文档视界 最新最全的文档下载
当前位置:文档视界 › 高频第三次实验

高频第三次实验

高频第三次实验
高频第三次实验

高频第三次实验 变容二极管和相位鉴频器实验

一实验目的

1测量静态调制特性(v-f 曲线),测量调制灵敏度(v=-3)。 2观测分析调制波(调制信号1kHz )

3联调调频器频电路,使鉴频输出最大不失真,测量鉴频器灵敏度。 4联调无线发射接收电路,观测信号流程,测量主要观测点信号波形。 二实验原理

(1)变容二极管调频原理

所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡信号)的瞬时频率,使其按调制信号的规律变化。

设调制信号: ()t V t Ω=ΩΩcos υ,载波振荡电压为:()t A t a o o ωcos = 根据定义,调频时载波的瞬时频率()t ω随()t Ωυ成线性变化,即

()t t V K t o f o Ω?+=Ω+=Ωcos cos ωωωω (6-1) 则调频波的数字表达式如下:

()???

?

??ΩΩ+=Ω

t V K t A t a f o o f sin cos ω 或 ()()

t m t A t a f o o f Ω+=sin cos ω

(6-2)

式中: Ω=?V K f ω是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。比例常数K f 亦称调制灵敏度,代表单位调制电压所产生的频偏。

式中:F f V K m f f ?=Ω?=Ω=Ωω称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。由上公式可见,调频波是一等幅的疏密波,可以用示波器观察其波形。

如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图6—1所示。

图6-1 变容二极管调频原理电路

变容二极管j C 通过耦合电容1C 并接在N LC 回路的两端,形成振荡回路总电容的一部分。因而,振荡回路的总电容C 为:

j

N C C C +=

(6-3)振荡频率为:

)

(21

21j N C C L LC

f +=

=

ππ

(6-4)加在变容二极管上的反向偏压为:

()()()高频振荡,可忽略调制电压直流反偏O Q R V V υυ++=Ω

变容二极管利用PN 结的结电容制成,在反偏电压作用下呈现一定的结电容(势垒电容),而且这个结电容能灵敏地随着反偏电压在一定范围内变化,其关系曲线称j C ~R υ曲线,如图6—2所示。

由图可见:未加调制电压时,直流反偏Q V (在教材称0V )所对应的结电容为Ωj C (在教材中称0C )。当反偏增加时,j C 减小;反偏减小时,j C 增大,其变化具有一定的非线性,当调制电压较小时,近似为工作在j C ~R υ曲线的线性段,j C 将随调制电压线性变化,当调制电压较大时,曲线的非线性不可忽略,它将给调频带来一定的非线性失真。

图6-2 用调制信号控制变容二极管结电容

我们再回到图6—1,并设调制电压很小,工作在j C ~R υ曲线的线性段,暂不考虑高频电压对变容二极管作用。

设 t V V Q Q R Ω+=cos υ (6-5) 由图6—2(c )可见:变容二极的电容随υR 变化。

即: t C C C m jQ j Ω-=cos (6-6) 由公式(3)可得出此时振荡回路的总电容为

t C C C C C C m jQ N j N Ω-+=+='cos

由此可得出振荡回路总电容的变化量为:

()

t C C C C C C m j jQ N Ω-=?=+-'=?cos (6-7) 由式可见:它随调制信号的变化规律而变化,式中m C 是变容二极管结电容变化的最大幅值。我们知道:当回路电容有微量变化C ?时,振荡频率也会产生f ?的变化,其关系如下:

C C

f f ??

≈?210

(6-8)

式中,是0f 未调制时的载波频率;0C 是调制信号为零时的回路总电容,显然

jQ N o C C C +=

由公式(6-4)可计算出0f (调频中又称为中心频率)。

即:

)

(21

0jQ N C C L f +=

π\

将(6-7)式代入(6-8)式,可得:

t f t C C f t f m Ω?=Ω=

?cos cos )/(21

)(00 (6-9)

频偏:

m C C f f )/(21

00=

? (6-10)

振荡频率: ()()t f f t f f t f o o Ω?+=?+=cos (6-11) 由此可见:振荡频率随调制电压线性变化,从而实现了调频。其频偏f ?与回路的中心频率0f 成正比,与结电容变化的最大值m C 成正比,与回路的总电容0C 成反比。

为了减小高频电压对变容二极管的作用,减小中心频率的漂移,常将图6—1中的耦合电容1C 的容量选得较小(与j C 同数量级),这时变容二极管部分接入振荡回路,即振荡回

图6-3 Cj 部分接入回路

路的等效电路如图6—3所示。理论分析将证明这时回路的总电容为

)

/(11'0j j N C C C C C C +?+= (6-12)

回路总电容的变化量为:

)/(11'

0j j N C C C C C C +?+= (6-12)

回路总电容的变化量为

j

C P C ?≈?2' (6-13)

频偏:

f

P C C f P f m ?=?≈?2002')/(21

(6-14)

式中,()

jQ C C C P +=11称为接入系数。

关于直流反偏工作点电压的选取,可由变容二极管的j C ~R υ曲线决定。从曲线中可见,对不同的R υ值,其曲线的斜率(跨导)υ??=j C C S 各不相同。R υ较小时,C S 较大,产生的频偏也大,但非线性失真严重,同时调制电压不宜过大。反之,R υ较大时,C S 较小,达不到所需频偏的要求,所以Q V 一般先选在j C ~R υ曲线线性较好,且C S 较大区段的中间位置,大致为手册上给的反偏数值,例:2CC1C ,V V Q 4=。本实验将具体测出实验板上的变容二极管的j C ~R υ曲线,并由同学们自己选定Q V 值,测量其频偏f ?的大小。

(2)变容二极管j C ~R υ曲线的测量,将图6—1的振荡回路重画于图6—4,jX C 代表不同反偏RX υ时的结电容,其对应的振荡频率为X f 。若去掉变容二极管,回路则由N C 、L 组成,对应的振荡频率为N f ,它们分别为

