文档视界 最新最全的文档下载
当前位置:文档视界 › 流感病毒的分子生物学研究进展

流感病毒的分子生物学研究进展

流感病毒的分子生物学研究进展
流感病毒的分子生物学研究进展

流感防治培训测试试题及答案

流行性感冒防治知识培训测试试题 姓名:分数: 一、多选题(每小题3分,共15分) 1.关于流感的叙述下列正确的是(ABCDE) A.患者、隐性感染者为主要传染源 B.病初2~3天传染性最强 C.某一时期的流行多由单一血清型引起 D.少数重症病例病情进展快,可因急性呼吸窘迫综合征(ARDS)和/或多 脏器衰竭而死亡 E.咳嗽明显,食欲减退,可有鼻塞、流涕、胸骨后不适等 2.下列哪些是典型流感的主要临床表现(ABCD) A.突起畏寒、寒战和高热 B.全身酸痛明显,尤以背部和腿部最为明显 C.部分以呕吐、腹痛、腹泻为特点,常见于感染乙型流感的儿童 D.可有咽喉刺痛、胸骨下烧灼感、干咳 E.头疼及中毒症状明显 3.关于流感患者的肺炎,下列描述正确的是(ABCE) A.流感病毒本身可引起病毒性肺炎 B.病程中若持续或反复发热,呼吸道症状加重,提示可能并发细菌性肺 炎 C.并存慢性心、肺疾病和免疫功能低下者,容易迅速致死 D.都必须尽早应用抗生素 E.护理上应密切观察患者的体征

4.流感需与下列疾病鉴别(ABCDE) A.伤寒、麻疹 B.肺炎支原体肺炎 C.钩端螺旋体病 D.急性细菌性扁桃体炎 E.肺炎球菌性肺炎和流脑的早期 5.出现以下情况之一者为危重病例(ABCDE) A.呼吸衰竭; B.急性坏死性脑病; C.脓毒性休克; D.多脏器功能不全; E.出现其他需进行监护治疗的严重临床情况 二、单选题(每小题2分,共20分) 1.关于流行性感冒下列哪项是错误的( D ) A甲型流感易发生变异 B由流行性感冒病毒引起 C临床表现以上呼吸道症状较重 D全身中毒症状较重 2.关于流行性感冒病毒下列哪项是正确的( B ) A流行性感冒病毒属副粘液病毒 B甲、乙、丙、丁四型 C甲型不变异

9.流感病毒的快速检测方法

流感病毒的快速检测方法 一、RT-PCR快速诊断方法 (一)生物安全要求 (二)病毒核酸提取 (三)RT-PCR (四)PCR 产物纯化 (五)流感病毒RT-PCR检测引物 二、免疫荧光方法检测流感病毒 (一)原理 (二)标本处理 (三)间接免疫荧光法 (四)结果判断 三、实时荧光定量PCR(Real-Time PCR)快速诊断检测 (一)基本原理 (二)实验试剂 (三)实验步骤 四、快速诊断试剂盒 流感的快速检测方法,与传统的病毒分离鉴定相比具有快速、简便的特点。因此常用于流感暴发时早期病原学检测用。流感的快速诊断包括直接和间接免疫荧光法、ELISA、RT-PCR、Real-Time PCR快速诊断速方法、流感快速诊断试剂盒等。这里介绍RT-PCR、Real-Time PCR、免疫荧光快速诊断速诊断方法和几种流感快速诊断试剂盒优缺点。无论那种快速诊断都无法代替传统的病毒分离鉴定方法。 一、RT-PCR快速诊断方法 核酸检测是一种鉴定流感病毒基因组的有力方法,即使基因组含量很低或死病毒也可以检测到。本章将介绍检测流感病毒的聚合酶链式反应(PCR)。 流感病毒的基因组是负链RNA,在进行PCR扩增前必须合成与病毒RNA 互补的DNA,即为cDNA。逆转录酶(RT)就是用于合成cDNA的多聚酶,因此,扩增流感病毒基因组的过程称为RT-PCR。 RT-PCR需要一对型别特异引物,四种脱氧核苷酸(dNTPs),RNA模板,逆转录酶及Taq DNA 多聚酶;首先由逆转录酶将病毒的RNA逆转录合成cDNA,然后再进行聚合酶链反应经25~30个循环,使DNA产物达到倍增的效果。 (一)生物安全要求 生物安全级别与个人防护要求:生物安全二级实验室,防护要求与二级实验室的要求相同。并应遵守相应的生物安全规定。进行高致病性禽H5 RT-PCR快速检测时可以在生物安全二级实验室里进行,核酸提取在生物安全三级实验室的生物安全柜里完成。

疾病分子生物学诊断的研究进展

疾病分子生物学诊断的研究进展 摘要:随着分子生物学技术的的不断进步,许多疾病便转入了基因治疗阶段,而分子生物学技术的不断进步,也恰好为医药领域的发展建立了良好的基础,这也必将会为各种疾病的治愈提供一个更新更好的解决方案。而本文则就白血病、胆管癌和肺结核三种疾病的分子生物学诊断研究进展进行了讨论。 关键词:分子生物学疾病研究进展 前言: 利用分子生物学的技术方法检测受检者体内 DNA 或 RNA 的结构变化,从而对疾病作出诊断的方法[1]与传统方法相比较,其具有非常显著的优越性,既可以直接对个体基因状态进行检测,又可以对表型正常的携带者以及特定疾病的易感者作出诊断和预测。因此分子生物学技术能广泛应用于白血病、胆管癌和肺结核等几种疾病的诊断治疗。因此分子生物学的诊断治疗已成为研究热点,现将其研究进展情况综述如下。 1.白血病的分子生物学诊断研究进展[2] 1.1白血病简介 白血病是一类常见和多发的造血干细胞克隆性恶性疾病,形态学分型为其主要诊断方法,但对于一些形态不典型的病例易误诊,近年来临床研究发现,大部分的白血病存在着某种染色体易位,而易位会产生新的融合基因。癌基因的扩增、原癌基因点突变或抑癌基因的失活等。 1.2荧光原位杂交技术( FISH) 目前 FISH 广泛用于检测染色体重组和标记染色体,检测多种基因疾病的染色体微缺失和用于非整倍体疾病的产前诊断.其基本原理是用标记了荧光素生物素或者地高辛的单链 DNA 探针和与其互补的 DNA 退火杂交,通过检测附着在玻片上的分裂中期或间期细胞上的核 DNA 位置反映相应基因的状况适用于多种临床标本( 如血液骨髓组织印片和体液,甚至石蜡包埋的组织标本等),具有直观、方便、敏感、可量化、方法多样和适应不同检测目的等优点,

