文档视界 最新最全的文档下载
当前位置:文档视界 › 常用函数积分表(增强版)

常用函数积分表(增强版)

常用函数积分表(增强版)
常用函数积分表(增强版)

1. 2. 3. 4. 5. 6. 7. 8. 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.循环计

30.

31.

32.

33.

34.循

环计算

35.循环计

36.

37.循

环计算

38.

循环计算

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.循环

计算

80.循环计

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99. 100. 101. 102. 103. 104. 105.

106.

107. 108. 109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

循环计算122.

123.

124.

125.

126.

127.

128.,其中cvsx是conversine函数

129.

循环计算

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

循环计算

146. 147. 148. 149. 150. 151. 152. 153.

154.

155. 156. 157.

158.

159. 160. 161. 162.

163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.循环计算

196.循环计算

197.

198.

199.

200.

201.循环计算

202.

循环计算

203.

204.

205.

206.

207.

208.

209.

210.

211.循环计算

212.

循环计算

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238.

239.

240.

241.

242. 243. 244.

245. 246.

247. 248. 249. 250. 251. 252. 253. 254. 255. 256.

257. 258. 259.

260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. 274. 275.

276.

277.

278.

279.

280. the Gaussian integral 281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.+C

定积分公式表

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数.

公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分

下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

分析:将按三次方公式展开,再利用幂函数求积公式. 解: (为任意常数 ) 例4 求不定积分. 分析:用三角函数半角公式将二次三角函数降为一次. 解: (为任意常数) 例5 求不定积分. 分析:基本积分公式表中只有 但我们知道有三角恒等式: 解:

高数三角函数公式大全

三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3 π +a)·tan( 3 π -a) 半角公式 sin( 2A )= 2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )= A A sin cos 1-=A A cos 1sin +

sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2 b a +sin 2 b a - tana+tanb= b a b a cos cos ) sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π -a) = cosa cos(2 π -a) = sina sin(2 π +a) = cosa cos( 2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina c os(π+a) = -cosa tgA=tanA =a a cos sin

(完整版)常用函数积分表(增强版)

1.∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx 2.∫(f(x)?g(x))dx=∫f(x)dx?∫g(x)dx 3.∫f(x)dg(x)=f(x)g(x)?∫g(x)df(x) 4.∫a x dx=a x ln a +C,a≠1,a>0 5.∫x n dx=x n+1 n+1 +C,n≠?1 6.∫1 x dx=ln|x|+C 7.∫e x dx=e x+C 8.∫sin x dx=?cos x+C 9.∫cos x dx=sin x+C 10.∫sec2x dx=tan x+C 11.∫csc2x dx=?cot x+C 12.∫sec x tan x dx=sec x+C 13.∫csc x cot x dx=?csc x+C 14.∫(ax+b)n dx=(ax+b)n+1 a(n+1) +C,a≠0,n≠?1 15.∫dx ax+b =1 a ln|ax+b|+C,a≠0 16.∫x(ax+b)n dx=(ax+b)n+1 a2(ax+b n+2 ?b n+1 )+C,a≠0,n≠?1,?2 17.∫x ax+b dx=x a ?b a2 ln|ax+b|+C,a≠0 18.∫x (ax+b)2dx=1 a2 (ln|ax+b|+b ax+b )+C,a≠0 19.∫x2 ax+b dx=1 2a3 [(ax+b)2?4b(ax+b)+2b2ln|ax+b|]+C 20.∫x2 (ax+b)dx=1 a (ax+b?2b ln|ax+b|?b2 ax+b )+C 21.∫x2 (ax+b)dx=1 a (ln|ax+b|+2b ax+b ?b2 2(ax+b) )+C 22.∫x2 (ax+b)n dx=1 a3 (?1 (n?3)(ax+b)n?3 +2b (n?2)(ax+b)n?2 ?b2 (n?1)(ax+b)n?1 )+C,n≠