)

(21

jx N x C C L f +=π (6-15)

N

LC f π21=

(6-16)

图6-4 测量Cj ~VR 曲线

由式(6-15)、(6-16)可得:

N X

N

N X X N jx C f f C f f f C ?-=?-=)1(22

2

22 (6-17) N f 、X f 易测量,如何求N C ?将一已知电容K C 并接在回路N LC 两端,如图6-5所示。

此时,对应的频率为K f ,有

)

(21

K N K C C L f +=

π (6-18)

由式(6-16)、(6-18)可得:

K K

N K

N C f f f C ?-=2

22

(6-19) (3)调制灵敏度

单位调制电压所引起的频偏称为调制灵敏度,以f S 表示,单位为KHz/V ,即

m f u f S Ω?= (6-20)

式中,

m

u Ω为调制信号的幅度(峰值)。

f ?为变容管的结电容变化j C ?时引起的频率变化量,由于变容管部分接入谐振回路,

则Cj ?引起回路总电容的变化量∑?C 为

Cj P C ?=?∑2 (6-21)

频偏较小时,f ?与∑?C 的关系可采用下面近似公式,即

∑∑??-≈?Q

C C f f 210 (6-22) 将式(6-22)代入(6-20)中得

m

Q f U C C f S Ω∑??∑=20 (6-23)

式中,∑?C 为变容二极管结电容的变化引起回路总电容的变化量,∑Q C 为静态时谐振回路的总电容,即

Q

C Q C Q C C C C C C ++

=∑1 (6-24)

调制灵敏度f S 可以由变容二极管U j C -特性曲线上Ωu 处的斜率C K KC 及式(6-23)计算,S f 越大,调制信号的控制作用越强,产生的频偏越大。

2、实验线路 见附图G1

使用12V 供电,振荡器Q1使用3DG12C ,变容管使用Bb910,Q2为隔离缓冲级。

主要技术指标:主振频率MHZ f 7.100=,最大频偏KHZ f m 20±=?。

本实验中,由R1、R2、W1、R3组成变容二极管的直流偏压电路。C3、C4、C12组成变容二极管的不同接入系数。IN1为调制信号输入端,由L4、C8、C7、C9、C5和振荡管组成LC 调制电路。

1.鉴频器概述

鉴频器使输出电压和输入信号频率相对应的电路。按用途可以分为两类:第一类用于调频信号的解调。常见的有斜率鉴频器、相位鉴频器、比例鉴频器等。对这类电路的要求主要是非线性失真小,噪声门限低。第二类用于频率误差测量,如用在自动频率控制环路中产生误差信号的鉴频器。对于这类电路的零点漂移限制较严,对非线性失真和噪声门限则要求不高。

实现调频信号解调的鉴频电路可分为三类,第一类是调频——调幅变换型。第二类是相依乘法鉴频型,这种类型是将调频波经过移相电路变成调相调频波,其相位的变化正好与调频波瞬时频率的变化呈线性关系,然后将调相调频波与原调频波进行相位比较,通过低通滤波器取出解调信号,因为相位比较器通常用乘法器组成,所以称为相移乘法鉴频;第三类是脉冲均值型。

2.鉴频器的主要参数

3.2.1鉴频特性(曲线)

指鉴频器的输出电压u0与输入电压瞬时频率f 或频偏Δf 之间的关系曲线。 理想鉴频特性曲线应是一条直线,但实际上往往有弯曲,呈S 形,如下图所示。

2.2鉴频器的主要参数

1)鉴频器的中心频率f0

鉴频器的中心频率f0对应于鉴频特性曲线原点处的频率。通常,由于鉴频器中心与

中频频率相同。 2)鉴频带宽Bm

鉴频带宽Bm:是指鉴频器能够不失真地解调所允许输入信号频率变化的最大范围。 3)鉴频器的线性度

鉴频器的线性度:是指鉴频特性曲线在鉴频带宽内的线性特性。 4)鉴频跨导SD

鉴频跨导SD :是指鉴频器在载频处的斜率,它表示单位频偏所能产生的解调输出电压。鉴频跨导又叫做鉴频灵敏度。用公式表示为:

跨导也可以理解为将输入频率转换为输出电压的能力或效率,因此又称为鉴频效率 3.鉴频方法 3.1直接鉴频法

是直接从调频信号的频率中提取原来调制信号的方法。主要有脉冲计数鉴频法。

(a )

(b )

c

o o D f f f du du S df

d f

=?==

=

?

3.2间接鉴频法

就是先对调频信号进行变换或处理,再从变换后的信号中提取原调制信 号的鉴频方法。又可分为振幅鉴频法、相位鉴频法两大类。 本设计采用相位鉴频法,原理如下:

相位鉴频器将输入的调频波UFM 做变换,变换成调相调频波UPM/FM,在与调频波UFM 叠加,在电路参数与信号参数匹配的情况下,得到幅度与调制信号呈线性关系的调幅调相调频波,最后经包络检波,解调出调制信号。

鉴相器是用来比较两个同频输入电压U 1(t ) 和U 2(t) 的相位,而输出电压 U 0(t) 是两个输入电压相位差的函数, 即

)]

()([)(21t t f t u o ??-=

3.2乘积型相位鉴频器原理说明

利用模拟乘法器的相乘原理可实现乘积型相位检波,其基本原理是:在乘法器的一个输入端输入调频波()s u t ,设其表达式为 :

()()cos cos s sm c f u t U t m t ω=+Ω

式中,f m ——调频系数,/f m w =?Ω或/f m f f =?,其中ω?为调制信号的频偏。 另一输入端输入经线性移相网络移相后的调频调相波()'

s u t ,设其表达式为:

(){()''cos sin 2s sm c f u t U t m t πωφω??=+Ω++??

