Hines提出,具有场景无关性,能够对纯粹二维平移的图像精确地对齐。DeCastro和Morandi发现用傅立叶变换确定旋转对齐就像平移对齐一样。Reddy和Chatterji改进了Decastro的算法,大大减少了需要转换的数量。张世阳采用了基于2幂子图像的FFT对齐方法,从而减小了FFT的计算量加快图像对齐速度和减小图像间重叠率。吴飞采用基于快速傅立叶变换的图像配准算法求取两相邻视频帧之间的配准系数。 基于特征的图像对齐典型的是基于图像几何特征的对齐方法。几何特征分为低级的 学硕士学位论文基于特征点的嘴卜任曰生成执术的研究 特征,如边、角和高级特征如物体的识别、特征之间的关系。文(34)通过二维高斯模 糊过滤可以得到一些低级特征模型,如边模型、角模型和顶点模型。因为角模型提供了 比坐标点更多的信息,文〔35)中基于几何角模型提出了图像对齐算法,文〔36〕中基 于几何点特征优化匹配和文(37)中利用小波变换提取保留边(。dge一preserving)的视 觉模型进行图像对齐。基于高级特征的图像对齐利用低级特征之间的关系或者通过识别 出的物体实现对齐。文(38)利用特征图像关系图进行图像对齐。而如何选择特征是其 中的关键技术,许多研究人员也在从事这方面的究,如提取特征点算子:Morave。算子〔3,,、Forstner算子〔‘0,、susan算子〔“,、HarriS算子〔‘,,,sIFT算子〔‘3,等。边缘检测算 子:Canny算子〔44]、LoG〔46]算子等。此外用于提高特征点配准精度的算法很多,赵炫利用 概率模型理论精确特征点的匹配〔46]。胡社教提出利用KLT跟踪算法精确确定角点位置,提高变换矩阵的求解精度〔4v]。李寒通过引导互匹配及投票过滤方法提高特征点的检测精度〔#8]。赵辉采用相位相关法进行自动排序的特征角点匹配算法〔49]。

基于特征点的全自动无缝图像拼接方法

-2083- 0引言 图像拼接是计算机视觉领域的一个重要分支。它是一种将多幅相关的重叠图像进行无缝拼接从而获得宽视角全景图像的技术。近年来,国内外对于图像拼接各细节的研究已取得了一些成果[1~3],但对于尺度、视差及光照变化较大的图像序列的拼接效果还有待提高。此外,目前对于完整的全自动无缝图像拼接技术的研究还较少。针对以上现状,本文给出了一种基于特征点的全自动无缝图像拼接方法。该方法依据图像拼接过程中各阶段涉及的理论与技术,利用RANSAC (ran-dom sample consensus )算法、引导互匹配、加权平滑算法等技术克服了传统图像拼接技术中的局限性(如光照、尺度变化的影响等),实现了光照和尺度变化条件下的多视角无缝图像拼接。 1拼接方法的总体设计 文中的图像拼接技术包括4大部分:图像获取;特征点提 取与匹配;图像配准;图像融合。各部分均采用了当前图像处理领域的先进算法,并使用相应的精炼技术对各部分的处理结果进行优化,以达到较理想的拼接效果。整个技术的实现 流程如图1所示。 2图像获取 图像获取是实现图像拼接的前提条件。不同的图像获取 方法会得到不同的输入图像序列,并产生不同的图像拼接效果。目前,获得图像序列的方法主要有3种[4]:①照相机被固定在三脚架上,通过旋转照相机获取图像数据;②照相机固定在可移动平台上,通过平行移动照相机获取图像数据;③手持 收稿日期:2006-04-20E-mail :lihan409@https://www.docsj.com/doc/7e3956881.html, 作者简介:李寒(1981-),女,辽宁沈阳人,硕士研究生,研究方向为数字图像处理;牛纪桢,女,副教授,研究方向为计算机应用;郭禾,男,副教授,研究方向为数字图像处理、计算机应用。 基于特征点的全自动无缝图像拼接方法 李 寒,牛纪桢,郭禾 (大连理工大学计算机科学与工程系,辽宁大连116023) 摘 要:提出了一种基于特征点的全自动无缝图像拼接方法。该方法采用对于尺度具有鲁棒性的SIFT 算法进行特征点的提取与匹配,并通过引导互匹配及投票过滤的方法提高特征点的匹配精确度,使用稳健的RANSAC 算法求出图像间变换矩阵H 的初值并使用LM 非线性迭代算法精炼H ,最终使用加权平滑算法完成了图像的无缝拼接。整个处理过程完全自动地实现了对一组图像的无缝拼接,克服了传统图像拼接方法在尺度和光照变化条件下的局限性。实验结果验证了方法的有效性。关键词:图像拼接;SIFT 特征点;引导互匹配;随机抽样一致算法;变换矩阵中图法分类号:TP391 文献标识码:A 文章编号:1000-7024(2007)09-2083-03 Automatic seamless image mosaic method based on feature points LI Han, NIU Ji-zhen, GUO He (Department of Computer Science and Engineering,Dalian University of Technology,Dalian 116023,China ) Abstract :An automatic seamless image mosaic method based on feature points is proposed.First a scale-invariant feature extracting algorithm SIFT is used for feature extraction and matching.In order to improve the accuracy of matching,guided complementary matching and voting filter is used.Then,the transforming matrix H is computed with RANSAC algorithm and LM algorithm.And finally image mosaic is completed with smoothing algorithm.The method implements automatically and avoids the disadvantages of tra-ditional image mosaic method under different scale and illumination conditions.Experimental results show that the image mosaic method is stable and effective. Key words :image mosaic;SIFT features;guided complementary matching;RANSAC algorithm;transforming matrix 图1图像拼接技术流程 图像融合图像配准(计算H )特征点提取与匹配 图像获取 H=

