文档视界 最新最全的文档下载
当前位置:文档视界 › 关于定向井钻井轨迹控制技术的探讨

关于定向井钻井轨迹控制技术的探讨

关于定向井钻井轨迹控制技术的探讨
关于定向井钻井轨迹控制技术的探讨

关于定向井钻井轨迹控制技术的探讨

发表时间:2019-03-28T14:41:36.220Z 来源:《基层建设》2018年第35期作者:张宝继

[导读] 摘要:对于石油天然气的开采来说,钻井是其开采的重要手段。然而在庞大的钻井技术体系中,定向钻井技术在钻井技术体系中占有十分重要的地位。

大庆钻探工程公司钻井三公司15547钻井队

摘要:对于石油天然气的开采来说,钻井是其开采的重要手段。然而在庞大的钻井技术体系中,定向钻井技术在钻井技术体系中占有十分重要的地位。由于定向钻井技术可以在复杂的地形的环境条件下进行,因而这一特性决定了定向钻井技术在实际的操作中在保持井眼的稳定,井眼的轨迹控制等方面要做到十分的精确。可以说定向钻井技术的成败在于如何在施工中井眼轨道的设计以及井眼轨迹的控制。本文就定向井钻井轨迹控制技术进行论述。

关键词:定向井;井眼轨迹;关键技术

前言

定向钻井就是使井身沿着预先设计的井斜和方位钻达目的层的钻井方法。定向钻井技术是当今世界石油勘探开发领域最先进的钻井技术之一,它是由特殊井下工具、测量仪器和工艺技术有效控制井眼轨迹,使钻头沿着特定方向钻达地下预定目标的钻井工艺技术,目前在油田开发中广泛使用。采用定向钻井技术可以使地面和地下条件受到限制的油气资源得到经济、有效的开发,能够大幅度提高油气产量和降低钻井成本,有利于保护自然环境,具有显著的经济效益和社会效益。

一、科学进行定向井井眼轨迹和轨道设计

1、定向井井眼轨迹的优化设计技术

井眼轨迹的剖面设计是定向井钻井施工的基础,只有不断优化完善井眼轨迹设计,保证井眼轨迹设计的科学性、合理性,才能确保定向井钻井实现预期目标。在定向井井眼轨迹剖面优化设计中,要坚持一定的原则:要以实现定向井钻井地质目标为原则,定向井钻井的地质目标很多,包括穿越多个含油地层提高勘探开发效果、避开地层中的断层等地质构造从而实现对地下剩余油气储层的有效开采、实现油井井眼轨迹在油气储层目的层的大范围延伸以增加油气藏的裸露面积等,同时,因为钻井或油气开采中发生事故导致无法正常开采的油井,可以通过定向井实现对油气储层的侧钻来达到开采目的,存在地面障碍物无法进行正常钻井的区域也可以通过定向井来实现钻井开采的目的,为了节约钻井成本,还可以通过丛式平台定向井开发的方式来节省井场占地面积;要以高校、优质、安全钻井施工作为现场施工目的,在进行定向井井眼轨迹剖面设计时,结合所处区域的地质特征进行设计,选择在地层稳定、松软度适中的位置进行造斜,造斜点要尽量避开容易塌陷、缩径或漏失以及压力异常的地层层位进行,要将造斜段的井斜角控制在15°-45°之间,因为过大的井斜角会增加施工难度且易引发钻井事故,而过小的井斜角会造成钻井方位的不稳定性,增加调整次数,还有就是在造斜率的选择上,要综合考虑油井所处地层的地质状况和钻井工具的实际造斜能力,在满足定向井钻井目标的前提下尽量减小造斜率并缩短造斜段的长度,实现快速钻井的目的;要尽量满足后期采油和完井工艺实施的要求,在满足定向井钻井要求的前提下,尽量减小井眼的曲率,方便后期抽油杆和油层套管下井,同时减小二者之间的偏磨,方便后期改造安全采油泵等井下作业施工。

2、定向井钻井的轨道设计

根据定钻井的目的和用途不同,可以将定向井分为常规定向井、丛式井、大位移井等几种类型进行设计,常规定向井一般水平位移不超过1km、垂直深度不超过3km,丛式井可减小井场面积,大位移定向井的轨道一般采用悬链曲线轨道,在井眼轨迹上采用高稳斜角和低造斜率。我国定向井井眼剖面轨迹主要有“直―增―稳”三段制剖面、“直―增―稳―降”四段制剖面和“直―增―稳―降―直”五段制剖面三种类型,在具体设计时根据所在地层地质特征不同进行优化设计。三种井眼轨迹各有优缺点:三段制井眼轨迹造斜段短,设计和施工操作比较方便,在没有其他特殊要求时可以采用三段制轨迹剖面;四段制井眼轨迹剖面起钻操作时容易捋出键槽加大下钻的摩擦力,容易造成卡钻事故,且容易形成岩屑床,一般不会采用,只在特殊情况下使用;五段制井眼轨迹剖面在目的油气储层中处于垂直状态,有利于采油泵安全下入,且便于后期采油工艺的实现。

二、三段制定向井轨迹剖面钻井控制技术

基于三种不同类型轨迹剖面的优缺点,在现实中多应用三段制和五段制井眼轨迹剖面进行定向井钻井设计,而三段制井眼轨迹剖面最为常用,下面就对三段制定向井井眼轨迹钻井控制技术进行研究。

1、直井段的井眼轨迹控制技术

直井段的井眼轨迹控制技术主要是防斜打直,这是定向井轨迹控制的基础,因为地质、工程因素和井眼扩大等原因,直井段钻井中会发生井斜,地质因素无法控制,可通过在施工和井眼扩大两方面采取技术措施进行直井段钻井的轨迹控制,关键要选择满眼钻具和钟摆钻具组合进行直井段钻井,前者可以在钻井中防止倾斜,将扶正器与井壁尽量靠近,就可以有效防止井斜问题出现;钟摆钻具的工作原理是超过一定角度后会产生回复力,具有纠正井斜问题的作用,但要保证钻压适量,因为钻压过大会使钟摆力减小而增斜力增大,妨碍纠斜效果。