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

三角函数常用公式表

1 1、角 :(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; 2)、与 终边相同的角,连同角 在内,都可以表示为集合 { | k 360 ,k Z } ( 3)、象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限, 就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。 2、弧度制 :( 1)、定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。 2)、度数与弧度数的换算: 180 弧度, 1 弧度 (180) 57 18 3)、弧长公式: l | |r 是角的弧度数) x 2 P (x 0 y y ) 2 y sin cos y r x r tan cot y x x y sec csc r x r y + y + y + y + O x O x + O + x (3)、 特殊角的三角函数值 sin cos tan 的角度 0 30 45 60 90 120 135 150 180 270 360 的弧度 0 2 3 5 3 2 6 4 3 2 3 4 6 2 sin 1 2 3 1 3 2 1 0 10 2 2 2 2 2 2 cos 1 3 2 1 0 1 2 3 1 01 2 2 2 2 2 2 tan 3 1 3 3 1 3 0 —0 3 3 扇形面积: 0 x 各象限的符号: 3、三角函数 2)、 4式 1)平方关系: 2)商数关系: 倒数关 系: 3) S 1lr 2 (1)、定 义: 2| |r 2 如图) sin 2 cos 2 1 tan sin tan cot cos 1 tan 2 2 sec cot cos sin sin csc 1 cot 2 2 csc cos sec cot 4)同角三角函数的常见变 形: 活用 1” ) ①、 sin 2 2 cos sin 1 cos 2 2 cos 2 sin cos 1 sin 2 ; ② tan cot cos 2 sin 2 sin cos sin2 2 , cot tan cos 2 sin 2 sin cos 2cos2 2cot2 sin2

常用基本初等函数求导公式积分公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='?? ????? (3)若F (x )是f (x )的一个原函数,则 3、积分方法 ()()b ax x f +=1;设:t b ax =+ ()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan = ()3分部积分法:??-=vdu uv udv

附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与 . 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有 . 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清. 当时,有 . 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分 . 分析:该不定积分应利用幂函数的积分公式.

初等函数基本积分公式

初等函数基本积分公式(《应用统计》必备知识,要求记住)(k,C 是常数) (1)C kx kdx +=? (2)C x dx x ++= +?111μμμ (3)C x dx x +=?||ln 1 (4)C e dx e x x +=? (5)C a a dx a x x +=?ln (6)C x xdx +=?sin cos (7)C x xdx +-=?cos sin (8)C x dx x +=?tan cos 12 (9)C x dx x +-=?cot sin 12 (10)C x x x dx x +-=?ln ln (11))1ln(11 22x x dx x ++=+? (12) C a x a x a dx a x ++-=-? ||ln 21122 (13)C x a x a a dx x a +-+=-?||ln 21122 (14)C a x x a x dx +±+=±?)ln(2222 热身练习:1、 =-?-dx x x 222 1 2、6 20(1)x dx +?= 1(2)e x e dx x -?= 3.若a =??02x 2d x ,b =??02x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是 4.已知a ∈[0, π2 ],则当?a 0(cos x -sin x )d x 取最大值时,a =________. 5.??-a a (2x -1)d x =-8,则a =________. 6.已知函数f (x )=3x 2+2x +1,若???-1 1 f (x )d x =2f (a )成立,则a =________. 8.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则???1 2 f (-x )d x 的值等于 9.若等比数列{a n }的首项为23,且a 4=??1 4 (1+2x )d x ,则公比等于________. 11.已知f(x)为偶函数且60 ? f (x )d x =8,则66-?f (x )d x 等于 12.已知f(x)为奇函数且6 0?f (x )d x =8,则66-?f (x )d x 等于 22.(原创题)用S 表示图中阴影部分的面积,则S 的值是( D ) A .??a c f (x ) d x B .|??a c f (x ) d x | C .??a b f (x )d x +??b c f (x ) d x