??

()'sin sin sm c f U t m t ωφω??=+Ω+??

式中,()φω——移相网络的相频特性。 这时乘法器的输出()0u t 为

()()()()()''01

sin 2sin 2

E s s E sm sm c f u t K u t u t K U U m t ωφω??==

+Ω+??()'1

2

E sm sm K U U φω+ 式中,第一项为高频分量,可以被低通滤波器滤掉。第二项是所需要的频率分量,只要线性移相网络的相频特性()φω在调频波的频率变化范围内是线性的,当()0.4rad φω≤,

实验三实验报告

实验三实验报告 1、简易计算器 (1)问题描述 由键盘输入一算术表达式,以中缀形式输入,试编写程序将中缀表达式转换成一棵二叉表达式树,通过对该的后序遍历求出计算表达式的值。 (2)基本要求 a.要求对输入的表达式能判断出是否合法。不合法要有错误提示信息。 b.将中缀表达式转换成二叉表达式树。 c.后序遍历求出表达式的值 (3)数据结构与算法分析 一棵表达式树,它的树叶是操作数,如常量或变量名字,而其他的结点为操作符。 a.建立表达式树。二叉树的存储可以用顺序存储也可用链式存储。当要创建二叉树时,先从表达式尾部向前搜索,找到第一个优先级最低的运算符,建立以这个运算符为数据元素的根结点。注意到表达式中此运算符的左边部分对应的二叉绔为根结点的左子树,右边部分对应的是二叉绔为根结点的右子树,根据地这一点,可用递归调用自己来完成对左右子树的构造。 b.求表达式的值。求值时同样可以采用递归的思想,对表达式进行后序遍历。先递归调用自己计算左子树所代表的表达式的值,再递归调用自己计算右子树代表的表达式的值,最后读取根结点中的运算符,以刚才得到的左右子树的结果作为操作数加以计算,得到最终结果。 (4)需求分析 程序运行后显示提示信息,输入任意四则运算表达式,倘若所输入的表达式不合法程序将报错。 输入四则运算表达式完毕,程序将输出运算结果。 测试用的表达式须是由+、-、*、/运算符,括号“(”、“)”与相应的运算数组成。运算数可以是无符号浮点型或整型,范围在0~65535。 (5)概要设计 二叉树的抽象数据类型定义 ADT BinaryTree{ 数据对象:表达式运算数{ num | 0< num < 65535 } 表达式运算符{ opr | + , - , * , / } 数据关系:由一个根结点和两棵互不相交的左右子树构成,且树中结点具有层次关系。根结点必须为运算符,叶子结点必须为运算数。 基本操作: InitBiTree(&T , &S) 初始条件:存在一四则运算前缀表达式S。 操作结果:根据前缀表达式S构造相应的二叉树T。 DestroyBiTree(&T) 初始条件:二叉树T已经存在。 操作结果:销毁T。 Value(&T) 初始条件:二叉树T已经存在。 操作结果:计算出T所表示的四则运算表达式的值并返回。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

高频实验指导书精简版

实验一高频小信号调谐放大器实验 一、实验目的 1、进一步掌握高频小信号调谐放大器的工作原理。 2、学会小信号调谐放大器的设计方法。 二、实验内容 1、调节谐振回路使谐振放大器谐振在10.7MHz。 2、测量谐振放大器的电压增益。 3、测量谐振放大器的通频带。 4、判断谐振放大器选择性的优劣。 三、实验仪器 1、BT-3(G)型频率特性测试仪(选项)一台 2、20MHz模拟示波器一台 3、数字万用表一块 4、调试工具一套 四、实验原理 图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。 图1-1 小信号调谐放大器 五、实验步骤 本实验中,用到BT-3频率特性测试仪和频谱仪的地方可选做。 参考所附电路原理图G2。先调静态工作点,然后再调谐振回路。 1、按下开关KA1,则LEDA1亮。

2、调整晶体管QA1的静态工作点: 不加输入信号(u i =0),即将TTA1接地,用万用表直流电压档(20V 档)测量三极管QA1发射极对地的电压u EQ (即测P6与G 两焊点之间的电压),调节WA1使u EQ =3V 左右,根据实验参考电路计算此时的u BQ ,u CEQ ,u EQ 及I EQ 。 3、使放大器的谐振回路谐振在10.7MHz 方法是:BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率o f =10.7MHz 所对应的幅值最大。 如果没有频率特性测试仪,可用示波器来观察调谐过程,方法是:在TTA1处输入由高频信号源提供的频率为10.7MHz ,峰峰值Vp-p-=20~100mV 的信号,用示波器在TTA2处观察输出波形,调节TA1使TTA2处信号幅度最大。 4、电压增益A V0 使用BT-3频率特性测试仪测0v A 的方法如下: 在测量前,先要对测试仪的y 轴放大器进行校正,即零分贝校正,调节“输出衰减”和“y 轴增益”旋钮,使屏幕上显示的方框占有一定的高度,记下此时的高度和此时“输出衰减”的读数N 1dB ,然后接入被测放大器,在保持y 轴增益不变的前提下,改变扫频信号的“输出衰减”旋钮,使谐振曲线清晰可见。记下此时的“输出衰减”的值N 2dB ,则电压增益为 A V0=(N1-N2)dB 若用示波器测量,则为输出信号幅度大小与输入信号幅度大小之比。方法如下: 用示波器测输入信号的峰峰值,记为U i 。测输出信号的峰峰值记为U 0。则小信号放大的电压放大倍数A V0=U 0/U i 。如果A V0较小,可以通过调节静态工作点来改善。 5、测量通频带BW 用BT-3频率特性测试仪测量BW : 先调节“频率偏移”(扫频宽度)旋钮,使相邻两个频标在横轴上占有适当的格数,然后接入被测放大器,调节“输出衰减”和y 轴增益,使谐振特性曲线在纵轴占有一定高度,测出其曲线下降3dB 处两对称点在横轴上占有的宽度(记为BW1),根据内频标就可以近似算出放大器的通频带BW= BW1=B 0.7。 6、放大器的选择性 放大器选择性的优劣可用放大器谐振曲线的矩形系数K r0.1表示 用步骤5中同样的方法测出B 0.1即可得: 7 .01.07.01.01.022f f B B K r ??== 由于处于高频区,存在分布参数的影响,放大器的各项技术指标满足设计要求后的元件参数值与设计计算值有一定的偏差,所以在调试时要反复仔细调整才能使谐振回路处于谐振状态。在测试要保证接地良好。