2、造斜段的井眼轨迹控制技术

在定向井钻井中,造斜段钻井是关键部位,造斜就是从设计好的造斜点开始,使钻头偏离井口铅垂线而进行倾斜钻进的过程,关键是要让钻头偏离铅垂线开始造斜钻进。要根据设计好的井眼轨迹,综合井斜角、方位偏差来计算造斜率,以此指导造斜钻井施工,通过增加钻铤等措施,调整滑动钻进和复合钻进的比例,从而使钻头按照设计的井眼轨迹进行钻进,指导造斜段完成。

3、稳斜段的井眼轨迹控制技术

造斜段完成后,需要进行稳斜段的钻井施工,在稳斜段的钻进中,要选用无线随钻测井仪器对钻头的工作进程进行动态跟踪,实时监测钻头的实际井斜角、方位角偏离情况并与设计值进行对比,确保钻头中靶。在没有无线随钻测井仪器的情况下,需要通过稳斜钻具组合进行钻井,并应用单、多点测斜仪进行定点测斜,从而保证井眼中靶,提高钻井质量。

三、结论

定向钻井技术现在已经得到了广泛的应用,并在石油行业中占据了较高的地位。它的出现解决了以往很多较复杂油藏开采困难的问题,提高了油田的开发效率。但是仍不能完全满足人们对油气资源的需求。

钻井工程技术规范

Q/YCZJ 延长石油油气勘探公司企业标准 钻井工程技术规范 油气勘探公司钻井工程部

目录 前言V 1范围 1 2规范性引用文件 1 3钻前基建工程 2 3.1井位勘定 2 3.2井场布置 2 3.3井场土建工程 3 4公路工程 4 5验收 4 6钻井设备的安装与调试 5 6.1水电安装 5 6.2机械设备安装 5 6.3井架安装与起升7 6.4电气设备的安装及调试8 6.5气控系统安装要求9 6.6顶驱安装、调试、使用9 7钻井环境安全要求1 1 8钻进作业1 2 8.1钻进1 2 8.2井身质量控制1 3 8.3取心1 4 8.4起下钻、接单根1 6 8.5钻头18 8.6钻具19 8.7钻具探伤、试压、倒换、错扣检查制度20 8.8螺杆钻具20 8.9钻井仪表的使用与维护2 1 9固井2 1 9.1固井设计2 1 9.2固井准备2 3 9.3下套管2 6 9.4注水泥施工2 6 9.5尾管固井27 9.6分级固井27 9.7环空蹩回压候凝28 9.8固井后期工作28 9.9套管试压28 9.10固井质量标准28 10钻井液29 10.1井场钻井液实验室29 10.2钻井液材料存放场所3 1 10.3容器、设备3 1 10.4钻井液性能3 1 10.5钻井液的配制及维护处理3 2

10.6钻井液固相控制3 4 10.7井漏的防治措施3 4 10.8储层保护3 4 10.9钻井液材料使用及管理3 5 11井控3 5 11.1井控设计3 5 11.2井控装置安装、试压、使用及管理37 11.3钻开油气层前的准备和检查验收4 2 11.4钻井及完井过程中的井控作业47 11.5溢流的处理和压井作业50 11.6防硫化氢安全措施5 1 11.7井喷失控的处理5 4 12定向井、丛式井、水平井5 4 12.1设计原则5 4 12.2钻具组合5 4 12.3定向钻进5 6 13欠平衡钻井57 13.1适用条件57 13.2设计原则57 13.3井口装置及设备要求57 13.4施工准备57 13.5施工作业58 13.6欠平衡钻井作业终止条件59 14气体钻井59 14.1适用条件60 14.2设计原则60 14.3设备及场地要求60 14.4施工准备60 14.5施工作业6 1 14.6气体钻井作业终止条件6 2 14.7安全注意事项6 2 15中途测试6 3 15.1测试原则6 3 15.2施工设计6 3 15.3施工准备6 4 15.4施工作业6 5 15.5资料录取与处理67 15.6H S E要求67 16井下事故的预防和处理67 16.1卡钻67 16.2防断、防顿69 16.3防掉、防碰天车70 16.4防止人身事故7 1 16.5其它7 1 17完井和交井7 2 17.1完井质量要求7 2 17.2交井程序7 2 17.3交井资料7 3 附录A7 4 (规范性附录)7 4

定向井轨迹控制技术要求

定向井轨迹控制技术要求 1 范围 本标准规定了定向井轨迹控制技术,包括相关的准备、质量要求、施工方法、安全措施、资料的收集和整理等做法。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 SY/T 5088-93 评定井身质量的项目和计算方法 SY/T5416-1997 随钻测斜认错测量规程 SY 5472-92 电子陀螺测斜仪测量规程 SY/T 5619-1999 定向井下部钻具组合设计方法 SY/T 5955-1999 定向井钻井工艺及井身质量要求 3 定义 本标准采用下列定义。 3.1中靶targeting 实钻井眼轨迹进入预定的靶区。 3.2靶区target area 包括通常意义的靶圆以及地质规定的特殊目标范围。 3.3中靶预测target prediction 根据实钻井眼轨迹达到的位置及方向,对靶前待钻井眼的造斜率、方位调整率、井斜角和井斜方位角和长度进行预测。 4 准备 4.1钻机设备 4.1.1选用钻机类型的提升能力应不小于相同井深直井的钻机的1.3倍。 4.1.2钻井设备还应有:转盘扭矩仪、液压大钳、泵冲数表。 4.1.3安装质量按设计要求执行。 4.2钻具、工具和仪器 4.2.1使用的钻杆应比同类直井所用钻杆高一级。有条件的可使用18°斜台肩钻杆。 4.2.2钻杆内径应不小于56mm。 4.2.3钻铤、无磁钻铤、钻杆、稳定器和接头等下井前必须探伤。 4.2.4定向井专用钻具、工具配备见附录A(标准的附录)。 4.2.5测量仪器可选用单点、多点或有线随钻或无线随钻测斜仪或陀螺测斜仪。其尺寸大小依据井眼尺寸确定。有磁干扰的井段必须采用陀螺测斜仪。 4.2.6

