文档视界 最新最全的文档下载
当前位置:文档视界 › 半导体物理第10章半导体的光学性质和光电与发光现象

半导体物理第10章半导体的光学性质和光电与发光现象

半导体物理试卷b答案

一、名词解释(本大题共5题每题4分,共20分) 1. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 2.本征半导体:不含任何杂质的纯净半导体称为本征半导体,它的电子和空穴数量相同。 3.简并半导体:半导体中电子分布不符合波尔兹满分布的半导 体称为简并半导体。 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△0和空穴△0称为过剩载流子。 4. 有效质量、纵向有效质量与横向有效质量 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。 5. 等电子复合中心 等电子复合中心:在 V族化合物半导体中掺入一定量与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子与主原子之间电性上的差别,中性杂质原子可以束缚电子或空穴而成为带电中心。带电中心吸引与被束缚载流子符号相反的载流子,形成一个激子束缚态。这种激子束缚态叫做等电子复合中心。二、选择题(本大题共5题每题3分,共15分)

1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比 2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-153乙.含硼和磷各1×10-173丙.含镓1×10-173 室温下,这些样品的电子迁移率由高到低的顺序是(C )甲乙丙 B. 甲丙乙 C. 乙甲丙D. 丙甲乙 3.有效复合中心的能级必靠近( A ) A.禁带中部 B.导带 C.价带 D.费米能级 4.当一种n型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿命正比于(C ) A.10 B.1/△n C.10 D.1/△p 5.半导体中载流子的扩散系数决定于其中的( A ) A.散射机构 B. 复合机构 C.杂质浓变梯度 D.表面复合速度 6.以下4种半导体中最适合于制作高温器件的是( D )

半导体物理期末试卷含部分答案

一、填空题 1.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

半导体物理第六章习题答案

半导体物理第六章习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第6章 p-n 结 1、一个Ge 突变结的p 区n 区掺杂浓度分别为N A =1017cm -3和N D =51015cm -3, 求该pn 结室温下的自建电势。 解:pn 结的自建电势 2(ln )D A D i N N kT V q n = 已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=? 代入后算得:1517 132 510100.026ln 0.36(2.410)D V V ??=?=? 4.证明反向饱和电流公式(6-35)可改写为 202 11()(1)i s n n p p b k T J b q L L σσσ=++ 式中n p b μμ=,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。 证明:将爱因斯坦关系式p p kT D q μ= 和n n kT D q μ=代入式(6-35)得 0000( )p n p n S p n n p n p n p p n n p J kT n kT p kT L L L L μμμμμμ=+=+ 因为002i p p n n p =,00 2 i n n n p n =,上式可进一步改写为 221111( )( )S n p i n p i n p p p n n n p p n J kT n qkT n L p L n L L μμμμμμσσ=+ =+ 又因为 ()i i n p n q σμμ=+ 22222222()(1)i i n p i p n q n q b σμμμ=+=+ 即

半导体物理试卷b答案

半导体物理试卷b答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、名词解释(本大题共5题每题4分,共20分) 1. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 2.本征半导体:不含任何杂质的纯净半导体称为本征半导体,它的电子和空穴数量相同。 3.简并半导体:半导体中电子分布不符合波尔兹满分布的半导体称为简并半导体。 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△n=n-n 和空穴 称为过剩载流子。 △p=p-p 4. 有效质量、纵向有效质量与横向有效质量 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。 5. 等电子复合中心 等电子复合中心:在III- V族化合物半导体中掺入一定量与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子与主原子之间电性上的差别,中性杂质原子可以束缚电子或空穴而成为带电中心。带电中心吸引与被束缚载流子符号相反的载流子,形成一个激子束缚态。这种激子束缚态叫做等电子复合中心。 二、选择题(本大题共5题每题3分,共15分) 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3室温下,这些样品的电子迁移率由高到低的顺序是(C ) 甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙

半导体物理答案

一、选择 1.与半导体相比较,绝缘体的价带电子激发到导带所需的能量(比半导体的大); 2.室温下,半导体Si 掺硼的浓度为1014cm -3,同时掺有浓度为×1015cm -3的磷,则电子浓度约 为(1015cm -3 ),空穴浓度为(×105cm -3),费米能级为(高于E i );将该半导体由室温度升至 570K ,则多子浓度约为(2×1017cm -3),少子浓度为(2×1017cm -3),费米能级为(等于E i )。 3.施主杂质电离后向半导体提供(电子),受主杂质电离后向半导体提供(空穴),本征激发 后向半导体提供(空穴、电子); 4.对于一定的n 型半导体材料,温度一定时,减少掺杂浓度,将导致(E F )靠近E i ; 5.表面态中性能级位于费米能级以上时,该表面态为(施主态); 6.当施主能级E D 与费米能级E F 相等时,电离施主的浓度为施主浓度的(1/3)倍; 重空穴是指(价带顶附近曲率较小的等能面上的空穴) 7.硅的晶格结构和能带结构分别是(金刚石型和间接禁带型) 8.电子在晶体中的共有化运动指的是电子在晶体(各元胞对应点出现的几率相同)。 9.本征半导体是指(不含杂质与缺陷)的半导体。 10.简并半导体是指((E C -E F )或(E F -E V )≤0)的半导体 11.3个硅样品的掺杂情况如下: 甲.含镓1×1017cm -3;乙.含硼和磷各1×1017cm -3;丙.含铝1×1015cm -3 这三种样品在室温下的费米能级由低到高(以E V 为基准)的顺序是(甲丙乙) 12.以长声学波为主要散射机构时,电子的迁移率μn 与温度的(B 3/2次方成反比) 13.公式* /q m μτ=中的τ是载流子的(平均自由时间)。 14.欧姆接触是指(阻值较小并且有对称而线性的伏-安特性)的金属-半导体接触。 15.在MIS 结构的金属栅极和半导体上加一变化的电压,在栅极电压由负值增加到足够大的 正值的的过程中,如半导体为P 型,则在半导体的接触面上依次出现的状态为(多数载流子 堆积状态,多数载流子耗尽状态,少数载流子反型状态)。 16.在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带(曲率 小),对应的有效质量(大),称该能带中的空穴为(重空穴E )。 17.如果杂质既有施主的作用又有受主的作用,则这种杂质称为(两性杂质)。 18.在通常情况下,GaN 呈(纤锌矿型 )型结构,具有(六方对称性),它是(直接带隙) 半导体材料。 19.同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0 值是乙的2倍,那么用类氢模型计算结果是(甲的施主杂质电离能是乙的32/9,的弱束缚 电子基态轨道半径为乙的3/8 )。 20.一块半导体寿命τ=15μs ,光照在材料中会产生非平衡载流子,光照突然停止30μs 后, 其中非平衡载流子将衰减到原来的(1/e 2)。 21.对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、 n i >> /N D -N A / 时,半导体具有 (本征) 半导体的导电特性。 22.在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向(Ev ) 移动;当掺杂浓度一定时,温度从室温逐步增加,费米能级向( Ei )移动。 23.把磷化镓在氮气氛中退火,会有氮取代部分的磷,这会在磷化镓中出现(产生等电子陷 阱)。 24.对于大注入下的直接复合,非平衡载流子的寿命不再是个常数,它与(非平衡载流子浓 度成反比)。 25.杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和