基于MATLAB的图像拼接技术

基于MATLAB的图像拼接技术 基于MATLAB的图像拼接技术实验报告 学院:数信学院 专业班级: 12级信息工程1班 姓名学号: 一、实验名称:基于MATLAB的图像拼接技术 二、实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。 三、实验原理: 基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频 域上是相位相关特点来找到特征位置,从而进行图像拼接。其基本原理是 基于傅氏功率谱的相关技术。该方法仅利用互功率谱中的相位信息进行图 像配准,对图像间的亮度变化不敏感,而且所获得的相关峰尖突出,具有 一定的鲁棒性和较高的配准精度。 基于相位相关法进行图像拼接的基本原理如下:假设f(x,y)表示尺寸为MN的图像,该函数的二维离散傅里叶变换(DFT)为: , MN,,111,,,juxMvyN2(//) Fuvfxye,(,)(,),,MN,xy,,00 其中,F(u,v)是复变函数;u、v是频率变量,u=0,1,…,M-1,v=0,1,…,N-1;x、y是空间或图像变量。 二维离散傅里叶逆变换(IDFT)为: N,1M,1,,juxMvyN2(//),fuve(,) Fxy(,),,,y,0x,0 ,…,M-1;y=0,1,…,N-1。其中,x=0,1 设两幅图像、的重叠位置为(,),则图像、的互功率谱为:IIxyII112002 *II(,)(,),,,,,,,jxy,,,2()1200 ,eII(,)(,),,,,,12

其中,*为共轭符号,对上式两边进行傅里叶逆变换将在(x,y)处产生一00个函数。因此,只要检测上式傅里叶逆变换结果最大值的位置,就可以获得两xy幅图像间的评议量(,。具体算法步骤如下: 00 II?读入两幅图片、(函数输入),并转换为灰度图像; 12 II?分别对、做二维傅里叶变换,即: 12 fftIfftI A=() B=() 1222 C则通过A、B的简单的矩阵运算得到另一矩阵,即: 3 C =B*.conj(A)/norm(B*.conj(A),1) 3 矩阵的二维傅里叶逆变换C在(,)处取得最大,可通过遍历比较C(i,Cxy300 j)大小即可找到该位置,并作为函数返回值。 四实验程序 tic x=[1 2;0 1]; a=imread('7.jpg'); %读取图片 b=imread('8.jpg'); figure imshow(a); figure imshow(b); imwrite(b,'160.jpg'); IMG={a,b}; %将图片存为元胞结构 num=size(IMG,2); %计算图片个数 move_ht=0; %累计平移量初值 move_wd=0; for count=1:num-1 input1=IMG{count}; %读取图象 input11=imresize(rgb2gray(input1),[300,200]);

相关文档