流感病毒的实验室检测方法及进展

·190·星堕墅墅盘查!!!!生篁!!鲞釜i塑!里!』曼!!丛!!至!坠:!!塑!!!!:!!:堕!:! 流感病毒的实验室检测方法及进展 李月越陈杭薇李兵 【摘要】流行性感冒(流感)是由流感病毒引起的急性呼吸道传染病,其在人群中蔓延快,且具有高发病率及致死率的特点。流感的诊断不仅要根据临床症状和体征,其确诊还有赖于实验室检查。流感病毒的检测技术大致分为4个方面,即病毒分离培养、血清学诊断、现代免疫学诊断及分子生物学诊断。现分别从以上几个方面对流感病毒实验室检测方法及进展进行综述。 【关键词】流感病毒;检测方法 Lab帅torialmethods狮dp哪哪艄0fd咖tiIlgiIIflu眦avin麟Uy访y獬,CHEN协咒g-讹i,UBi恕g.&加仃批,zfo,尺Ps加m£o删M毒d觑九8,&巧i挖gCDm凇挖d&咒8m£Hospi£nZo,PLA,&巧锄g100700,吼i御 (乃rr已s户D行矗i729口“腩or:(HE小,H口ng一议,Pi 【AbstI’act】Influenzavirusescauseanacuterespiratorydiseasethatspreadsepidemicallyinthehumanpopulation.CharacterofInfluenzaishighmorbidityandmortality.DiagnosisofinfluenzadependsonnotonlyclinicialsymptomsandsingsbutalsolaboratoriaIdetections.Viralcultureandisolation,serodiagnosis,immumolo—gicalassayandmolecularbioIogicaldiagnosisarefourmethodsthatcommonlyusededforinfluenzavirusdetection.Laboratorialmethodsandprogressesofdetectinginfluenzavirusesaresummarizedinthef01lowingtext. 【Keywords】Influenzaviruses;Detectionmethod 流行性感冒简称流感,是由流感病毒引起的急 性呼吸道传染病,传染性强,蔓延快,其抗原易变异, 对人群尤其是儿童、老年人及机体免疫力低下的人 群有较高的发病率及致死率,危害很大。流感病毒 分为甲、乙、丙三型,其中变异大的、危害重的主要是 甲型和乙型流感病毒,尤以甲型为主,常可引起较大 范围的流行[1]。 流感的诊断不仅要根据临床症状和体征,还需 要实验室检测来证实。病毒诊断技术大致分为4个 方面,即病毒分离、血清学诊断、现代免疫学诊断及 分子生物学诊断瞳]。现分别进行介绍。 l病毒分离培养 病毒分离培养是诊断流感最可靠的方法之一。 因流感病毒能够在鸡胚中良好生长,所以早期多用 鸡胚分离流感病毒,一般用9日龄至11日龄的鸡胚 通过羊膜腔或尿囊腔接种分离病毒,接种后24~96h 收集鸡胚尿囊液,24h内死亡的鸡胚弃掉,用鸡的 红细胞检测尿囊液或细胞培养液的血凝活性来证实 病毒的增殖和存在,如初次分离不到病毒,可盲传2 代再进行检测;但近年来,随着分子生物学技术的发 展,发现通过鸡胚所分离到的流感病毒,其抗原性与 原始标本有所不同,而通过马一达犬1肾细胞(MDCK) 作者单位;100700北京军区总院呼吸内科 通讯作者:陈杭薇.综述. 分离病毒的抗原性与原始标本相似,另外由于 MDcK细胞对“o”相毒株的敏感性比鸡胚高很多, 故MDCK细胞已成为流感病毒分离不可缺少的一 种宿主系统,现亦得到较为广泛的应用;MDCK分 离的病毒在很多国家尚未批准用于疫苗生产,因此 病毒分离现同时采用鸡胚及MDCK细胞两套系 统口]。但无论是以上哪种方法对标本中病毒采集、 运输及保存条件要求均较高,病毒样品如能在48h 分离,可在4℃保存,如果样品要存放较长时间必须 低温冻存(一70℃);且要求标本中的病毒含量高, 必须达到鸡胚或MDCK培养法所需要的病毒含量, 分离培养较为复杂、耗时且不稳定,也不能在普通实 验室进行,要确诊需要较长时间,故对流感早期诊断 及临床指导意义不大。 Shih等H3将一种新的实验室培养技术——离 心培养技术(shellvialculture,SVC)应用于流感病 毒的培养,其与传统培养方法没有本质的区别,不同 点为在标本接种后进行长时间的低速离心,使标本 中含病毒的颗粒在外力作用下被压挤吸附于培养细 胞,从而大大缩短了培养时间并提高了敏感性。在 国内倪安平等口]亦采用SVC技术快速诊断流感病 毒,结果显示该技术能在24h内获得流感病毒培养 结果,可以快速确诊流感患者。 郭元吉等[63建立了一种流感快速诊断方法,具 体为:采集标本经成片MDCK细胞扩增,使细胞表万方数据