实验6 HF高频RFID通信协议实验-V20170317

实验6 HF高频RFID通信协议实验-V20170317 1.实验目的 掌握高频读卡器的通讯协议; 掌握高频模块工作原理; 掌握本平台高频模块的操作过程; 2.实验设备 硬件:RFID实验箱套件,电脑等; 软件:Keil,串口调试助手; STC_ISP软件:配套光盘\第三方应用软件\STC_ISP 异或计算小软件:配套光盘\第三方应用软件\异或计算小软件 源码路径:配套光盘\源代码\RFID基础实验\实验 6 HF高频RFID通信协议实验-V20170317 Hex路径:配套光盘\源代码\RFID基础实验\实验6 HF高频RFID通信协议实验-V20170317\out 3.实验原理 3.1 高频RFID系统 典型的高频HF(13.56MHz)RFID系统包括阅读器(Reader)和电子标签(Tag,也称应答器Responder)。电子标签通常选用非接触式IC卡,又称智能卡,可读写,容量大,有加密功能,数据记录可靠。IC卡相比ID卡而言,使用更方便,目前已经大量使用在校园一卡通系统、消费系统、考勤系统、公交消费系统等。目前市场上使用最多的是PHILIPS的Mifare系列IC卡。读写器(也称为“阅读器”)包含有高频模块(发送器和接收器)、控制单元以及与卡连接的耦合元件。由高频模块和耦合元件发送电磁场,以提供非接触式IC 卡所需要的工作能量以及发送数据给卡,同时接收来自卡的数据。此外,大多数非接触式IC卡读写器都配有上传接口,以便将所获取的数据上传给另外的系统(个人计算机、机器人控制装置等)。IC卡由主控芯片ASIC(专用集成电路)和天线组成,标签的天线只由线圈组成,很适合封状到卡片中,常见IC卡内部结构如图3.1所示: 图3.1 IC卡内部结构图 较常见的高频RFID应用系统如图3.2所示,IC卡通过电感耦合的方式从读卡器处获得能量。

实验3路由器的基本配置-实验报告模板

电子科技大学中山学院实验报告 实验信息 课程名称实验名称实验时间计算机网络实验 实验 3路由器的基本配置指导老师 实验地点 学生信息 学院:计算机学院班级:组号:成绩教师签名批改时间 2018-2019 学年第 1 学期

报告内容 1、实验目的 (1)掌握路由器网络操作系统的基本操作 (2)掌握路由器登录的几种模式 (3)掌握路由器的几种基本配置模式 (4)掌握路由器接口 IP 地址的配置 2、实验环境 实验分组进行。每人一台装有Packet Tracer软件的PC,每组两台交换机、一台路由器及相关线缆。 实验拓扑图如下所示: 3、实验内容 (1)标注实验拓扑图中的 PC和路由器接口的 IP 地址。答: (2)记录在超级终端管理配置路由器的过程。(截图并说明)答: enable ( 进入特权模式 ) conf t (进入全局配置模式) hostname R1 (R1为新设置的路由器名称) 1

exit exit进入全局配置模式 【在 PC0超级终端配置路由f0/0接口】 int f0/0 (进入 f0/0端口配置模式 ) ip address 192.168.1.11255.255.255.0 (设置 f0/0端口 ip 地址和掩码 ) no shutdown (激活端口 ) 【在 Laptop1超级终端配置路由 f0/1接口】 int f0/1 (进入 f0/1端口配置模式 ) ip address 10.1.1.10 255.0.0.0 (设置 f0/1端口 ip 地址和掩码 ) no shutdown (激活端口 ) (3)记录使用Ping 命令来测试两个网段是否已经连通。(截图)答: (4)记录主机 telnet 登录路由器的过程(截图)。答: (5)总结实验中容易出现的错误。 答:容易忽略电脑跨局域网访问对方电脑时需要设置路由器网关才能连通 2

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

高频电子技术实验指导书

高频电子技术 实验指导书安阳工学院电子信息与电气工程学院

目录 实验一、小信号调谐放大器 -------------------------------------- 2 实验二、通频带展宽----------------------------------------------5 实验三、LC与晶体振荡器 ---------------------------------------- 8 实验四、幅度调制与解调---------------------------------------- 18 实验五、集成乘法器混频实验 ----------------------------------- 19实验六、变容二极管调频器与相位鉴频器-------------------------22