定向钻井技术交流

定向钻井技术 在阜康煤层气示范工程中的应用 新疆煤田地质局一五六煤田地质勘探队 2014年11月20日

定向钻井技术在阜康煤层气示范工程中的应用刘蒙蒙(新疆煤田地质局一五六煤田地质勘探队) 摘要 探讨和总结定向技术在新疆阜康白杨河矿区煤层气开发利用先导性示范工程钻井工程中的应用,介绍定向设计,定向仪器工作原理及使用。由于地理条件、排采地面工程、节约成本、增加采收率的需要,示范工程大部分井设计为丛式井,也有两口L型井和一口U型对接井,加上地层倾角大地层造斜严重,所以为了达到设计要求必须引进定向钻井技术。本文主要从井眼轨迹设计、定向仪器、定向工艺、定向实例四方面进行介绍。 关键词:定向技术、钻井工程、定向仪器 阜康煤层气示范工程项目由156队承担施工,其中定向钻井由156队工程技术科参与施工3口,独立施工1口。156队工程技术科已培养出学习和应用掌握定向钻井的技术人员,具有基本的定向设计、定向施工、定向验收能力。 1 定向井眼轨迹设计 定向井眼轨迹的设计涉及的因素很多。为满足地质及生产的要求,设计需要选择合适的造斜点、造斜强度、最大井斜角、稳斜段长度;为了同井台以及相邻井台各井之间的防碰,需要选择合理的大门方向和做防碰设计。此外,造斜强度的选择要考虑钻具及套管的强度、摩阻。造斜点的选择必须深于表层套管一倍仪器另长的深度。根据造斜强度选择合理的钻具组合、不同弯度的螺杆钻具。最大井斜角过小稳斜段方位不易控制,最大井斜角过大对钻进、下套管、排采不利,同时增加造斜段工作量。 1.1 示范区井型简介 示范工程设计的丛式井、L型井以及U型对接井 图1-1 示范工程三段式、五段式、U型井轨迹示意图

ODP水平井轨迹控制

水平井井眼轨迹控制技术要点 底部钻具组合及钻柱设计 底部钻具组合设计 水平井底部钻具组合设计的首要原则是造斜率原则,保证设计组 合的造斜率打到设计轨道要求并有一定的余地; 设计水平井底部钻具组合时,要根据井底温度、最大排量、钻头 类型和钻头压降的不同来选择螺杆钻具; 底部钻具组合必须满足强度、可靠性的要求,并能处理井下事故。 钻柱设计 使用“倒装钻柱”; 为了防止卡钻事故,一般在钻柱中装震击器; 为了克服定向滑动时托压的困难,推荐在钻柱适当位置装水力振 荡器。 直井段轨迹控制技术要点 水平井直井段的井身轨迹控制原则是防斜打直。当钻至造斜点KOP时,如果直井段不直,不仅造斜点KOP处有一定井斜角而影 响定向造斜的顺利完成,还会因为上部井段的井斜造成的位移影响 下一步的井身轨迹控制。假如KOP处的位移是负位移,为了达到设 计要求,会造成在实际施工中需要比设计更大的造斜率和更大的最 大井斜角度,?如果是正位移情况恰好相反。如果KOP处的位移是

向设计方向两侧偏离的,就将一口两维定向井变成了三维定向井了,同时也造成下一步井身轨迹控制的困难。由于水平井的井身轨迹控 制精度要求高,所以水平井直井段的井斜及所形成的位移相对与普 通定向井来讲更加严重。 如果丛式井的直井段发生井斜,不仅会造成普通定向井中所存在 的危害,还会造成丛式井中两口定向井的直井段井眼相碰的施工事故,造成新老井眼同时报废。 在直井段钻进过程中根据实际情况及时进行井斜角的监测,发现 井斜立即采取措施,对于丛式井,为了方便下一步施工和具有较强 的对比性,建议使用陀螺测斜仪测取数据,以便和下一步施工井进 行数据对比。在中途监测过程中,如果发现井斜,根据实际井斜情况,可以采用减压吊打纠斜; 增斜段轨迹控制要点 对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和 水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设 计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接 影响到待钻井眼轨迹的中靶精度。 水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和 实践经验的基础上得出的,随着理性认识的深化和实践经验总结, 设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不 断提高。但是,由于井下条件的复杂性和多变性,这个符合程度总 是相对的。实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中、或滞后。

水平井

水平井 无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。 地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是: 井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。 对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中、或滞后。 实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是:①实钻轨迹点的位置超前,?相当于缩短了靶前位移。此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。②轨迹点位置适中,?若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。③轨迹点的位置滞后,?相当于加长靶前位移。此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。 实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新概念和实钻轨迹点的位置、点的井斜角大小对待钻井眼轨迹中靶的影响规律,将造斜井段井眼轨迹的控制程度限定在有利于入靶点矢量中靶的范围内。也就是说,在轨迹预测计算结果表明有余地、并有后备工具条件时,应当充分发挥动力钻具的一次造斜能力,以提高工作效率,减少起下钻次数。