半导体物理第十章3

§10.5 半导体发光 一、辐射复合 半导体中电子从高能量状态向较低能量状态跃迁并伴随发射光子的过程。主要有两种: 1、本征辐射复合(带-带复合) 导带电子跃迁到价带与空穴复合的过程称为本征跃迁,本征跃迁伴随发射光子的过程称为本征辐射复合。对于直接禁带半导体,本征跃迁为直接辐射复合,全过程只涉及一个电子-空穴对和一个光子,辐射效率较高。II-VI 族和具有直接禁带的部分III-V 族化合物的主要发光过程属于这种类型。对于间接禁带半导体,本征跃迁必须借助声子,因而是间接复合。其中包含不发射光子的多声子无辐射复合过程和同时发射光子和声子的间接辐射复合过程。因此,间接禁带半导体中发生本征辐射复合的几率较小,辐射效率低。Ge 、Si 、SiC 和具有间接禁带的部分III-Ⅴ族化合物的本征复合发光属于这种类型,发光比较微弱。 因为带内高能状态是非稳状态,载流子即便受激进入这些状态也会很快通过“热化”过程加入导带底或价带顶。显然,带间跃迁所发射的光子能量与E g 有关。对直接跃迁,发射光子的能量满足 g E h =ν 对间接跃迁,在发射光子的同时,还要发射声子,因而光子能量应满足 p g E E h -=ν 其中E p 是声子能量。 2、非本征辐射复合 涉及杂质能级的辐射复合称为非本征辐射复合。在这种过程中,电子从导带跃迁到杂质能级,或从杂质能级跃迁到价带,或仅仅在 杂质能级之间跃迁。由于这种跃迁不受选择定则的限制,发生的几 率也很高,是间接禁带半导体,特别是宽禁带发光材料中的主要辐 射复合机构。 下面着重讨论电子在施主与受主杂质之间的跃迁,如图10-22所示。当半导体中同时存在施主和受主杂质时,两者之间的库仑作用力使受激态能量增大,其增量△E 与施主和受主杂质之间距离r 成反比。当电子从施主向受主跃迁时,若没有声子参与,发射光子能量为 )4/()(02r q E E E h r A D g επεν++-= 式中E D 和E A 分别代表施主和受主的束缚能,εr 是发光材料的相对介电常数。 由于施主和受主一般以替位原子出现在晶格中,因此r 只能取原子间距的整数倍,相应的光子能量为不连续数值,对应于一系列不连续的发射谱线。但这只在r 较小,即电子在相邻的施主和受主间跃迁时才可区分;随着r 的增大,发射光子的能量差别越来越小,而且电子从施主向受主跃迁所要穿过的距离也越来越大,跃迁几率很小。因此杂质发光主要发生在相邻施-受主之间。 3、GaP 中的非本征辐射复合机构 GaP 的室温禁带宽度E g =2.26eV ,但其本征辐射跃迁效率很低,主要依靠非本征发光中心。图10-23表示GaP 中几种可能的辐射复合机构。 图10-22施主与受主间的

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

半导体物理答案

第一篇 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 题解: 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成 为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的 集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.17eV ;Eg (Ge :0K) = 0.744eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )Eg (0K) = 1.52eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5、 解: (1) 由题意得: [][] )sin(3)cos(1.0)cos(3)sin(1.002 22 0ka ka E a k d dE ka ka aE dk dE +=-=

半导体物理学期末复习试题及答案一

1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 6.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 7.砷化稼的能带结构是( A )能隙结构。 A. 直接 B.间接 8.将Si掺杂入GaAs中,若Si取代Ga则起( A )杂质作

用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的 量子态被电子占据的概率为( A )。 A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 10. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 11. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??=i D S n N q T k V ln 0 D. ??? ? ??≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触 C. 非整流的肖特基接触和整流的欧姆接触 D. 非整流的肖特基接触和非整流的欧姆接触 13. 一块半导体材料,光照在材料中会产生非平衡载流子,若光照

半导体物理学简答题及答案

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。 当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量

3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化外场对电子的作用效果有什么不同; 答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F作用下,电子的波失K不断改变,dk ,其变化 f h dt 率与外力成正比,因为电子的速度与k有关,既然k状态不断变化,则电子的速度必然不断变化。 7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结