实验一、小信号调谐放大器 一、实验目的 1)、了解谐振回路的幅频特性分析——通频带与选择性。 2)、了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。 3)、掌握放大器的动态范围及其测试方法。 二、实验预习要求 实验前,预习教材选频网络、高频小信号放大器相应章节。 三、实验原理说明 1、小信号调谐放大器基本原理 高频小信号放大器电路是构成无线电设备的主要电路,它的作用是放大 信道中的高频小信号。为使放大信号不失真,放大器必须工作在线性范围内,例如无线电接收机中的高放电路,都是典型的高频窄带小信号放大电路。窄带放大电路中,被放大信号的频带宽度小于或远小于它的中心频率。如在调幅接收机的中放电路中,带宽为9KHz,中心频率为465KHz,相对带宽Δf/f0约为百分之几。因此,高频小信号放大电路的基本类型是选频放大电路,选频放大电路以选频器作为线性放大器的负载,或作为放大器与负载之间的匹配器。它主要由放大器与选频回路两部分构成。用于放大的有源器件可以是半导体三极管,也可以是场效应管,电子管或者是集成运算放大器。用于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表面波滤波器等。本实验用三极管作为放大器件,LC谐振回路作为选频器。在分析时,主要用如下参数衡量电路的技术指标:中心频率、增益、噪声系数、灵敏度、通频带与选择性。 单调谐放大电路一般采用LC回路作为选频器的放大电路,它只有一个LC 回路,调谐在一个频率上,并通过变压器耦合输出,图1-1为该电路原理图。 中心频率为f0 带宽为Δf=f2-f1 图1-1. 单调谐放大电路 为了改善调谐电路的频率特性,通常采用双调谐放大电路,其电路如图12-2所示。双调谐放大电路是由两个彼此耦合的单调谐放大回路所组成。它们的谐振C Ec 1 f 0.707 02 1 u

实验三实验报告

贵州师范大学数学与计算机科学学院学生实验报告 课程名称: 数值分析 班级:数学(2)班 实验日期: 2013年 10月11日 学 号:110701020016 姓名: 指导教师: 杨 一 都 实验成绩: 一、实验名称 实验三: 数值积分 二、实验目的及要求 1. 让学生掌握复化梯形法, 复化Simpson 法和Romberg 公式以及变步长梯形法, 变步长Simpson 法 2. 让学生能够用这些方法解决一些具体问题 三、实验环境 每人一台微机,要求安装Windows2000或Windows XP 操作系统,Matlab 软件 四、实验内容 题 1 从地面发射一枚火箭,在最初80 s 内记录起加速度如下表, 试求火箭在第 50s,80s 时的速度. 题2 给定积分 dx e x ?3 1 和 dx x ?3 11 ,分别用下列方法计算积分值要求准确到510- ,并比较分析计算时间. 1) 变步长梯形法; 2) 变步长 Simpson 法 3) Romberg 方法 五、算法描述及实验步骤 题1: (1)、算法描述:根据已知输入数据a=[30.00,31.63,33.44,35.47,37.75,40.33,42.39,46.69,50.67] 运用复合梯形公式:T n =∑-=++11 ))()(2)((2n k k b f x f a f h 计算 实验步骤:1:输入h 2:T=(h/2)*(a(1)+a(6)+2*(a(2)+a(3)+a(4)+a(5))) 3:T=(h/2)*(a(1)+2*(a(2)+a(3)+a(4)+a(5)+a(6)+a(7))+a(8)) (2)、算法描述:根据已知输入数a=[30.00,31.63,33.44,35.47,37.75,40.33,42.39,46.69,50.67] 先用Lagrange 插值得出t=5,15,25,35,45,55,65,75处的值 再运用复合simpson 公式:S n =))()(2)(4)((611102 1b f x f x f a f h n k k n k k +++∑∑-=-=+

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

Multisim高频实验指导

Multisim 10 基本应用 一)资源简介 1.Multisim 10 设计界面 图1 Multisim10 的工作界面 2. 元件工具条 主数据库的元器件资源如图2 所示。 图2 元件库资源 选择元器件工具条中每一个按钮都会弹出相应的元器件选择窗口,如图3 所示是元 件组的器件选择界面,其中一个Group(元器件组)有多个Family(元器件系列),每一个元器件系列有多个Component(器件)。 图3 通用器件选择窗口

3. 仪器工具条 仪表工具条如图4 所示,它是进行虚拟电子实验和电子设计仿真的最快捷而又形象的特殊工具,各仪表的功能名称与Simulate 菜单下的虚拟仪表相同,如图5 所示。 图4仪表工具条 图5 虚拟仪表名称 4. 设计窗口翻页 在窗口中允许有多个项目,点击如图1 所示下部的翻页标签,可将其置于当前视窗。 5. 设计管理器 如图1 所示左边的设计管理器可以将所有打开的设计项目中的任何一页置为当前设计窗口,可以利用设计工具条中的按钮开启/关闭。 6. 设计工具条 设计工具条如图6 所示:

图6 设计工具条 (1)层次项目栏按钮(Toggle Project Bar),用于设计管理器的开启/关闭。 (2)层次电子数据表按钮(Toggle Spreadsheet view),用于开关当前电路的电子数据表。 (3)数据库按钮(Database management),可开启数据库管理对话框,对元件进行编辑。 (4)元件编辑器按钮(Create Component),用于调整或增加、创建新元件。 (5)分析结果示窗按钮,其后的箭头下拉菜单选择分析命令。 (6)后处理器窗口开/关,可以对已分析过的数据进行综合处理。 (7)电气规则检查按钮。 (8)屏幕捕捉器按钮。 (9)返回顶层按钮。 (10)由Ultiboard 反注释到Mutisim。 (11) 注释到Ultiboard 10。 (12)使用中的元件列表,列出了当前电路中用过的全部元件种类。 (13) Multisim 的帮助文件。 二)、Multisim 仿真实例 一. 三极管的高频特性 1.实验目的 (1)理解晶体管的频率特性参数; (2)认识低频管和高频管的频响差异。 2.实验原理 晶体管频率特性主要指晶体管对不同频率信号的放大能力,表现为:在低频范围内,晶体管的电流放大系数(α、β)基本上是恒定值,但频率升高到一定数值后,α和β将随频率的升高而下降。 为定量比较晶体管的高频特性,工程上确定了几个频率参数:共基极截止频率fα (又称α截止频率,是指α降低到其低频值的0.707,即下降3dB 时的频率)、共发射极截止频fβ(又称β截止频率,是指β降低到其低频值的0.707 时的频率)、特征频率f T (值β下降到1 时所对应的频率)、最高振荡频率f max (功率增益为1 时所对应的频率)。 3. 实验电路 实验电路如图1-1 所示。高频管BF517 在元件工具条内的中选取。