定向井轨迹测量及方位控制

中国石油大学(钻井工程)实验报告 实验日期:2014.11.12 成绩: 班级:班学号:姓名:教师:郭辛阳 同组者: 定向井轨迹测量及方位控制 一.实验目的 1.直观认识井眼轨迹参数(井斜角、井斜方位角)及造斜工具姿态参数(重力工具面角、磁工具面角); 2.了解现场常用的电磁测斜仪的基本结构和测量原理,直观认识磁干扰现象; 3.掌握目前现场常用的随钻定向(或扭方位)操作方法。 4.定向(或扭方位)是指设法将实测的装置方位线转到校正方位线上(定向),或设定的装置方位线上(扭方位),钻井现场通常称之为摆工具面。 二.实验仪器 图1.电磁测斜仪 YSS-32测斜仪具有使用方便、准确、可靠性高等优点,是较好的油田钻井测斜仪器设备之一,其技术参数如下: (1)工作温度范围:6~105℃; (2)预热时间:30min; (3)存储点数:1455点; (4)电源:8节或4节2号碱性电池; (5)初始延时:1s~18h(连续可变); (6)测量间隔:5s~18h(连续可变); (7)测量精度见表1。 三.电磁测斜仪结构及工作原理 3.1 电磁测斜仪结构

电磁测斜仪(探管)是测量的核心部件,由测量头、电子柱和电池筒组成,如图2所示。其中,测量头有引入工具面基准的T形槽头和安装传感器的台体。台体上安装3个加速度计和3个磁通门,可以测量出重力场和地磁场在探管坐标系上的分量。 图2 YSS-32电子单多点测斜仪 加速度计是用来将输入速度变成与之对应的电压(或电流)或脉冲频率的传感器。其中,磁悬浮加速度计抗冲击能力较强、结构简单、精度适中的,在钻井测斜仪上被广泛采用。 图3磁液悬浮加速度计原理 磁通门又称磁通计,是将输入磁通转换成与之对应电压的传感器。 3.2 测量原理 3个加速度计和3个磁通门的输入轴分别平行于直角坐标系。设3个加速度计的重力场分别分量为gx,gy,gz;3个磁通门分量分别为Hx,Hy,Hz。

水平井轨迹控制技术汇总

SY/T6332 –1997 水平井轨迹控制技术 Bit tyajectory control technology for horizontal well 1 范围 本标准规定了水平井井眼轨迹控制技术的准备、施工、相关安全措施及资料的要求. 本标准适用于长、中半径水平井的施工。其它类型的特殊定向井亦可参照使用。 2 应用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效.所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 SY 5272-91 常规钻进安全技术规程 SY/T 5416-1997 随钻测斜仪测量规程 SY/T 5435-92 两维常规定向井轨道设计与轨迹绘图方法 SY 5472-92 电子陀螺测斜仪测量规程 SY 5547-92 井底动力钻具使用维修和管理 SY/T 5619-93 定向井下部钻具组合设计作法 3 定义 本标准采用下列定义。 3.1 广义调整井段generalized adjusting section

用于调整井眼轨迹的井段。可以是稳斜井段,也可以是曲率较小的增斜井段。 3.2 倒装钻具组合invert BHA 在钻大斜度井段和水平段时,为了给钻头加压,将部分重量较轻的钻具放到钻具组合下部,把钻铤、加重钻杆等较重的钻具放到直井段或较小井斜段的钻具组合。 3.3 中靶预测target prediction 根据实钻井眼轨迹到达的位置及方位,对中靶前待钻井眼的长度、位移、造斜率及方位调整量进行预测。 3.4 有线测量方式wireline survey method 特指在水平井施工中,采用有线测量仪分段测取大斜度或水平段已钻井段的轨迹所需的井斜、方位数据的测量方式。 4 井眼轨迹控制要求 4.1 直井段控制符合井身质量要求。 4.2 实际井眼轨迹到达靶窗时,在规定的靶窗内,其井斜、方位值还要满足在现有轨迹控制能力范围内确保轨迹在靶体中延伸的要求。 4.3 水平段轨迹应在设计要求的靶区范围之内。 5 准备 5.1 工具 5.1.1根据不同类型的水平井分别按附录A(标准的附录)和附录B (标准的附录)的要求准备。 5.1.2井底动力钻具的准备除符合SY 5547 的相关规定外,还应检

定向井轨迹测量及方位控制

中国石油大学()实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 定向井轨迹测量及方位控制 一、实验目的 1.直观认识井眼轨迹参数(井斜角、井斜方位角)及造斜工具姿态参数(重力工具面角、磁工具面角); 2.了解现场常用的电磁测斜仪的基本结构和测量原理,直观认识磁干扰现象; 3.掌握目前现场常用的随钻定向(或扭方位)操作方法。定向(或扭方位)是指设法将实测的装置方位线转到校正方位线上(定向),或设定的装置方位线上(扭方位),钻井现场通常称之为摆工具面。 二、实验原理 1.实验设备 1)YSS-32测斜仪具有使用方便、准确、可靠性高等优点,是较好的油田钻井测斜仪器设备之一,其技术参数如下: (1)工作温度范围:6~105℃; (2)预热时间:30min; (3)存储点数:1455点; (4)电源:8节或4节2号碱性电池; (5)初始延时:1s~18h(连续可变); (6)测量间隔:5s~18h(连续可变); (7)测量精度见表1;。 表1 电磁测斜仪测量精度 参数偏差 井斜INC ±0.2° 方位AZ ±2.0° 重力工具面角GTF(井斜>10°)±2.0° 磁工具面角MTF(井斜≤10°)±2.0° 图1 电磁测斜仪