《半导体物理与器件》第四版答案第十章

《半导体物理与器件》第四版答案第十章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

Chapter 10 10.1 (a) p-type; inversion (b) p-type; depletion (c) p-type; accumulation (d) n-type; inversion _______________________________________ 10.2 (a) (i) ??? ? ??=i a t fp n N V ln φ ()??? ? ????=1015105.1107ln 0259.0 3381.0=V 2 /14?? ? ???∈=a fp s dT eN x φ ()( ) ()( )( ) 2 /1151914107106.13381.01085.87.114? ? ? ??????=-- 51054.3-?=cm or μ354.0=dT x m (ii) ()???? ????=1016105.1103ln 0259.0fp φ 3758.0=V ()( ) ()( )( ) 2 /1161914103106.13758.01085.87.114? ? ? ??????=--dT x 51080.1-?=cm or μ180.0=dT x m (b) ()03022.03003500259.0=?? ? ??=kT V ??? ? ? ?-=kT E N N n g c i exp 2 υ ()() 3 19 19 3003501004.1108.2?? ? ????= ?? ? ??-?03022.012.1exp 221071.3?= so 111093.1?=i n cm 3- (i)()???? ????=11151093.1107ln 03022.0fp φ 3173.0=V ()( ) ()( )( ) 2 /1151914107106.13173.01085.87.114? ? ? ??????=--dT x 51043.3-?=cm or μ343.0=dT x m (ii) ()???? ????=11161093.1103ln 03022.0fp φ 3613.0=V ()( ) ()( )( ) 2 /1161914103106.13613.01085.87.114? ? ? ??????=--dT x 51077.1-?=cm or μ177.0=dT x m _______________________________________ 10.3 (a) ()2 /14max ? ? ? ???∈=='d fn s d dT d SD eN eN x eN Q φ ()()[]2/14fn s d eN φ∈= 1st approximation: Let 30.0=fn φV Then ()281025.1-? ()()()()()() [] 30.01085.87.114106.11419--??=d N 141086.7?=?d N cm 3- 2nd approximation: ()2814.0105.11086.7ln 0259.01014=??? ? ????=fn φV Then ()2 81025.1-? ()()()()()() [] 2814.01085.87.114106.11419--??=d N 141038.8?=?d N cm 3-

半导体物理综合练习题()参考标准答案

半导体物理综合练习题()参考答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 1、晶格常数2.5?的一维晶格,当外加102V/m 和107V/m 电场时,试分别计算电子自能带底运动到能带顶所需时间。(1?=10nm=10-10m ) 2、指出下图中各表示的是什么半导体? 3、如图所示,解释一下n 0~T 关系曲线。

4 4、若费米能E F =5eV ,利用费米分布函数计算在什么温度下电子占据E=5.5eV 能级的概率为1%。并计算在该温度下电子分布概率0.9~0.1所对应的能量区间。 5、两块n 型硅材料,在某一温度T 时,第一块与第二块的电子密度之比为n 1/n 2=e ( e 是自然对数的底) (1)如果第一块材料的费米能级在导带底之下3k 0T ,试求出第二块材料中费米能级的位置; (2)求出两块材料中空穴密度之比p 1/p 2。

5 6、硼的密度分别为N A1和N A2(N A1>N A2)的两个硅样品,在室温条件下: (1)哪个样品的少子密度低? (2)哪个样品的E F 离价带顶近? (3)如果再掺入少量的磷(磷的密度N`D < N A2),它们的E F 如何变化? 7、现有三块半导体硅材料,已知在室温下(300K)它们的空穴浓度分别为p 01 =2.25×1016 cm -3、 p 02=1.5×1010cm -3 、p 03=2.25×104cm -3。 (1)分别计算这三块材料的电子浓度n 01 、n 02、 n 03; (2)判别这三块材料的导电类型; (3)分别计算这三块材料的费米能级的位置。

半导体物理第六章1

第6章 pn结 把一块p型半导体和一块n型半导体键合在一起,就形成了pn结。pn 结是几乎一切半导体器件的结构基础,了解和掌握pn结的性质具有很重要的实际意义。 §6.1 pn结及其热平衡状态下的能带结构 一、pn结的形成及其杂质分布 半导体产业形成50余年来,已开发了多种形成pn结的方法,各有其特点。 1、合金法 把一小粒高纯铝置于n型单晶硅片的清洁表面上,加热到略高于Al-Si 系统共熔点(580℃)的温度,形成铝硅熔融体,然后降低温度使之凝固,这时在n型硅片的表面就会形成—含有高浓度铝的p型硅薄层,它与n型硅衬底的界面即为pn结(这时称为铝硅合金结)。欲在p型硅上用同样的方法制造pn 结,须改用金锑(Au-Sb)合金,即用真空镀膜法在p型硅的清洁表面镀覆一层含锑0.1%的金膜,然后在400℃左右合金化。 合金结的特点是合金掺杂层的杂质浓度高,而且分布均匀;由于所用衬底一般是杂质浓度较低且分布均匀的硅片,因此形成的pn结具有杂质浓度突变性较大的特点,如图6-1所示。具有这种形式杂质分布的pn 结通常称为单边突变结(p+n结或pn+结)。 合金结的深度对合金过程的温度和时间十分敏感,较难控制。目前 已基本淘汰。 N(x) N D N A x j