分子生物学的研究及发展

分子生物学的应用及发展 摘要:本文在文献检索的基础上,对分子生物学的发展简史,基本原理,研究领域等作了简单介绍,阐述了分子生物学在人们日常生活中的应用并结合药学专业着重讨论了其在药学及中药开发发面的应用,并进一步对分子生物学未来的研究技术、方向和前景做了展望。 一前言 生物以能够复制自己而区别于非生物。生命现象最基本的特征是进行“自我更新”。进行“自我更新”体现了一种最高级和最复杂的运动状态。这种运动就是生物机体从环境中摄取物质和能量,以更新本身的物质组成,而山现生长、繁殖,在这样的过程中保证了将自身的特征传给历代;同时也不断地向环境输送一些物质和释放能量。在生物机体的组成物质中,防水分外,有各种无机盐类和各种有机化合物。其中生物大分子——核酸和蛋白质在进行自我更新运动中,以其功能的重要性占第一位。为探索生命现象的本质问题,产生了分子生物学这一学科[1]。 分子生物学(molecular biology)是从分子水平研究生命本质为目的的一门新兴边缘学科,它是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域[2]。 分子生物学的最终目标是远大的,从产生基本细胞行为类型的各种分子的角度,来理解这五类行为类型:生长、分裂、分化、运动和相互作用。即分子生物学力图完整地描述细胞大分子的结构、功能和相互联系,从而理解细胞为什么要采取这种方式[3]。 分子生物学作为一门新兴的边缘学科。它的迅速发展及其在整个生命科学领域的广泛渗透和应用,促使人们对生物学等生命科学的认识从细胞水平进入分子水平。在农业、畜牧、林业、微生物学等领域发展十分迅速,如转基因动植物等。在医学领域,为医学诊断、治疗及新的疫苗、新药物研制等开辟了新的途径,使医学科学中原有的学科发生分化组合,医学分子生物学等新的学科分支不断产生,使医学科学发生了深刻的变革,不认识到这一点就很难跟上科学发展的步伐。 分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。 二分子生物学发展简史 分子生物学的发展大致可分为三个阶段[4-7]:

2011—2013年辽阳市流感病毒实验室检测结果分析

2011—2013年辽阳市流感病毒实验室检测结果分析 发表时间:2014-04-09T14:43:02.983Z 来源:《中外健康文摘》2013年第39期供稿作者:刘婧媛 [导读] 2011-2013年两年间辽阳市均有流感病毒流行,通过实验室检测得知两年的流行病毒毒株型别不同,证实了流感病毒抗原性变异的特性。 刘婧媛 (辽阳市疾病预防控制中心质量管理科辽宁辽阳 111000) 【摘要】流行性感冒病毒是引起急性呼吸道感染的重要病原,传播迅速,常会引起暴发,甚至造成世界大流行。上世纪流感病毒就引起四次世界大流行,造成相当严重的损失[1]。目的为了探究流感病毒流行和变异规律,了解其根据流感病毒核蛋白(NP),M1蛋白抗原性和基因特性的不同分为甲(A)乙(B)丙(C)三型[2],病毒具有抗原性变异的特性,提供控制流行的科学依据,对 2011—2013年度辽阳市流行性感冒的病原学监测结果进行分析。方法采集流感样病例的咽拭子标本,采用real time-PCR进行核酸检测,分别用人红细胞、狗肾细胞(MDCK)进行病毒分离,采用血凝抑制方法(HAI)进行流感病毒型别鉴定。结果 2011年4月~2012年3月共检测辽阳市流感哨点医院咽拭子标本388份,核酸检测PCR阳性13例,分离到流感病毒10株,阳性分离率为2.58%,经分型鉴定A型H3N2亚型2株(20%),B型Victoria5株(50%),B型Yamagata3株(30%),A型H1N1亚型、新H1N1未检出;2012年4月~2013年3月共检测辽阳市流感哨点医院咽拭子标本593份,核酸检测PCR 阳性40例,分离到流感病毒30株,阳性分离率为5.06%,经分型鉴定A型H1N1亚型2株(6.67%),A型H3N2亚型,15株(50%),新H1N112株(40%),B型Yamagata,1株(3.33%),B型Victoria未检出。结论:2011~2012年度流感流行季节中辽阳市有流感流行,流行的优势毒株为B型,同时有A型H3N2亚型毒株的存在;2012~2013年度流感流行季节中辽阳市有流感流行,流行的优势毒株为A型H3N2亚型和新H1N1,同时有A型H1N1亚型、B型Yamagata毒株的存在。 【中图分类号】R446 【文献标识码】A 【文章编号】1672-5085(2013)39-0179-02 1.材料和方法 1.1标本 2011年4月1日-2012年3月31日采集的辽阳市中心医院咽拭标本388份;2012年4月1日-2013年3月31日采集的辽阳市中心医院咽拭标本593份。 1.2流感病毒核酸 real time-PCR 1.2.1采用Quant One step RT-PCR kit RNA 提取试剂盒提取流感病毒样本核酸。 1.2.2QIAGEN real time (荧光定量PCR法)检测试剂盒扩增病毒核酸,反应体系见表1 组分体积(μl) 2×QuantiText Probe RT-PCR Master Mix12.5× 上游引物(40μM)0.5× 下游引物(40μM)0.5× Probe (10μM)0.5× QuantiText RT Mix0.25× Rneasy Free Water UP to 25 病毒核酸RNA 5.0× 1.2.3将上述加好的反应体系的反应管放于PCR仪进行反应,反应程序如下:见表2 步骤反应温度(℃)时间(min)是否采集荧光循环数 逆转录酶605否1 5030否1 预扩增9515否1 950.25否45 扩增及荧光收集550.5否45 720.5是45 725否1 1.2.4结果判定及标准 对照:阴性对照无CT值或CT值为零,阳性对照CT值<30。 样品:CT值≤35报告为阳性。 样品:37≤CT值≤40为灰区,需重新采样检测。 样品:无CT值或CT值为零报告为阴性。 1.3流感病毒分离 上述PCR结果为阳性的样本接种培养好的MDCK细胞生长液,观察细胞病变情况。 1.3.1将已长成单成的MDCK细胞生长液,用DPBS液洗两遍。 1.3.2每瓶接种标本0.5ml,每个标本接种1瓶,轻摇,使标本完全覆盖细胞,置35℃吸附2小时。 1.3.3倒掉感染液,用DPBS液洗两遍,每瓶加入含2μg/ml胰酶的病毒维持液10ml,35℃培养。 1.3.4次日起每天观察有无细胞病变(CPE)并记录,如病变明显细胞脱落可收获并做血凝,如未有病变,继续观察7日收获做血凝。 1.4血凝实验