高频实验指导书2017

实验平台操作及注意事项 一、实验平台基本操作方法 在使用实验平台进行实验时,要按照标准的规范进行实验操作,一般的实验流程包含以下几个步骤: (1)将实验台面整理干净整洁,设备摆放到对应的位置开始进行实验; (2)打开实验箱箱盖,或取下箱盖放置到合适的位置;(不同的实验箱盖要注意不能混淆); (3)简单检查实验箱是否有明显的损坏;如有损坏,需告知老师,以便判断是否可以进行正常实验; (4)根据当前需要进行的实验内容,由老师或自行更换实验模块;更换模块需要专用的钥匙,请妥善保管; (5)为实验箱加电,并开启电源;开启电源过程中,需要注意观察实验箱电源指示灯(每个模块均有电源指示),如果指示灯状态异常,需要关闭电源,检查原因; (6)实验箱开启过程需要大约20s时间,开启后可以开始进行实验; (7)实验内容等选择需用鼠标操作; (8)在实验过程中,可以打开置物槽,选择对应的配件完成实验; (9)实验完成后,关闭电源,整理实验配件并放置到置物槽中; (10)盖上箱盖,将实验箱还原到位。 二、实验平台系统功能介绍 实验平台系统分为八大功能板块,分别为实验入门、实验项目、低频信号源、高频信号源、频率计、扫频仪、高频故障(实验测评)、系统设置。

1.设备入门 设备入门分为四类,分别是平台基本操作、平台标识说明、实验注意事项、平台特点概述。 2.实验项目 实验项目是指实验箱支持的实验课程项目,可以完成的实验内容列表,分为高频原理实验和高频系统实验。 高频原理实验细分为八大实验分类,分别是小信号调谐放大电路实验、非线性丙类功率放大电路实验、振荡器实验、中频放大器实验、混频器实验、幅度解调实验、变容二极管调频实验、鉴频器实验。如下图所示。

大学计算机实验3_实验报告

深圳大学实验报告 课程名称:计算机基础 实验名称:文字信息处理 学院:建筑与城市规划学院专业:建筑学报告人:XXX 学号:2015XXXX 班级:XXXXXX 同组人: 指导教师:李炎然

实验时间:2015.11.04 实验报告提交时间:2015.11.05 教务处制 一.实验目的 1. 掌握文档的编辑操作技能。 2. 掌握文档的格式化操作方法。 3. 掌握图文混排方法、艺术字设计和数学公式编辑。 4. 掌握表格处理方法。 5. 掌握页面设置、分栏和分节技术。 6. 掌握样式设置、引用和目录、修订和批注的操作方法。二.实验步骤与结果 3.2 实验环境 1.硬件环境:微型计算机 2.软件环境:Windows 8,WPS文字2016

3.3 实验内容 1. 文档的基本操作 (1)Word 的启动和退出 在Windows 桌面上,执行“开始”→“所有程序”→“WPSt office”→“WPS文字”,打开Word 应用程序窗口如图3-1 所示。 也可使用快捷方式启动的文件(即Word 文档,文档名后缀为.docx 或.doc),双击该文件。如果Word 是最近经常使用的应用程序之一,则在Windows 8 操作系统下,单击屏幕左下角“开始”菜单按钮后,执行[开始|WPS 文字2016]命令。 退出Word 的方法有多种,常见退出Word 的方法有:①执行[文件|退出]命令;②右 击文件标题,单击“关闭窗口” 按钮;③单击右上方“关闭” 按钮;④双击Word 窗口左上角的控制按 钮。 退出Word 时,若文档修改尚未保存,系 统会给出一个对话框,询问是否要保存未保存 的文档,若单击“是”按钮, 则保存当前文档后退 图3-1 Word应用程序窗口

实验一高频小信号调谐放大器实验报告

高频小信号调谐放大器 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

六、数据处理 () f MHz 7 8 9 9.7 9.8 9.9 10 10.1 10. 2 10. 3 () i u mV15 15 15 15 15 15 15 15 15 15 () o u mV19 28 55 120 128 138 143 150 140 130 (/) u o i A u u 1.2 7 1.8 7 3.6 7 8.0 8.5 3 9.2 9.5 3 10.0 9.3 3 8.6 7 () f MHz10. 4 10. 5 10. 6 10. 7 11 12 13 14 15 16 () i u mV15 15 15 15 15 15 15 15 15 15 () o u mV120 100 90 80 64 39 28 24 20 18 (/) u o i A u u8.0 0 6.6 7 6.0 5.3 3 4.2 7 2.6 1.8 7 1.6 1.3 3 1.2

7 8910111213141516 25 50 75 100 125 150 uo(mV) f(MHz) 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下: 使得晶体满足: 1.发射极正偏:b e V V >,且0.6be V V >

化学实验报告3(完整版)

报告编号:YT-FS-6878-58 化学实验报告3(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

化学实验报告3(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 实验题目:草酸中h2c2o4含量的测定 实验目的: 学习naoh标准溶液的配制、标定及有关仪器的使用; 学习碱式滴定管的使用,练习滴定操作。 实验原理: h2c2o4为有机弱酸,其ka1=5.9×10-2,ka2=6.4×10-5。常量组分分析时cka1>10-8,cka2>10-8,ka1/ka2<105,可在水溶液中一次性滴定其两步离解的h+: h2c2o4+2naoh===na2c2o4+2h2o 计量点ph值8.4左右,可用酚酞为指示剂。 naoh标准溶液采用间接配制法获得,以邻苯二甲