x N A 图6-1 合金结的杂质分布图6-2 扩散法制造pn结的过程 x j N D 2、扩散法 1956年发明的能精确控制杂质分布的固态扩散法为半导体器件的产业化及其后的长足发展奠定了基础。扩散法利用杂质原子在高温下能以一定速率向固体内部扩散并形成一定分布的性质在半导体内形成pn结。由于杂质在某些物质,例如SiO2中的扩散系数极低,利用氧化和光刻在硅表面形成选择扩散的窗口,可以实现pn结的平面布局,如图6-2所示,从而诞生了以氧化、光刻、扩散为核心的半导体平面工艺,开创了以集成电路为标志的微电子时代。 用扩散法形成的杂质分布由扩散过程及杂质补偿决定。在表面杂质浓度不变的条件下形成的是余误差分布,在杂质总量不变的条件下形成的是高斯分布,如本节后的附图所示。 3、其他方法 形成pn结的方法还有离子注入法、外延法和直接键合法等,而且这些方法已逐渐成为半导体工业的主流工艺。《半导体工艺》课程将详细介绍,这里不赘述。 4、pn结的杂质分布 pn结的杂质分布一般可近似为两种,即突变结和线性缓变结。合金pn结、高表面浓度的浅扩散结、用离子注入、外延和直接键合法制备的结一般可认为是突变结,而低表面浓度的深扩散结一般视为线性缓变结。直接键合法制备的突变结是最理想的突变结。 图6-3 扩散结的杂质分布形式

2009半导体物理试卷-B卷答案

………密………封………线………以………内………答………题………无………效…… 电子科技大学二零 九 至二零 一零 学年第 一 学期期 末 考试 半导体物理 课程考试题 B 卷 ( 120分钟) 考试形式: 闭卷 考试日期 2010年 元月 18日 课程成绩构成:平时 10 分, 期中 5 分, 实验 15 分, 期末 70 分 一、填空题: (共16分,每空1 分) 1. 简并半导体一般是 重 掺杂半导体,忽略。 2. 处在饱和电离区的N 型Si 半导体在温度升高后,电子迁移率会 下降/减小 ,电阻 3. 4. 随温度的增加,P 型半导体的霍尔系数的符号 由正变为负 。 5. 在半导体中同时掺入施主杂质和受主杂质,它们具有 杂质补偿 的作用,在制 造各种半导体器件时,往往利用这种作用改变半导体的导电性能。 6. ZnO 是一种宽禁带半导体,真空制备过程中通常会导致材料缺氧形成氧空位,存在 氧空位的ZnO 半导体为 N/电子 型半导体。 7. 相对Si 而言,InSb 是制作霍尔器件的较好材料,是因为其电子迁移率较 高/ 8. 掺金工艺通常用于制造高频器件。金掺入半导体Si 中是一种 深能级 9. 有效质量 概括了晶体内部势场对载流子的作用,可通过回旋共振实验来测量。 10. 某N 型Si 半导体的功函数W S 是4.3eV ,金属Al 的功函数W m 是4.2 eV , 该半导