禽流感的研究进展

禽流感的研究进展 谭飞虎,刁小龙,朱玉娟,张尚弟,张连团,祁越,刘卫军,吴頔 甘肃农业大学生命科学技术学院,甘肃兰州(730070) E-mail:tanfeihu521@https://www.docsj.com/doc/7912213119.html, 摘要:禽流感(Avian Influenza,AI),1878年首次发现与意大利,目前在美洲、非洲、亚洲、欧洲一些国家广泛发生。禽流感(AI)是由是由A型禽流感病毒(av ian in fluenza virus,AIV) 引起的禽类烈性传染病,主要在禽类中传播。AI不仅给世界养禽业造成了巨大的经济损失,而且对人类健康和生命安全构成了严重威胁。它可通过多种途径传播,且临床症状多样。本文主要从AIV的结构特征,致病机理,防治措施等方面论述了AIV 的研究进展 关键词:禽流感,结构特征,致病机理 引言 禽流感(Avian Influenza,AI)又名真性鸡瘟、欧洲鸡瘟,1878年首次发现于意大利。禽流感是由正粘病毒科甲型流感病毒属的A型流感病毒引起的禽类感染和疾病综合症。禽流感病毒(Avian Influenza Virus,AIV)亚型众多,变异频繁,根据病毒的血凝素(Hemagglutinin, HA)和神经氨酸酶(Neuraminidase,NA)的差异,将A型流感病毒分为不同的血清型,目前已发现16种HA亚型和9种NA亚型。其分子机制涉及点突变引起的抗原漂移(Antiyentil drife)和不同亚型毒株同源性产生新亚型所引起的抗原转变(Antiyentic shift)。该病在临床上所表现的症状变化从亚临床感染,重轻度的呼吸系统疾病,产蛋下降到严重的致死性疾病,其严重程度取于病毒的毒株以及被感染禽的种类,日龄和有无并发症等因素。禽流感病毒仅有H5和H7了两个血清型可引起高致病力禽流感(High Pathogentic Avian Influenza,HPAIV),以突然死亡和高死率为特征,在火鸡和鸡种引起的危害最为严重,常可导致感染鸡群的全军覆没,造成严重的经济损失,所以被国际兽医局列为A类烈性传染病。 1 流感病毒的分类 由于禽流感造成的损失巨大,引起国际社会的广泛关注,并对其分类进行了更为详尽的研究。根据国际病毒分类学(ICTV)第六次分类报告(1995年)规定,正粘病毒科分 3个病毒属:A,B型病毒属(Influenza Virus),A,B,C型流感病毒属(Influenza Virus C),类托高土病毒属(Thogotoline Virus),各属的代表中分别为A型流感病毒,C型流感病毒,托高土病毒,但是习惯上仍将A,B,C型流感病毒都归属亚流感病毒属的3个型[1]。这3个型的流感病毒没有共同的抗原,在内部核蛋白和基质蛋白的抗原性上有很大差异,在致病性和基因结构上也有所不同,其中的A型流感病毒感染的范围最大,危害最大,它可以感染人,猪,马,海洋哺乳动物,禽类等,是人和畜禽呼吸道疾病的重要病原。而B,C型流感病毒却只能感染人,所以禽流感可感染人类,引起以呼吸系统症状为主的急性传染病,部分患者可发展为全身多脏器功能衰竭而死亡。2005年1月新英格兰医学杂志上确认了第一例在人与人之间传播的禽流感病例,由于猪既有人类病毒的受体,又具有禽类病素的受体,所以猪可以同时感染两种病毒,并发生重配进而感染人类,这是禽流感病毒传染的最可能途径[ 2 ]。 -1-

分子生物学主要研究内容

分子生物学主要研究内容 1. 核酸的分子生物学。 核酸的分子生物学研究 核酸的结构及其功能。由于 核酸的主要作用是携带和传 递遗传信息,因此分子遗传 学是其主要组成部分。由于 50年代以来的迅速发展,该 领域已形成了比较完整的理 论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则是其理论体系的核心。 2. 蛋白质的分子生物学。 蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3.细胞信号转导的分子生物学。 细胞信号转导的分子生物学研究细胞内、细胞间信息传递的分子基础。构成生物体的每一个细胞的分裂与分化及其它各种功能的完成均依赖于外界环境所赋予的各种指示信号。在这些外源信号的刺激下,细胞可以将这些信号转变为一系列的生物化学变化,例如蛋白质构象的转变、蛋白质分子的磷酸化以及蛋白与蛋白相互作用的变化等,从而使其增殖、分化及分泌状态等发生改变以适应内外环境的需要。信号转导研究的目标是阐明这些变化的分子机理,明确每一种信号转导与传递的途径及参与该途径的所有分子的作用和调节方式以及认识各种途径间的网络控制系统。信号转导机理的研究在理论和技术方面与上述核酸及蛋白质分子有着紧密的联系,是当前分子生物学发展最迅速的领域之一。 4.癌基因与抑癌基因、肽类生长因子、细胞周期及其调控的分子机理等。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。