2)电磁测斜仪结构 电磁测斜仪(探管)是测量的核心部件,由测量头、电子柱和电池筒组成,如图2所示。其中,测量头有引入工具面基准的T 形槽头和安装传感器的台体。台体上安装3个加速度计和3个磁通门,可以测量出重力场和地磁场在探管坐标系上的分量。 加速度计是用来将输入速度变成与之对应的电压(或电流)或脉冲频率的传感器。其中,磁悬浮加速度计抗冲击能力较强、结构简单、精度适中的,在钻井测斜仪上被广泛采用。 磁通门又称磁通计,是将输入磁通转换成与之对应电压的传感器。 2.测量原理 3个加速度计和3个磁通门的输入轴分别平行于直角坐标系。设3个加速度计的重力场分别分量为gx ,gy ,gz ;3个磁通门分量分别为Hx ,Hy ,Hz 。 图2 井斜角 z y x g g g 22arctan +=α 图3 重力工具面角 图4 磁工具面角 )a r c t a n ( y x g g G T F = ) arctan(y x H H MTF = 图5 井斜方位角

水平井工程设计及轨迹控制

水平井钻井工程设计及轨迹控制 一、水平井的概述: 八十年代中期以来,水平井技术在世界范围内取得了突飞猛进的进展,为提高勘探效果,提高单井产量和油层采收率,开辟了一条新的途径,给石油工业的发展带来了新的革命,胜利油田从1990年9月开始,以埕科1井为起点,展开了水平井研究与应用,针对各种类型油藏,如整合油藏、不整合油藏、稠油砾石油藏、低渗透块状砾石油藏、砂岩油藏、石炭系砂岩油藏、古潜山漏失型油藏等进行攻关研究。“八五”期间组织了六个油田、五个院校,762名科技人员,在水平井钻井的设计技术、轨迹控制技术、钻井液技术、完井技术及测井射孔技术的五个方面共31个专题进行了四年的攻关,在理论研究、实验技术、软件技术、工具仪器研制和工具方法等方面,取得了重大技术突破,包括了16项重大科技成果在内的30项技术成果,形成了一整套水平井钻井、完井技术,截止1995年7月项目提交国家鉴定时,胜利油田完成各类水平井30口。“八五”攻关计划完成后,水平井技术迅速转化为生产力,很快形成了大规模推广应用的局面。到1996年底我国陆上已完成水平井94口,推广面积达到13个油田,六种类型的油气藏。仅投产的47口科学实验水平井增产原油78吨,新增产值9.52亿元, 获直接经济效益6.46亿元。到98年底全国陆上油田已钻成水平井204口,其中胜利油田所钻井和以技术服务形式在外油田所钻水平井共计119口。更重要的是,“水平井是增加原油产量、提高采收率和开发特殊油藏最有效的手段之一”这一观点,得到了广大勘探开发工作者的共识,从而带动了与水平井有关的地质、油藏、采油工程等相关技术的发展,推动石油的科技进步。 自项目推广应用以来,应用的油藏类型逐步扩大,完成的水平井类型逐步增多。除本油田以外,先后应用到塔里木、长庆、吐哈、青海、中原、江汉、河南、大港、玉门、江苏等油田,以及江苏省洪泽县非石油行业的芒硝矿开采,完成了以水平探井、阶梯水平井、连通式水平井等为代表的12种类型水平井,其经济效益十分显著,所完成的开发井稳定产值为同地区直井的3倍,其投资仅为直井投资的1.8倍左右,1997年《石油水平井钻井成套技术》被列为国家”八2五”国民经济贡献巨大的十大攻关成果。 在油田的整体开发建设中显示出巨大的优越性:

井矿盐钻井技术规范(QBJ20387)

第二章钻机选型、土建工程及设备安装 第一节钻机选型原则 条按钻井目的、矿层埋藏深度、钻采方式、井身结构、技术措施,结合地形地貌、交通条件等因素综合进行钻机选型。注意其公称负荷,不得超载。 条采用涡轮钻进时,所选用的钻机必须满足其泵时和泵压的要求。 条使用喷射钻井时,所选用的钻机应满足喷射条件的要求;钻双筒井和多底井、定向井,应选择能安置双转盘或转盘可移动安装的钻机。 第二节土建工程 井场设计及布置 1、井场设计应根据钻机类型及施工要求确定井场面积和方向。 常用各型钻机的井场面积

2、3000米以内的钻机,宜使用组装式活动基础,其承压能力应能满足施工安全要求。 3、井场内应放坡1~3%,并有排水沟和排污池。 井场公路,应能满足钻井工程车和作业车辆的安全通行。 机泵房、值班房 无钻塔漨布的钻机、建井同期大于三个月或多雨地区,搭临时性棚房。 生活用房 施工期中,就近解决。按定额配备。

第三节安装 2.3.1 水、电、通讯 1.水源要可靠,供水能力应保证生产和生活用水。 2.井场电器设备和线路应合理布置。生产线路与生活线路分开;探照灯与其他灯分开。架线高度应保证汽车和特种车辆的通行。架空电力线与井架绷绳至少相距3米,并不得在绷绳上空交叉穿过。 3.通讯:井场和队(厂)部应有通讯联络。 2.3.2井架 钻机井架的主要部件不得有裂纹及严重锈蚀、变形、弯曲。井架螺栓、螺帽及弹簧垫圈必须安装齐全。井架底座四角高差不大于3毫米,活动基础高差不大于5毫米。井架绷绳数、直径、方向严格按各型井架出厂规定架设,用正反螺丝绷紧,与地面呈45°角。绷绳坑之大小及深度,根据井架负荷及土质差异地行计算后决定。使用基木的井架应安装避雷器。 2.3.3导管、鼠管 1、导管:松软地层埋导管,管坑深度不大于1米,坑底铺一层0.3米厚的混凝土。导管脚焊呈喇叭口,以免陷落及预防钻具碰挂,导管对中后外灌混凝土固定。导管采用套管或壁厚3毫米以上的螺旋

水平井井眼轨迹控制

水平井井眼轨迹控制 第一章水平井的分类及特点 (2) 第二章水平井设计 (4) 第三章水平井井眼轨迹控制基础 (8) 第四章水平井井眼轨迹控制要点 (13) 第五章水平井井眼轨迹施工步骤 (21)