………密………封………线………以………内………答………题………无………效…… 体和金属接触时的界面将会形成 反阻挡层接触/欧姆接触 。 11. 有效复合中心的能级位置靠近 禁带中心能级/本征费米能级/E i 。 12. MIS 结构中半导体表面处于临界强反型时,表面少子浓度等于内部多子浓度,表面 13. 金属和n 型半导体接触形成肖特基势垒,若外加正向偏压于金属,则半导体表面电 二、选择题(共15分,每题1 分) 1. 如果对半导体进行重掺杂,会出现的现象是 D 。 A. 禁带变宽 B. 少子迁移率增大 C. 多子浓度减小 D. 简并化 2. 已知室温下Si 的本征载流子浓度为310105.1-?=cm n i 。处于稳态的某掺杂Si 半导体 中电子浓度315105.1-?=cm n ,空穴浓度为312105.1-?=cm p ,则该半导体 A 。 A. 存在小注入的非平衡载流子 B. 存在大注入的非平衡载流子 C. 处于热平衡态 D. 是简并半导体 3. 下面说法错误的是 D 。 A. 若半导体导带中发现电子的几率为0,则该半导体必定处于绝对零度 B. 计算简并半导体载流子浓度时不能用波尔兹曼统计代替费米统计 C. 处于低温弱电离区的半导体,其迁移率和电导率都随温度升高而增大 D. 半导体中,导带电子都处于导带底E c 能级位置 4. 下面说法正确的是 D 。 A. 空穴是一种真实存在的微观粒子 B. MIS 结构电容可等效为绝缘层电容与半导体表面电容的的并联 C. 稳态和热平衡态的物理含义是一样的

半导体物理习题答案

第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: ?????????????????????????????????????????? (1)同理,-K状态电子的速度则为: ????????????????????????????????????????(2)从一维情况容易看出:??????? ????????????????????????????????????????????????????????(3)同理有:????????????????????????????? ????????????????????????????????????????????????????????(4)???????????????????????????????????????????????????????? ?????????????????????(5) 将式(3)(4)(5)代入式(2)后得: ??????????????????????????????????????????(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关系??????????????????? ??????????????????????????????????????????????? (1) ????????????????????????????????????(2)令???得:????? 当时,代入(2)得: 对应E(k)的极小值。 ?当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度????????? (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

电子科技大学半导体物理期末考试试卷B试题答案

电子科技大学二零 九 至二零 一零 学年第 一 学期期 末 考试 半导体物理 课程考试题 B 卷 ( 120分钟) 考试形式: 闭卷 考试日期 2010年 元月 18日 课程成绩构成:平时 10 分, 期中 5 分, 实验 15 分, 期末 70 分 一、填空题: (共16分,每空1 分) 1. 简并半导体一般是 重 掺杂半导体,忽略。 3. 5. 在半导体中同时掺入施主杂质和受主杂质,它们具有 杂质补偿 的作用,在制 造各种半导体器件时,往往利用这种作用改变半导体的导电性能。 6. ZnO 是一种宽禁带半导体,真空制备过程中通常会导致材料缺氧形成氧空位,存在 氧空位的ZnO 半导体为 N/电子 型半导体。 9. 有效质量 概括了晶体内部势场对载流子的作用,可通过回旋共振实验来测量。 10. 某N 型Si 半导体的功函数W S 是4.3eV ,金属Al 的功函数W m 是4.2 eV , 该半导体

和金属接触时的界面将会形成 反阻挡层接触/欧姆接触 。 11. 有效复合中心的能级位置靠近 禁带中心能级/本征费米能级/E i 。 12. MIS 结构中半导体表面处于临界强反型时,表面少子浓度等于内部多子浓度,表面 13. 金属和n 型半导体接触形成肖特基势垒,若外加正向偏压于金属,则半导体表面电 二、选择题(共15分,每题1 分) 1. 如果对半导体进行重掺杂,会出现的现象是 D 。 A. 禁带变宽 B. 少子迁移率增大 C. 多子浓度减小 D. 简并化 2. 已知室温下Si 的本征载流子浓度为310105.1-?=cm n i 。处于稳态的某掺杂Si 半导体 中电子浓度315105.1-?=cm n ,空穴浓度为312105.1-?=cm p ,则该半导体 A 。 A. 存在小注入的非平衡载流子 B. 存在大注入的非平衡载流子 C. 处于热平衡态 D. 是简并半导体 3. 下面说法错误的是 D 。 A. 若半导体导带中发现电子的几率为0,则该半导体必定处于绝对零度 B. 计算简并半导体载流子浓度时不能用波尔兹曼统计代替费米统计 C. 处于低温弱电离区的半导体,其迁移率和电导率都随温度升高而增大 D. 半导体中,导带电子都处于导带底E c 能级位置 4. 下面说法正确的是 D 。 A. 空穴是一种真实存在的微观粒子 B. MIS 结构电容可等效为绝缘层电容与半导体表面电容的的并联 C. 稳态和热平衡态的物理含义是一样的 D. 同一种半导体材料中,电子迁移率比空穴迁移率高 5. 空间实验室中失重状态下生长的GaAs 与地面生长的GaAs 相比,载流子迁移率要