禽流感病毒分子生物学检测方法综述

5基础科学 中国畜牧兽医文摘2012年28卷第11期 禽流感(AI )是由A 型流感病毒(AIV )引起的一种以禽类呼吸系统及全身性败血症为特征的禽类疾病综合征。自禽流感被发现至今100多年来,人类并没有掌握特效的防治该病方法。暴发疫情时,一般还是依靠消毒、隔离、大量宰杀等方法防止其蔓延,经济损失巨大。能否及时发现该病流行,尽快采取有效措施,是降低经济损失的有效途径。因此,快速、准确的检测十分重要。 1 聚合酶链式反应 1986年,Bea rd 用PCR 技术诊断AI ,大大缩短了AI 的诊断时间。1993年,Kaw aoka 应用PCR 和Southern-blotting 联合辨别A IV 血凝素基因序列,现已建立了可以直接从临床病料的感染组织中检测AIV 的RT-PCR 诊断技术,可用于所有亚型AIV 感染的早期快速诊断。1997年,黄平等用PCR-RFL P 方法分析流感病毒H 3N 2亚型毒株,认为该方法作为一种分子流行病学筛选试验在流感变异研究中具有重要作用。1998年,崔尚金等首次建立了针对H 7亚型A IV 的RT-PCR 诊断技术。2000年,Schw eiger 等应用荧光PCR 法对呼吸道标本中的流感病毒进行型别、亚型鉴定,并将该方法应用于德国近2个流感流行季节监测中。2001年,M ing-Shiuh Lee 等建立了以HA 蛋白序列为模板的H 5、H 7亚型特异性RT-PCR 诊断技术和以NP 或M 蛋白序列为模板的型特异性RT-PCR 诊断技术。同年,Herrmann 报道,用巢式RT-PCR 可以同时检测A 型流感、B 流感。Spackman 建立了RRT -PCR 方法,将荧光素标记的探针与引物一起在荧光PCR 仪中反应,电脑对整个反应进行实时监测,避免了交叉污染。利用探查流感M 基因可以迅速诊断病毒感染,同时加入H 5、H 7亚型血凝素特异性探针,研究出一种可以鉴别这2个亚型的RRT-PCR 方法。 2000年,No to mi 等建立了环介导恒等温扩增(LAM P )技术,这是一种新型的核酸扩增技术。该方法应用广泛,适用于基层实验室进行快速检测。2008年,侯佳蕾等根据H 5亚型A IV HA 基因序列,设计了一套特异识别HA 基因序列中6个不同区段的环介导恒等温扩增引物,并以此套引物建立了一种基于LAMP 技术的H 5亚型禽流感病毒诊断方法,结果表明,该方法对H 5亚型A IV RNA 的最小检测限为10-6 ,灵敏度高于RT-PCR 方法,全部反应可在1.5h 内完成。在反应体系中添加SYBR G REEN I 染料后,可通过肉眼观察有无荧光,直接判定结果。 N ASBA 技术是一项以RNA 为模板的快速等温扩增技术,该技术特别适用于RNA 分子的检测。Collins 研究小组于2002年首次发表了关于应用NASBA 技术检测禽流感病毒的论文,目前已成功开发出可检测禽流感群特异性(H 1~H 15)(NASBA -AIV )、H 5亚型(N ASBA -H5)、H 7亚型(NA SBA-H 7)的NA SBA/ECLipse 检测试剂盒。2005年,单松华等也建立了N ASBA 技术进行H 5亚型的禽流感检测。该技术的特点是整个扩增过程在恒温条件下进行,因此不需要特殊的控温装置,大大避免了R 扩增过程中复杂的温 度变化,不仅能检测出具有感染性的完整的病毒颗粒,还能检出非感染性病毒粒子以及错误包装的非感染性病毒粒子。 2 基因芯片技术 由于流感病毒拥有众多的型和亚型,无论是现存的哪一种诊断方法,都无法同时对所有的流感病毒进行精确的分型。基因芯片技术可以对成千上万个基因进行检测,它的出现为同时对流感病毒进行检测和分型提供了可能的途径。 基因芯片是指将大量的核酸分子扩增的cDN A 或合成的特异性寡核苷酸探针以大规模阵列形式固化在载玻片等芯片载体上,通过与Cy3、Cy5荧光素标记的样品进行核酸杂交,检测杂交信号的有无和强弱,进而判断样品中被检分子的种类和数量。该项技术具有高通量的优点,检测禽流感病毒的时间约为7h 左右。Li J 等建立了鉴别流感病毒型和亚型的基因芯片检测方法,设计的26对引物可从A 型流感病毒HA (H 1,H 2,H 3)、NA (N 1,N 2)和NP 基因,以及B 型流感病毒的HA (H 1,H 2,H 3)、N A (N 1,N 2)和NP 基因上的目的基因杂交,从而达到鉴别型和亚型的目的。目前基因芯片技术在流感病毒的检测中,主要用于科研和流行病学调查,操作较繁琐,检测成本及硬件要求均较高,离实际应用还有一段距离。 3 核酸探针技术 核酸探针自20世纪70年代末出现以来,在致病因子的检测中,越来越发挥出优于常规方法的长处。它可以确认血清学反应为阴性的慢性病毒的存在,也可以检出培养困难、或不易制成高滴度抗体、或没有被膜蛋白不能制备抗体、或表面抗原分型较多难以找到共性抗体的病毒。核酸探针灵敏度高,检测样品数量大,需要的设备要求不高,价格相对便宜,使用的探针从早期的对人体危害较大的放射性同位素,到被安全性较高的非放射性标记物所取代。目前使用较多的是地高辛(异羟基毛地黄毒苷,Digoxigenin ,DIG )。D IG 标记探针的标记方法有随机引物法、缺口平移法、末端标记法和PCR 标记法。其中,PCR 标记法是近年来刚发展起来的一种方法,其原理与PCR 相同,不同之处在于在dNTPs 中的dUTP 带上了DIG 标记物。黄庚明等利用PCR 技术建立并优化了检测AIV 核酸的D IG 标记的cDNA 探针杂交法。该探针具有良好的特异性和敏感性,为从分子水平探讨A I V 的发病机理及临床早期快速诊断提供了新的手段。 参考文献 [1] BEARD C W.Avian influen za antibody detection by PCR [J].Avian Disaeae ,1986,(42):779-785. [2] KAWAODA D K ,MUNCH M .PCR as a tool for d iagno sis of low pathogenicity avian influenza[J].Avian Disaeae ,1993,47(2):1075-1078. [3] 黄平,B ND R ,沈桂章,等用R RFL 方法分析流感病 毒3N 亚型毒株[]疾病控制杂志,,(3);6禽流感病毒分子生物学检测方法综述 陈爱林1 安亚兰1孟祥升2 刘宏祥3 (1.江苏省射阳县畜牧兽医站,射阳224300;2.江苏省连云港市动物卫生监督所,连云港222001; 3.江苏省家禽科学研究所,225009) [摘 要]禽流感是一种以禽类呼吸系统及全身性败血症为特征的禽类疾病综合征。一旦暴发疫情,经济损失巨大。能否及时发现该病的发生,尽快的做出应对措施是降低经济损失的途径之一。目前,分子生物学检测方法在A I V 病原学检测及诊断方面有着较大优势,可以对其进行快速、准确的检测。 [关键词]禽流感病毒聚合酶链式反应基因芯片技术核酸探针技术 7 PC E E C A .PC -P H 2J .199717-178.