三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式汇总 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切 值 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A 对 边 邻边 A C A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据: ①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注 意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角水平线 视线 视线俯角 :i h l =h l α

(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ 三角函数公式汇总1 ⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2 =b 2 +c 2 -2bc A cos b 2 =a 2 +c 2 -2ac B cos c 2 =a 2 +b 2 -2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin = R abc 4=2R 2A sin B sin C sin

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

三角函数公式大全(很详细).docx

高中三角函数公式大全[ 图] 1 三角函数的定义三角形中的定义 图1 在直角三角形中定义三角函数的示意图 在直角三角形 ABC,如下定义六个三角函数: 正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数

直角坐标系中的定义 图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: 正弦函数 r 余弦函数 正切函数 余切函数 正割函数 余割函数 2 转化关系倒数关系

平方关系 2和角公式 3倍角公式、半角公式倍角公式 半角公式

万能公式 4积化和差、和差化积积化和差公式 证明过程

首先, sin( α+β)=sin αcosβ+sin β(cos已证α。证明过程见《》)因为 sin( α+β)=sin αcosβ+sin β(cos正弦α和角公式)则 sin( -αβ) =sin[ α-β+( )] =sin α cos(-β )+sin(-β )cos α =sin α cos-sinβ β cos α 于是 sin( -αβ )=sin α cos-sinββ cos(α正弦差角公式) 将正弦的和角、差角公式相加,得到 sin( α +β )+sin(-β )=2sinα α cos β 则 sin α cos β =sin( α +β )/2+sin(-β(“α积化和差公式”之一)同样地,运用诱导公式cosα=sin( π-/2α),有 cos( α +β )= sin[ π-/2(α +β )] =sin( π-/2α-β) =sin[(π-α/2 )+(-β )] =sin( π-/2α )cos(-β )+sin(-β )cos( π-α)/2 =cos α cos- βsin α sin β 于是 cos( α +β )=cos α-cossin βα sin(β余弦和角公式) 那么 cos( α-β) =cos[ α-+(β )] =cos α cos(-β)-sin α sin(-β) =cos α cos β +sin α sin β cos( α-β )=cos α cos β +sin (α余sin弦β差角公式) 将余弦的和角、差角公式相减,得到 cos( α +β)-cos( α-β )=-2sin α sin β

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

三角函数积分公式求导公式

一.三角函数 二.常用求导公式 三.常用积分公式 第一部分三角函数 同角三角函数的基本关系式 诱导公式

化asin α±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴0)(='C (C 为常数)⑵1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷x x 1 )(ln =';一般地,)1,0( ln 1 )(log ≠>= 'a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式

1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴???+=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 ?? -=b a b a b a x du x v x v x u x dv x u )()()()()()(

高中阶段三角函数公式大全

高中阶段三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB cos(A+B) = cosAcosB-sinAsinB sin(A-B) = sinAcosB-cosAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + cot(A+B) =cotA cotB 1-cotAcotB + tan(A-B) =tanAtanB 1tanB tanA +- cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - tan(2 A )=A A cos 1cos 1+- cos( 2A )=2cos 1A + cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - cosa+cosb = 2cos 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)]

微积分及三角函数公式合集

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 2 21sec tan cos dx xdx x c x ==+? ? 9 221 csc cot sin xdx x c x ==-+?? 10 2 1 arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 2211arctan x dx c a x a a =++? 17 22 11ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a +=++?? 2. ()()()11 f x x dx f x d x μμμμμ-= ?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?= ?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-? ? 11.()()()2cot csc cot cot f x xdx f x d x ?=?? 第二部分:常用微分、导数公式 (c=常数) 1、极限

三角函数常用公式(表格)

三角函数常用公式(表格) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α诱导公式 sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=- cosα cos(3π/2-α)=- sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=- cosα cos(3π/2+α)=sinα tan(3π/2+α)=- cotα cot(3π/2+α)=- tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2)

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+ ()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数.

公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分

相关文档