酸氢钾标定: -cook -cooh +naoh=== -cook -coona +h2o 此反应计量点ph值9.1左右,同样可用酚酞为指示剂。 实验方法: 一、naoh标准溶液的配制与标定 用台式天平称取naoh1g于100ml烧杯中,加50ml 蒸馏水,搅拌使其溶解。移入500ml试剂瓶中,再加200ml蒸馏水,摇匀。 准确称取0.4~0.5g邻苯二甲酸氢钾三份,分别置于250ml锥形瓶中,加20~30ml蒸馏水溶解,再加1~2滴0.2%酚酞指示剂,用naoh标准溶液滴定至溶液呈微红色,半分钟不褪色即为终点。

高频实验报告

大连理工大学本科实验报告

2017年11月20日

实验项目列表

大连理工大学实验预习报告 学院(系): 电子信息与电气工程学部 专业: 电子信息工程 班级: 电子 1502 ______ 姓 名: 凌浩洋 ________________ 学号: ______ 201583130 ______ 组: ______ __^_ 实验时间: 2017.10.10 实验室: 创新园大厦C224 _________ 实验台: _________ 指导教师签字: ________________________________________ 成绩: ___________ 实验名称调频接收机模块设计实验 一总体要求: 1设计任务: (1) 根据实验室提供的电子元器件材料、工装焊接工具、测量调试仪器等,在考虑联 调和可联调的基础上,独立设计、搭建、调测高频小信号放大器、晶体振荡器(本地振 荡器)、晶体管混频器、中频信号放大器和正交鉴频器(包括低频放大和滤波)五个功 能模块,使之满足各自的指标要求。 (2) 将五个模块连接起来组成一个调频接收机,完成整机性能调测,达到预定的指标 要求。 (3) 调频接收机安装在测试架上,连接测试架上的辅助资源(基带处理单元、电源管 理单元),接受实验室自制发射台发射的各种调频信号,进一步检测整机和分模块性能< 调频接收机机框图及鉴频前的前端系统的增益分配如图 1所示 25dR 图1调频接收机组成框图 2设计要求 (1) 电源电压 VCC=12V VEE=-8V (2) 接收频率 1 6MHz 左右。 (3) 本振频率九肯14MHz 左右(为了与相邻试验台频率错开,以避免互相之间的干 扰,可考虑采用14MHZ 付近的多个频点中的一个频率值)。 16.455MHz 1,|ir H 2MHz 左右 鉴频 1 .VOLT

河南理工大学高频实验指导书

目录 实验一调谐放大器 (1) 实验二丙类高频功率放大器 (5) 实验三 LC电容反馈式三点式振荡器 (7) 实验四石英晶体振荡器 (10)

实验一 调谐放大器 一、 实验目的 1、熟悉电子元器件和高频电路试验箱。 2、熟悉谐振回路的幅频特性分析--通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、 实验仪器 1、双踪示波器 2、扫描仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验箱 三、 预习要求 1、复习谐振回路的 工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、试验电路中,若 电感量L=1uh ,回路总 电容C=220pf (分布电容包括在内),计算回路中心频率f0。 四、 实验内容及步骤 (一) 单调谐回路谐振放大器。 1. 试验电路见图1-1 (1)、按图1-1所示连接电路(注意接线前先测量+12V 电源电压,无误后,关断电源再接线)。 (2)、接线后仔细检查,确认无误后连接电源。 图1-1 单调谐回路谐振放大器原理图 IN

2.静态测量 试验电路中选R e=1K,R=10K。 测量各静态工作点,计算并填表1.1 *V B,V E是三极管的基极和发射极对地电压。 3. 动态研究 (1)测放大器的动态范围Vi~V0(在谐振点) 选R=10K,Re=1K。把高频信号发生器接到电路输入端,电路输出端接毫伏表, 选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节C T使回路 谐振,使输入电压幅度最大。此时调节Vi由0.05伏变到0.8伏,逐点记录 V o电压,并填入表1.2。Vi的各点测量值可根据(各自)实测情况来确定。 表1.2 (2)当Re分别为500Ω、2K时,重复上述过程,将结果填入表1.2。在同一坐 标纸上画出Ic不同时的动态范围曲线。 (3)用扫描仪调回路谐振曲线。 仍选R=10K,Re=500。将扫描仪射频输出送入电路输入端,电路输出接至扫频 仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来 选择适当位置),调回路电容点C T,使f0=10.7MHz。 (4)测量放大器的频率特性 当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输 出200mV接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振, 使输出电压幅度为最大,此时的回路谐振频率f0=10.7MHz为中心频率,然后 保持输入电压Vi不变,改变频率发由中心频率向两边逐点偏离,测得在不同 频率f时对应的输出电压V0,将测得的数据填入表1.3。频率偏离范围可根据 (各自)实测情况来确定。

大学物理实验报告实验3三线摆报告

三线摆实验报告 林一仙 一、实验目的 1、掌握水平调节与时间测量方法; 2、掌握三线摆测定物体转动惯量的方法; 3、掌握利用公式法测这定物体的转动惯量。 二、实验仪器 三线摆装置 电子秒表 卡尺 米尺 水平器 三、实验原理 1、三线摆法测定物体的转动惯量 机械能守恒定律: ω2 021I mgh = 简谐振动: t T πθθ2sin 0= t T T dt d ππθθω2cos 20== 通过平衡位置的瞬时角速度的大小为:T 02πθω= ; 所以有:?? ? ??=T I mgh 0 2 122 0πθ

根据图1可以得到:()()1 212!BC BC BC BC BC BC h +-= -= ()()()()2 22 22r R l AC AB BC --=-= 从图2可以看到: 根据余弦定律可得()() 0222 11cos 2θRr r R C A -+= 所以有:()()()() 02222 112 12 1cos 2θRr r R l C A B A BC -+-=-= 整理后可得: 1 2 102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-= θθ H BC BC 21≈+;摆角很小时有:2)2sin(00θθ= 所以:H Rr h 22 0θ= 整理得: 2 2 04T H mgRr I π= ;又因3b R =,3 a r = 所以: 2 2 012T H mgab I π= 若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则: 2 11 2 112)(T H gab M m I π+= 待测物的转动惯量为: I= I 1-I 0 2、公式法测定物体的转动惯量 圆环的转动惯量为: ()D D M I 22 2 1 8 1+= 四、实验内容 1、三线摆法测定圆环绕中心轴的转动惯量 a 、用卡尺分别测定三线摆上下盘悬挂点间的距离a 、 b (三个边各测一次再平均); b 、调节三线摆的悬线使悬盘到上盘之间的距离H 大约50cm 多; c 、调节三线摆地脚螺丝使上盘水平后再调节三线摆悬线的长度使悬盘水平; d 、用米尺测定悬盘到上盘三线接点的距离H ; e 、让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。);

高频电路(仿真)实验指导书..