CcdB分子生物学研究进展分析

学号2007218018 昆明理工大学硕士研究生 综述 专业微生物学 姓名贾卉 入学时间2007年9月 日期2009年1月8日

CcdB分子生物学研究进展 摘要:毒素-抗毒素系统广泛存在于质粒及大肠杆菌染色体中,在缺乏抗毒素的情况下,毒素通过作用于细胞内不同的酶,使细胞中毒,最终导致细胞死亡。本文综述了ccd系统及自杀基因ccdB的作用原理和机制。 关键词:毒素-抗毒素系统、Ccd系统、CcdB Key words: Toxin-antitoxin system, Ccd system, CcdB 毒素-抗毒素(Toxin-antitoxin,TA)系统是一种可能与细胞生长阻滞或是细胞凋亡有关的系统。该系统最初发现存在于大肠杆菌F质粒上[1],典型的TA系统由两个基因构成。两个基因分别编码一种稳定的毒素蛋白和一种不稳定的抗毒素蛋白,毒素对细菌有致死作用,而抗毒素通过与毒素形成复合体,中和毒素的毒性,使宿主菌能够存活。 TA系统主要存在于一些低拷贝质粒上,细菌分裂后,不稳定的抗毒素蛋白被迅速降解,不具有质粒的子代细菌就会被稳定的毒素蛋白杀死,这种作用称为分裂后致死效应(the post segregation killing effect,PSK),近一步研究发现在大肠杆菌的染色体上也存在TA系统,但染色体上的抗毒素蛋白对毒素蛋白并不能起到解毒的作用,只有依靠质粒上的抗毒素蛋白才能保证细菌存活,低拷贝质粒正是依靠TA系统的PSK效应,稳定在宿主中存在。 目前已知的TA系统包括7个质粒编码TA基因家族:ccd、mazEF、vapBC 、phd/doc、parDE、higBA和relBE[2, 3]。虽然TA系统在基因结构和调控模式上十分相似,但是每种毒素的作用原理却存在很大差异。CcdB和ParE通过使促旋酶失活抑制DNA复制,使细胞中毒。RelE通过切割mRNA,抑制翻译过程导致细胞凋亡。而HigB的作用机理目前尚不清楚。1.Ccd系统 Ccd(control of cell division or death)为F质粒小F复制子上的一个组件,F质粒共编码三种TA基因系统[4],Ccd系统[5]只是其中的一种,由CcdA和CcdB两个基因共同构成,也可以称为H、G或是letA、letB,分别编码两种小分子量蛋白:CcdA蛋白(8.7kDa)与CcdB蛋白(11.7 kDa)。CcdA蛋白易被Lon蛋白酶降解,在系统中起到解毒剂的作用,CcdB蛋白较CcdA蛋白稳定,是一种细胞毒素,在没有解毒剂存在的条件下,可以导致细胞凋亡。 2.CcdB