第一章水平井的分类及特点 水平井的概念:是最大井斜角保持在90°左右(大于86°),并在目的层中维持一定长度的水平井段的特殊井(通常大于油层厚度的6倍)。 一、水平井分类 二、各类水平井工艺特点及优缺点

三、水平井的优点和应用 1、开发薄油藏油田,提高单井产量。

2、开发低渗透油藏,提高采收率。 3、开发重油稠油油藏,有利于热线均匀推进。 4、开发以垂直裂缝为主的油藏,钻遇垂直裂缝多。 5、开发底水和气顶活跃油藏,减缓水锥、气锥推进速度。 6、利用老井侧钻采出残余油,节约费用。 7、用丛式井扩大控制面积。 8、用水平井注水注气有利于水线气线的均匀推进。 9、可钻穿多层陡峭的产层。 10、有利于更好的了解目的层性质。 11、有利于环境保护。 第二章水平井设计 一、设计思路和基本方法: 简而言之,就是“先地下后地面,自下而上,综合考虑,反复寻优”的过程。

二、水平井靶区参数设计 与定向井不同,水平井的靶区一般是一个包含水平段井眼轨道的长方体或拟柱体。靶区参数主要包括水平段的井径、方位、长度、水平段井斜角、水平段在油藏中的垂向位置、靶区形状和尺寸。 1、水平段长度设计 设计方法:根据油井产量要求,按照所期望的产量比值(即水平井日产量是临近直井日产量的几倍),来求解满足钻井工艺方面的约束条件的最佳水平段长度值。约束条件主要有钻柱摩阻、扭矩,钻机提升能力,井眼稳定周期,油层污染状况等。 2、水平段井斜角的确定 应综合考虑地层倾角、地层走向、油层厚度以及具体的勘探开发要求。 βα±?=90H ,β为地层真倾角 当地层倾角较大而水平段斜穿油层时,则应考虑地层视倾角的影响,[])cos(90H H d tg arctg Φ-Φ-?=βα, d Φ为地层下倾方位角,H Φ为 水平段设计方位角 3、水平段垂向位置确定 油藏性质决定了水平段的设计位置。对于无底水、无气顶的油藏,水平段宜置于油层中部;对于有底水或气顶的油藏,水平段应尽量远离油水或气水边界;对于既有底水又有气顶的油藏,

控压钻井技术规程

控压钻井技术规程 一、打开油气层前准备 1、打开油气层前要进行控压技术交底(交底容:地质、工程、钻井液和井控装备、控压措施等方面);技术交底由钻井监督和地质监督组织,预测地层硫化氢含量高地层压力异常井有有项目部井控专家组织,井队、录井、泥浆、控压、定向井及井控专家等相关人员参加,可以在钻开油气层验收时进行。交底要以本井钻井、地质设计和本井实际情况为依据,全面分析可能存在的井控风险,制定有针对性的技术措施和应急预案,并形成本井控压钻井作业指令书由井队遵照执行。如油田有新的规定,按油田规定执行。 2、由项目经理部依据设计确定钻开油气层的密度。 3、对井控装备、硫化氢检测与防护、泥浆材料、重浆及除硫剂的储备、人员配备、井控专家到井情况、应急预案及演练、钻开油气层提出问题的整改情况等进行全面检查合格后,方可打开油气层。 4、根据邻井实钻情况,预测油气显示层位井深,在钻开显示层前要预先在钻井液中加入2%的除硫剂进行预处理,并维持出口钻井液的PH值为11以上,现场除硫剂储备不少于5吨(以设计为准),新浆补充须符合钻井时的PH值和除硫剂的含量; 5、根据钻井井控实施细则或钻井设计的相关规定,现场确保储备比重1.40g/cm3以上重浆有效量80m3以上,石灰石储备100吨以上(以设计为准)。 6、强化泥浆和录井坐岗监测制度,无论任何作业工况,钻井班

都必须落实专人24小时坐岗,观察钻井液池液面变化和钻井液出口情况,确保第一时间发现溢流,迅速准确关井,并按汇报程序汇报。 7、奥系目的层作业,钻具必须带两只浮阀(MWD接头前和出套管鞋安装),起钻前必须在井底充分循环(一周半以上)进出口钻井液密度差不超过0.02g/cm3正常后方可进行起钻作业,油气层以上300m严格控制起钻速度,起钻必须按起出钻具体积(闭排)的1.5倍挤灌井浆。地质录井队人员和泥浆坐岗人员必须依次记录灌入量,并核对与起出钻具体积是否相符,同时要观察灌钻井液的间隙中出口管是否断流等情况。 8、钻进中若遇到钻速突然加快、放空、气测及油气水显示异常等情况,立即停钻观察,泥浆工和录井队加强液面的监测。如出现井漏失返,立即吊灌起钻(吊灌量是起出钻具体积的1.5~2倍),起到套管鞋,关井观察,泥浆工和录井核对好灌入量。 二、常规控压钻井技术措施 1、打开油气层关井观察15分钟后,如果套压≤5 MPa,直接进行常规控压作业,井口控压值≤5 MPa;若井口套压>5MPa,可请示提高钻井液密度,利用工程师法节流循环压井,降低井口压力,最终井口控压值≤5MPa,液面基本稳定,进行常规控压钻进。 2、控压循环或钻进期间在钻井液中及时增加除硫剂含量,保持钻井液的PH值为11以上,维护钻井液性能;井口控压不大于5MPa 以微过平衡方式继续控压钻进,出口点火,专人监测空气中H2S含量。如果钻井液中H2S含量在一个迟到时间大于20PPm时,立即进行关