高频电路(仿真)实验指导书 电子信息系 2016年3月

实验一、共射级单级交流放大器性能分析 一、实验目的 1、学习单级共射电压放大器静态工作点的设置与调试方法。 2、学习放大器的放大倍数(A u)、输入电阻(R i)、输出电阻(R o)的测试方法。 3、观察基本放大电路参数对放大器的静态工作点、电压放大倍数及输出波形的影响。 4、熟悉函数信号发生器、示波器、数字万用表和直流稳压电源等常用仪器的使用方法。 二、实验原理 如图所示的电路是一个分压式单级放大电路。该电路设计时需保证U B>5~10U BE, I1≈I2>5~10I B,则该电路能够稳定静态工作点,即当温度变化时或三级管的参数变化时,电路的静态工作点不会发生变化。 U B=V CC I C I E 由上式可知,静态工作时,U B是由R1和R2共同决定的,而U BE一般是恒定的,在0.6到0.7之间,所以I C、I E只和有关。 当温度变化时或管子的参数改变时(深究来看,三极管的特性并非是完全线性的,在很多的情况下,必须计入考虑),例如,管子的受到激发而I C欲要变大时,由于R E的反馈作用,使得U BE节压降减小,从而I B减小,I C减小,电路自动回到原来的静态工作点附近。所以该电路不仅有较好的温度稳定性,还可以适应一定非线性的三极管,只要电路设计得当。 调整电阻R1、R2,可以调节静态工作点高低。若工作点过高,使三极管进入饱和区,则会引起饱和失真;反之,三极管进入截止区,引起截止失真。 图1-1 分压式单级放大电路 如图1-1,C1、C2为耦合电容,将使电路只将交流信号传输到负载端,而略去不必要的直流信号。发射极旁路电容C E一般选用较大的电容,以保证对于交流信号完全是短路的,即相当于交流接地。也是防止交流反馈对电路的放大性能造成影响。电路的放大倍数 A U=,输入电阻R i=R1∥R2∥r be,输出电阻R O=R L’,空载时R O=R C。 当发射极电容断开时,在发射极电容上产生交流负反馈,电压的放大倍数为A U=,输入电阻R i=R1∥R2∥[]。输出电阻仍近似等于集电极负载电阻。

高频实验

高频实验报告学年: 2009-2010学年 学期:第二学期 专业:电子信息工程技术 年级: 08 级 姓名: 邱丽媛 座号: 32号 指导老师:邱思杰

目录 实验一高频小信号调谐放大 (3) 实验二通频带扩展电路 (6) 实验三LC三点式正弦波振荡器 (9) 实验四模拟乘法器调幅(AM、DSB、SSB) (12) 实验五包络检波及同步检波实验 (17) 实验六三极管混频器 (23)

实验一 小信号调谐放大 一、 实验目的 a) 掌握小信号调谐放大器的基本工作原理; b) 掌握谐振放大器电压增益、通频带及选择性的定义、测试及计算; c) 了解高频小信号放大器动态范围的测试方法; 二、实验电路 仿真波形: T1=5.051us T2=2.883us 五、实验结论 1、高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,

2,、小信号谐振放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大。 六、实验问答题 1,小信号谐振放大器的作用? 答:将微弱的有用信号进行线性放大并滤除不需要的噪声和干扰信号。 2晶体管有没有选频作用? 答:没有。 3为什么要采用谐振回路作负载? 答:采用谐振回路作负载,即对靠近谐振频率附近的信号有较大的增益,对远离谐振频率附近的信号其增益迅速下降,即具有选频放大作用。 学生实验过程记录

实验二通频带扩展电路 一、实验目的 1、掌握混合连接法展宽通频带的工作原理。 2、掌握负反馈法展宽通频带的工作原理。 3、比较上述两种电路对通频带扩展的性能分析。 二、实验内容

1、 研究混合连接法展宽通频带的工作原理的优缺点。 2、 研究负反馈法展宽通频带的工作原理。 三、实验原理与电路 1、混合连接法展宽通频带原理 图3-1 共射-共基组合电路 共射-共基组合电路的电路图示见图3-1。在集成宽频带放大器中广泛采用共射-共基组合电路。 共射电路的电流增益和电压增益都较大, 是放大器中最常用的一种组态。 但它的上限截止频率较低, 使得带宽受到限制, 这主要是由于密勒效应的缘故。 由于集电结电容C b ′c 跨接在输入、输出端之间, 是双向传输元件, 因此使电路的分析更加复杂。为了简化电路, 可以把C b ′c 折合到输入端b ′、e 之间, 与电容C b ′e 并联, 其等效电容为 即把C b ′c 的作用等效到输入端, 这就是密勒效应。其中g m 是晶体管跨导, R L ′ 是考虑负载后的输出端总电阻, C M 称为密勒电容。 另外, 由于r ce 和r b ′c 较大, 一般可以将其开路,这样, 利用密勒效应后的简化高频混合π型等效电路如下图所示。 c b L m M C R g C '' )1(+=b b b ' r r c b b b ' r c

相关文档
相关文档 最新文档