猪流感病毒分子生物学研究进展

动物医学进展,2010,31(S):2082212 Progress in Veterinary Medicine 猪流感病毒分子生物学研究进展 余 华 (四川出入境检验检疫局,四川成都610041) 摘 要:猪流感病毒主要引起一种急性高度接触传染性的群发性呼吸道疾病。论文主要论述了猪流感病毒分子生物学特性、基因组结构及其功能等方面的研究进展。 关键词:流感病毒;猪;分子生物学 中图分类号:S852.659.5文献标识码:A文章编号:100725038(2010)0420208205 流感病毒根据M蛋白和N P蛋白的分型差异可分A、B、C3个型,猪流感病毒属于A型流感病毒,为正黏病毒科流感病毒属成员,其基因组由分节段单股负链的RNA组成[1]。根据遗传特性和抗原性的不同,A型流感病毒到目前为止已至少有16种亚型血凝素和至少9种亚型神经氨酸酶被发现[224],已发现的猪流感病毒至少有H1N1、H1N2、H1N7、H3N2、H3N6、H4N6、H9N2等7种不同血清亚型。其中,广泛流行于猪群中的主要有古典型猪H1N1、类禽型H1N1和类人型H3N2毒株。 猪流感病毒主要引起的一种急性高度接触传染性的群发性呼吸道疾病,临床以突发高热、咳嗽、呼吸困难、衰竭、高发病率、低死亡率为特征。纯SI的病理变化主要表现为病毒性肺炎及其他呼吸器官的炎性变化,有其他病原继发或混合感染时,病理变化会严重而复杂[5]。研究表明:猪的种间屏障相对较低,是禽、猪、人流感病毒唯一的共同易感宿主,是人流感病毒和禽流感病毒(A IV)双重感染的“混合器”或活载体。一个细胞同时被两种流感病毒感染,导致基因重配的偶然发生。从而产生抗原性改变的混合型流感病毒重组株,引起新的大流行。1976年1月,美国新泽西州佛迪狄克斯5名新兵因感染猪源H1N1病毒而死于肺炎的事件[6],赋予SIV全新的公共卫生意义。 1 猪流感病毒分子生物学特性 SIV基因组为分节段的,负链RNA,基因组在转录和复制过程中易于发生基因重排。宿主细胞没有SIV复制所必需的依赖RNA的RNA复制酶和依赖RNA的RNA转录酶,因此这两种酶都是由自身基因编码的。这两种酶在复制和转录过程中的忠实性不及DNA聚合酶和转录酶,这决定了病毒在复制和转录过程中有较高变异性。事实上也是如此,SIV最显著的生物学特性就是变异频族,血清亚型众多。A IV在两个方面进行变异—抗原漂移(drift)和抗原转变(shift)。抗原漂移是基因组的点突变,特别是HA和NA的点突变造成HA和NA 较小范围的抗原性改变。抗原转变则是由于基因组的大片段缺失和插入,造成抗原性较大的改变,以至于出现新亚型毒株和毒株毒力的变异[728]。下面就猪流感病毒墓因组结构特征,编码蛋白的功能及其相互作用,流感病毒基因工程及其在猪流感病毒研究中的应用等做一概述。 2 猪流感病毒基因组结构及其功能 A型流感病毒基因组为单股负链分节段的RNA,共有8个片段,片段126编码单基因产物,片段7、片段8分别编码两种蛋白,片段7编码基质蛋白Ml、M2;片段8编码非结构蛋白NS1,8个基因片段的3末端和5末端都有保守的核苷酸序列,末端13个核普酸序列是3′2GGAACAAA GAU GA PPP2 5′,3末端的核普酸序列是3′2O H2UC GU/CU UU2 C GUCC25′[7]。在这些共有序列中有些可反向互补。遗传学和生化试验证实在3′和5′末端保守序列是病毒转录的重要的核昔酸识别位置,这些序列的内部互补性对体内体外的最佳转录是至关重要的。另外,这些末端序列也是激活流感病毒多聚酶的内切酶活性,切下宿主成熟mRNA帽子结构到病毒前体mRNA上所必需的。转录体病毒基因表达也进一步阐明末端保守序列在病毒基因表达过程中起着重 3收稿日期:2010203227 作者简介:作者简介:余 华(1978-),男,四川人,硕士,主要从事动物及动物产品的出入境检验检疫工作。