定向井、水平井井身轨迹控制

第三章定向井、水平井井身轨迹控制技术 第一节定向井、水平井井眼轨迹控制理论 无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。 我们在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。 一、水平井的中靶概念 地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。我们可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是: 井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。 二、水平井增斜井段井眼轨迹控制的特点及影响因素 对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。 水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中、或滞后。 实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是: ①实钻轨迹点的位置超前,?相当于缩短了靶前位移。此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。 ②轨迹点位置适中,?若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。 ③轨迹点的位置滞后,?相当于加长靶前位移。此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。 实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。 在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新概念和实钻轨迹点的位置、点的井斜角大小对待钻井眼轨迹中靶的影响规律,将造斜井段井眼轨迹的控制程度限定在有利于入靶点矢量中靶的范围内。也就是说,在轨迹预测计算结果表明有余地、并有后备工具条件时,应当充分发挥动力钻具的一次造斜能力,以提高工作效率,减少起下钻次数。 三、井身剖面的特点及广义调整井段的概念

导向钻井技术(讲课版)

导向钻井技术 (胜利钻井工程技术公司周跃云) 基本概念 在定向井、水平井钻井中,为了使井眼轨迹得到合理的控制,世界各国相继开发研究了各种相应的技术,这些技术大致可分为两方面:一是预测技术,一是导向技术。 预测技术是根据力学和数学理论,对影响井眼轨迹的各种因素进行分析研究,从而预测各种钻具组合可能达到的预期效果。但目前的预测技术水平远远低于所要求的指标。鉴于此,导向技术应运而生。 导向技术是根据实时测量的结果,井下实时调整井眼轨迹。井下导向钻井技术是连续控制井眼轨迹的综合性技术,它主要包括先进的钻头(一般为PDC钻头)、井下导向工具、随钻测量技术(MWD、LWD等)以及计算机技术为基础的井眼轨迹控制技术,其主要特点是井眼轨迹的随钻测量、实时调整。 导向钻井技术是随油藏地质的要求和钻井采油地面条件的限制而逐步发展起来的。在这种技术中,井下导向钻井工具处于核心地位,它决定导向钻井系统的技术水平,导向技术则是导向钻井系统的关键技术。

一、导向钻井的工具和仪器 定向井技术的进步与定向井工具和仪器的发展是相辅相成的,是密不可分的。定向井钻井实践的需要,设计开发了专门用于定向井的工具和仪器,并在钻井实践中得到完善和提高;随着定向井工具和仪器的发展,极大地推动了定向井工艺技术水平的进步;而工艺技术的进步,对定向井工具仪器又提出了更新更高的要求。胜利油田以及我国定向井发展的历程,充分地说明了这一辩证关系。 1.1 导向工具的主要类型 随着定向井、水平井和大位移延伸井的日益增多,各种相应的井下工具相继出现,如弯接头,变壳体马达,各种稳定器等。对这些工具一般要分为两大类:一为滑动式导向工具,二为旋转式导向工具。两者的主要区别在于导向作业时,上部钻柱是否转动,若不转动,则为滑动式导向工具,否者为旋转式导向工具。 1.1.1 滑动式导向工具 滑动式导向工具在导向作业时,转盘停止转动并被锁住,只有井底马达作业。调整好工具面,钻进一段时间后,再开动转盘,使整体钻柱旋转,以减少摩阻及改善井眼清洗程度,随后再根据需要进行定向作业。可以看出,这种作业方式要把大量的时间花费在定向作业上,尤其是深井作业更是如此。但其优点是成本低,易于实现。

647.2-2013_页岩气水平井钻井作业技术规范_第_2_部分:钻井作业(出版稿)

Q/SYCQZ 川庆钻探工程有限公司企业标准 Q/SYCQZ 647.2—2013 页岩气水平井钻井作业技术规范 第2部分:钻井作业 2013-12-22发布2014-01-22实施

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 钻井工程设计 (1) 4 井眼轨迹控制 (2) 5 防碰作业 (3) 6 水平段安全钻井 (3)

前言 《页岩气水平井钻井作业技术规范》分为五个部分: ——第 1 部分:丛式井组井场布置; ——第 2 部分:钻井作业; ——第 3 部分:油基钻井液; ——第 4 部分:水平段油基钻井液固井; ——第 5 部分:井控。 本部分为第 2 部分。 本标准按 GB/T 1.1-2009《标准化工作导则第 1 部分:标准的结构和编写规则》进行编写和表述。 本标准由川庆钻探工程有限公司提出。 本标准由川庆钻探工程有限公司钻井专业标准化技术委员会归口。 本标准起草单位:川庆钻探工程有限公司钻采工程技术研究院、川庆钻探工程有限公司川东钻探公司、川庆钻探工程有限公司川西钻探公司 本标准主要起草人:张德军、赵晗、卓云、叶长文。

页岩气水平井钻井作业技术规范第2部分:钻井作业 1 范围 本标准规定了页岩气丛式井组钻井工程设计、井眼轨迹控制、防碰作业、水平段安全钻井等内容和要求。 本标准适用于川渝地区页岩气井的钻井作业。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 SY/T 1296 密集丛式井上部井段防碰设计与施工技术规范 SY/T 5088-2008 钻井井身质量控制规范 SY/T 5416 定向井测量仪器测量及检验 SY/T 5435-2003 定向井井眼轨迹设计与轨迹计算 SY/T 5547 螺杆钻具使用、维修和管理 SY/T 5619 定向井下部钻具组合设计方法 SY/T 6332-2004 定向井轨迹控制 SY/T 6396 钻井井眼防碰技术要求 Q/SYCQZ 001 钻井技术操作规程 Q/SYCQZ 372-2011 丛式井井眼防碰技术规程 3 钻井工程设计 3.1 井身结构 3.1.1 表层套管应封隔地表漏层和垮塌层,相邻两井表层套管下深错开20 m以上。 3.1.2 水平井技术套管下入位置井斜应不低于60°,若井下出现严重垮塌、钻遇高压油气,可提前下入技术套管。 3.1.3 油层套管尺寸不小于 11 4.3 mm,抗内压强度与增产改造施工压力之比>1.25。 3.1.4 水平段长度宜控制在800 m ~ 1400 m。 3.2 靶区 3.2.1 靶区半径设计符合SY/T 5088-2008的规定,且满足井眼轨迹控制要求。 3.2.2 水平段井眼方向与地层最小主应力方向的夹角不小于 15°。 3.3 井眼轨道 3.3.1 每口井地下靶心与井口位置连线相互之间不宜空间交叉。