半导体物理答案知识讲解

半导体物理答案

一、选择 1.与半导体相比较,绝缘体的价带电子激发到导带所需的能量(比半导体的大); 2.室温下,半导体Si 掺硼的浓度为1014cm -3,同时掺有浓度为1.1×1015cm -3的磷,则电子 浓度约为(1015cm -3 ),空穴浓度为(2.25×105cm -3 ),费米能级为(高于E i );将该半导 体由室温度升至570K ,则多子浓度约为(2×1017cm -3),少子浓度为(2×1017cm -3),费米 能级为(等于E i )。 3.施主杂质电离后向半导体提供(电子),受主杂质电离后向半导体提供(空穴),本征 激发后向半导体提供(空穴、电子); 4.对于一定的n 型半导体材料,温度一定时,减少掺杂浓度,将导致(E F )靠近E i ; 5.表面态中性能级位于费米能级以上时,该表面态为(施主态); 6.当施主能级E D 与费米能级E F 相等时,电离施主的浓度为施主浓度的(1/3)倍; 重空穴是指(价带顶附近曲率较小的等能面上的空穴) 7.硅的晶格结构和能带结构分别是(金刚石型和间接禁带型) 8.电子在晶体中的共有化运动指的是电子在晶体(各元胞对应点出现的几率相同)。 9.本征半导体是指(不含杂质与缺陷)的半导体。 10.简并半导体是指((E C -E F )或(E F -E V )≤0)的半导体 11.3个硅样品的掺杂情况如下: 甲.含镓1×1017cm -3;乙.含硼和磷各1×1017cm -3;丙.含铝1×1015cm -3 这三种样品在室温下的费米能级由低到高(以E V 为基准)的顺序是(甲丙乙) 12.以长声学波为主要散射机构时,电子的迁移率μn 与温度的(B 3/2次方成反比) 13.公式*/q m μτ=中的τ是载流子的(平均自由时间)。 14.欧姆接触是指(阻值较小并且有对称而线性的伏-安特性)的金属-半导体接触。 15.在MIS 结构的金属栅极和半导体上加一变化的电压,在栅极电压由负值增加到足够大 的正值的的过程中,如半导体为P 型,则在半导体的接触面上依次出现的状态为(多数载 流子堆积状态,多数载流子耗尽状态,少数载流子反型状态)。 16.在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带(曲 率小),对应的有效质量(大),称该能带中的空穴为(重空穴E )。 17.如果杂质既有施主的作用又有受主的作用,则这种杂质称为(两性杂质)。 18.在通常情况下,GaN 呈(纤锌矿型 )型结构,具有(六方对称性),它是(直接带 隙)半导体材料。 19.同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0值是乙的2倍,那么用类氢模型计算结果是(甲的施主杂质电离能是乙的32/9,的 弱束缚电子基态轨道半径为乙的3/8 )。 20.一块半导体寿命τ=15μs,光照在材料中会产生非平衡载流子,光照突然停止30μs 后,其中非平衡载流子将衰减到原来的(1/e 2)。 21.对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够 高、n i >> /N D -N A / 时,半导体具有 (本征) 半导体的导电特性。 22.在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向 (Ev )移动;当掺杂浓度一定时,温度从室温逐步增加,费米能级向( Ei )移动。 23.把磷化镓在氮气氛中退火,会有氮取代部分的磷,这会在磷化镓中出现(产生等电子 陷阱)。 24.对于大注入下的直接复合,非平衡载流子的寿命不再是个常数,它与(非平衡载流子 浓度成反比)。

相关文档
相关文档 最新文档