流感病毒分子生物学研究进展

?专题笔谈?病 毒 感 染 流感病毒分子生物学研究进展 中日友好医院(100029) 安 菁 林江涛  流感病毒是研究最早的病毒之一,主要原因与流感的严重危害有关。流感发作快、传播迅速,短时间内可造成局部地区的爆发或全球范围的流行,导致灾难性的后果。从19世纪以来,已出现四次全球性的流感大流行,最严重的一次(1918~1919年)全世界死于流感的人数超过20万。几十年来,人们作了大量的工作,试图运用分子生物学的手段从机理上揭示流感病毒感染性与致病机制,以研究有效的防治(如监测、疫苗)手段。 1 流感病毒的基因组结构 流感病毒属于正粘病毒科,是RNA病毒。依据其核蛋白(NP)抗原性的差异分成A、B、C三型,这三个型分别在基因组结构、多肽组成、感染性和致病性等方面存在差异。 流感病毒为有包膜的病毒,包膜分内、外两层。内层包膜由基质蛋白M1构成,M1在颗粒核蛋白体(vRNP)的胞质、胞核间的有序转移及病毒体的成熟过程中具有重要的调节作用。外层包膜由一脂质双层构成,其上面嵌有三种病毒蛋白:具有血凝素活性的蛋白质H A、具有神经氨酸酶活性的蛋白质NA和基质蛋白M2。包膜内为病毒基因组与病毒RNA聚合酶亚单位P B1、P B2、PA以及NP形成的具有特定空间构象的结构,称为vRNP,具有依赖RNA的RNA 聚合酶活性。 流感病毒基因组由7个(C型病毒)或8个(A、B 型)分节段的单股负链RNA构成,每个RNA节段的两端都有相对保守的非编码序列,如5′端存在13个核苷酸,3′端存在12个核苷酸,且5′端与3′端反向互补形成锅柄结构。这些结构参与病毒vRNA的复制和mRNA的转录,在RNA聚合酶结合活性、启动子活性、poly(A)化作用以及激活核酸内切酶活性中具有重要作用,是流感病毒复制、转录、包装的重要调控成分。每个RNA节段包括至少一个开放阅读框架(ORF),如:A型流感病毒的各RNA节段及其编码的病毒蛋白为RNA1-P B2、RNA2-P B1、RNA32PA、RNA4-H A、RNA5-NP、RNA6-NA、RNA7-M1和M2、RNA32PA、RNA8-NS1和NS2等。 2 流感病毒的复制及调控 流感病毒大多在宿主细胞核中复制其基因组,通过质膜或细胞器膜芽生形成成熟的病毒颗粒。流感病毒基因组为负链RNA,与具有活性的转录酶复合物和其他负链RNA病毒相同,vRNA、cDNA和cD2 NA转录形成的RNA均不具有感染性,只有形成RNP并转染宿主细胞后才能在宿主细胞内起始病毒基因的复制和表达。 流感病毒侵入宿主细胞依赖于H A的凝集素位点与宿主细胞表面的唾液酸的结合。H A介导病毒包膜与内体膜的融合,使病毒壳衣壳释放进入胞质。流感病毒的脱壳与内体的低pH环境引发的病毒核衣壳结构改变有关,但低pH诱导核衣壳结构改变的分子机制尚不清楚。当病毒脱壳,vRNP在ATP供能的条件下,很快通过宿主细胞核孔复合物(NPC)向核内转运。vRNP向宿主细胞核内转运的调控与NP 和胞质因子NPI21、核转运受体、Ran(T C4)及P10 (NTF2)有关。只有当vRNA与NP同时存在时,vRNA 才可转运到细胞核内。流感病毒蛋白的合成分两个时项。NP、RNA聚合酶亚基和NS1在感染后最初2~3小时即生成。其他蛋白质如H A、NAM1、M2和NS2合成较晚。病毒蛋白的合成可能受到病毒mR2 NA向核外运输的调节,并可能与病毒蛋白NS1的功能有关。对病毒蛋白合成时间的控制在病毒感染周期中具有重要作用,与病毒核衣壳的组装、vRNP的成熟和释放等相关。流感病毒在特定时间内合成的蛋白成分均要通过宿主细胞的介导进入核内以完成vRNP的组装。构成vRNP的主要蛋白成分是NP,为子代vRNA的合成所必需,在RNA复制的同时,子代vRNA随即与NP形成具高级结构的子代vRNP。病

流行性感冒病毒核酸检测试剂注册申报资料技术审评指导原则(征求意见稿2)201107

指导原则编号 流行性感冒病毒核酸检测试剂 注册申报资料技术审评指导原则 (征求意见稿2) 二〇一一年七月

目录 一、前言................................................. 二、范围................................................. 三、注册申报要求 ......................................... (一)综述资料....................................... (二)产品说明书..................................... (三)拟定产品标准及编制说明......................... (四)注册检测....................................... (五)主要原材料研究资料............................. (六)主要生产工艺及反应体系的研究资料............... (七)分析性能评估资料............................... (八)参考值(范围)确定............................. (九)稳定性研究资料................................. (十)临床试验研究................................... 四、名词解释 ............................................. 五、参考文献 .............................................

分子生物学在医药中的研究进展及应用

分子生物学在医药中的研究进展及应用 ——韩静静 摘要 分子生物学是对生物在分子层次上的研究。这是一门生物学和化学之间跨学科的研究,其研究领域涵盖了遗传学、生物化学和生物物理学等学科。分子生物学主要致力于对细胞中不同系统之间相互作用的理解,包括DNA,RNA和蛋白质生物合成之间的关系以及了解它们之间的相互作用是如何被调控的。分子生物学主要研究遗传物质的复制、转录和翻译进程中的分子基础。分子生物学的中心法则认为“DNA 制造 RNA,RNA 制造蛋白质,蛋白质反过来协助前两项流程,并协助 DNA 自我复制”。 分子生物技术也称之为生物工程,是现代生物技术的主要标志,它是以基因重组技术和细胞融合技术为基础,利用生物体或者生物组织、细胞及其组分的特性和功能,设计构建具有预期性状的新物种或新品种.以便与工程原理相结台进行生产加工.为社会提供商品和服务的一个综合性技术体系,其内容包括基因工程技术、细胞工程技术、DNA测序技术、DNA芯片技术、酶工程技术等。现代分子生物技术的诞生以70年代DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志.迄今已走过了30多年的发展历程。实践证明在解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景。受到了各国政府和企业界的广泛关注。是21世纪高新技术产业的先导。 二十世纪生物医学发展的主要特点之一是对生命现象和疾病本质的认识逐渐向分子水平深入。DNA双螺旋结构的发现为分子医学和基因医学的发展奠定了基础。人们逐渐认识到,无论健康或疾病状态都是生物分子及其相互作用的结果,生物分子中起关键性作用者为基因及其表达产物蛋白质,因此从本质上说,所有的疾病都可以被认为是“基因病”。近十年来,分子生物技术已成为医学领域最有力的研究工具,以下从基因工程技术、人类基因组计划与核酸序列测定技术、基因诊断与基因体外扩增技术、生物芯片技术在医学研究中为了解疾病的发生发展机制,诊断和药物研制、开发中的应用。 关键词:分子生物学分子生物技术医药基因芯片蛋白质组学

相关文档
相关文档 最新文档