第一章 定向井(水平井)钻井技术概述

第一章定向井(水平井)钻井技术概述 定向井、水平井的基本概念 定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。 定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。早在1895年美国就使用了特殊的工具和技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。 第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。 目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的RytchFarm 油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil公司钻成的的33/9—C2达到了1:3.14; 丛式井口数最多,海上平台:96口;人工岛:170口; 我国定向井钻井技术发展情况 我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。 我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平

水平井井眼轨迹

水平井井眼轨迹控制技术 水平井井眼轨迹控制工艺技术是水平井钻井中的关键,是将水平井钻井理论、钻井工具仪器和施工作业紧密结合在一起的综合技术,是水平井钻井技术中的难点,原因是影响井眼轨迹因素很多,水平井井眼轨迹的主要难点是: 1.工具造斜能力的不确定性,不同的区块、不同的地层,工具造斜能力相差较大 2.江苏油田为小断块油藏,油层薄,区块小,一方面对靶区要求高,另一方面增加了目的层垂深的不确定性。 3.测量系统信息滞后,井底预测困难。 根据以上技术难点,需要解决三个技术关键: 1、提高工具造斜率的预测精度。 2、必须准确探明油层顶层深度,为入窗和轨迹控制提供可靠依据。 3、做好已钻井眼和待钻井眼的预测,提高井眼轨迹预测精度。 动力钻具选择 一、影响弯壳体动力钻具造斜能力的主要因素 影响弯壳体动力钻具的造斜能力的主要因素有造斜能力钻具结构因素和地层因素及操作因素三大类。其中主要的是结构因素,其次是地层因素。 (一)动力钻具结构因素影响 1.弯壳体角度对工具造斜率的影响 单双弯体弯角是影响造斜工具造斜能力的主要因素。 在井径一定情况下,弯壳体的弯角对造斜率的影响很大,随着弯壳体角度的增大,造斜率呈非线性急剧增大。 2.弯壳体近钻头稳定器对工具造斜率的影响。 弯壳体近钻头稳定器的有无,对工具造斜率影响很大。如Φ165mm1°15′有近钻头稳定器平均造斜率达到30°/100米,无近钻头稳定器平均造斜率仅为20°/100米左右,相差近50%。 如陈3平3井使1°30′Φ172mm不带稳定器单弯螺杆平均造斜率为25°/100米,井身轨迹控制要求,复合钻进后,滑动钻进,造斜率仅为16-20°/100米。 3.改变近钻头稳定器到下弯肘点之距离对工具造斜率的影响 通过移动下稳定器位置可以改变近钻头稳定器至下肘点之距离。上移近钻头稳定器可大大提高工具的造斜能力,并且在井径扩大程度较大的情况下,造斜能力的上升幅度比井径扩大较小时要大。 (二)松散地层对工具造斜率的影响 据分析可知,下部钻具组合的造斜能力主要取决于钻头侧向力,而钻头侧向力来源于近

定向井技术(入门基本概念)

定向井技术(入门基本概念)

定向井技术(部分) 编制:李光远 编制日期:2002年9月9日 注:内部资料为企业秘密,任何人不得相互传阅或外借泄露!!!

一、定向井基本术语解释 1)井眼曲率:指在单位井段内井眼前进的方向在三维空间内的角度变化。它既包含了井斜角的变化又包含着方位角的变化,与“全角变化率”、“狗腿度严重度”都是相同含义。 K= v a SIN l l a 2*22 ?? ? ????Φ+??? ???? 式中: 均值 相邻两点间井斜角的平际长度 相邻两测点间井段的实的增量相邻两测点的增量相邻两测点----?--?Φ--?v a l a 方位角井斜角 2)井斜角、方位角和井深称为定向井的基本要素,合称“三要素”。 3)αA :A 点的井斜角,即A 点的重力线与该点的井眼前进方向线的夹角。单位为“度”; 4)ΦA :A 点的井斜方位角,亦简称“方位角”,即从正北方向线开始,顺时针旋转到该点井眼前进方向线的夹角。单位为“度”; 5)S B ’:B ’点的水平位移,即井口到B ’点在水平投影上的直线距离,也称“闭合距”。单位为“米”; 6)ΦS :闭合距的方位角,也称“闭合方位角”。单位为“度”; 7)L A :A 点的井深,也称“斜深”或“测深”,即从井口到A 点实际长度。单位为“米”; 8)H A :A 点的垂深,即L A 在H 轴上的投影。 H A 也是A 点的H 坐标值。同样,A 点在NS 轴和EW 轴上的投影,也可得到A 点的N 和E 坐标值。 9)磁偏角:某地区的磁北极与地球磁北极读数的差异; 10)造斜点:在定向钻井中,开始定向造斜的位置叫造斜点、通常以开始定向造斜的井深来表示; 11)目标点:设计规定的、必须钻达的地层位置,称为目标点; 12)高边:定向井的井底是个呈倾斜状态的圆平面,称为井底圆。井底圆上的最高点称为 高边。从井底圆心至高边之间的连线所指的方向,称为井底高边方向。高边方向上水平投影的方位称高边方位,即井底方位; 13)工具面:造斜工具面的简称。即在造斜钻具组合中,由弯曲工具的两个轴线所决定的 那个平面; 14)工具面角:工具面角有两种表示方法: A 、高边基准工具面角,简称高边工具角,即高边方向线为始边,顺时针转到工具

相关文档