文档视界 最新最全的文档下载
当前位置:文档视界 › 数学理高考真题分类汇编专题 导数(理科)

数学理高考真题分类汇编专题 导数(理科)

数学理高考真题分类汇编专题 导数(理科)
数学理高考真题分类汇编专题 导数(理科)

导数

1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x = 【答案】

A

考点:1.导数的计算;2.导数的几何意义.

【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等. 2.【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,

ln ,1,

x x x x -<

>?图象上点P 1,P 2处的切线,l 1

与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A 【解析】

试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为1212

11

,.k k x x =

=-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为

()1111ln y x x x x -=

-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ??

-=-- ??

?.分别令

0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221

1

21,ln 11x x P x x x ??

-+ ?++??,11x >,

2112211

211

1211PAB

A B P x x S y y x x x ?+∴=-?=<=++,01PAB S ?∴<<.故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.

【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.

3.【2016高考新课标2理数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b =. 【答案】1ln2- 【解析】

考点:导数的几何意义.

【名师点睛】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).

注意:求曲线切线时,要分清在点P 处的切线与过P 点的切线的不同.

4.【2016高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在 点(1,3)-处的切线方程是_______________.

【答案】21y x =--

考点:1、函数的奇偶性与解析式;2、导数的几何意义.

【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.

5.【2016高考新课标1卷】(本小题满分12分)已知函数()()()2

21x

f x x e a x =-+-有两个零点.

(I)求a 的取值范围;

(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 【答案】(0,)+∞ 【解析】

试题分析:(I)求导,根据导函数的符号来确定,主要要根据导函数零点来分类;(II)借组第一问的结论来证明,

由单调性可知122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.设2()(2)x x

g x xe x e -=---,则

2'()(1)()x x g x x e e -=--.则当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x +<.学优高考网

试题解析;(Ⅰ)'()(1)2(1)(1)(2)x

x

f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.

(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.

又(1)f e =-,(2)f a =,取b 满足0b <且ln

2

a b <,则 223

()(2)(1)()022

a f

b b a b a b b >

-+-=->, 故()f x 存在两个零点.

(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2

e

a ≥-

,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2

e

a <-

,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零

点.

综上,a 的取值范围为(0,)+∞.

(Ⅱ)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于2

22222(2)(1)x f x x e

a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以

222222(2)(2)x x f x x e x e --=---.

设2()(2)x

x g x xe

x e -=---,则2'()(1)()x x g x x e e -=--.

所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<. 考点:导数及其应用

【名师点睛】,对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;,解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.

6.【2016高考山东理数】(本小题满分13分) 已知()221

()ln ,R x f x a x x a x

-=-+

∈. (I )讨论()f x 的单调性;

(II )当1a =时,证明()3

()'2

f x f x +>对于任意的[]1,2x ∈成立. 【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】

试题分析:(Ⅰ)求()f x 的导函数,对a 进行分类讨论,求()f x 的单调性; (Ⅱ)要证()3()'2f x f x +

>对于任意的[]1,2x ∈成立,即证2

3)()(/

>-x f x f ,根据单调性求解.

(1)20<

12

>a

, 当)1,0(∈x 或x ∈),2

(

+∞a

时,0)(/>x f ,)(x f 单调递增; 当x ∈)2

,

1(a

时,0)(/

12

=a

,在x ∈),0(+∞内,0)(/≥x f ,)(x f 单调递增; (3)2>a 时,12

0<<

a

, 当)2

,

0(a

x ∈或x ∈),1(+∞时,0)(/>x f ,)(x f 单调递增; 当x ∈)1,2

(

a

时,0)(/

当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;

当20<

(+∞a

内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增;

当2>a ,)(x f 在)2,

0(a 内单调递增,在)1,2

(a

内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,

/2

2321122

()()ln (1)x f x f x x x x x x x --=-+

---+

23312

ln 1x x x x x

=-++--,]2,1[∈x ,

令12

13)(,ln )(32--+=-=x

x x x h x x x g ,]2,1[∈x .

则)()()()(/

x h x g x f x f +=-, 由01

)(/

≥-=

x

x x g 可得1)1()(=≥g x g ,当且仅当1=x 时取得等号. 又24

326

'()x x h x x --+=,

设623)(2

+--=x x x ?,则)(x ?在x ∈]2,1[单调递减, 因为10)2(,1)1(-==??,

所以在]2,1[上存在0x 使得),1(0x x ∈ 时,)2,(,0)(0x x x ∈>?时,0)(

=h h ,因此21)2()(=≥h x h ,

当且仅当2=x 取得等号, 所以2

3

)2()1()()(/

=+>-h g x f x f , 即2

3

)()(/

+

>x f x f 对于任意的]2,1[∈x 恒成立。 考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.

【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思

维能力、基本计算能力、分类讨论思想等. 7.【2016高考江苏卷】(本小题满分16分)

已知函数()(0,0,1,1)x

x

f x a b a b a b =+>>≠≠. 设1

2,2

a b ==

. (1)求方程()2f x =的根;

(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;

(3)若01,1a b <<>

,函数()()2g x f x =-有且只有1个零点,求ab 的值。 【答案】(1)①0 ②4(2)1 【解析】

试题分析:(1)①根据指数间倒数关系22=1x x

-?转化为一元二次方程2

(2)2210x x

-?+=,求方程根②根

据指数间平方关系2222

2(22)2x

x x x --+=+-,将不等式转化为一元不等式,再利用变量分离转化为对应

函数最值,即2(())4()

f x m f x +≤的最小值,最后根据基本不等式求最值(2)先分析导函数零点情况:唯一

零点0x ,再确定原函数单调变化趋势:先减后增,从而结合图像确定唯一零点必在极值点0x 取得,而

00(0)(0)220g f a b =-=+-=,因此极值点0x 必等于零,进而求出ab 的值.本题难点在证明00x =,这

可利用反证法:若00x <,则可寻找出一个区间12(,)x x ,由12()0,g()0g x x <>结合零点存在定理可得函数存在另一零点,与题意矛盾,其中可取0

12,log 22

a x x x ==;若00x >,同理可得. 试题解析:(1)因为12,2

a b ==

,所以()22x x f x -=+. ①方程()2f x =,即222x x

-+=,亦即2

(2)2210x x

-?+=,

所以2

(21)0x -=,于是21x

=,解得0x =.

②由条件知2222(2)2

2(22)2(())2x

x x x f x f x --=+=+-=-.

因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,

所以2(())4

()

f x m f x +≤对于x R ∈恒成立.

而2(())444()2()4()()()

f x f x f x f x f x f x +=+≥?=,且

2((0))4

4(0)f f +=, 所以4m ≤,故实数m 的最大值为4.

下证00x =. 若00x <,则0002x x <<,于是0()(0)02

x

g g <=, 又log 2

log 2log 2(log 2)220a a a a g a

b a =+->-=,且函数()g x 在以

2

x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x . 因为01a <<,所以log 20a <,又002

x

<,

所以10x <与“0是函数()g x 的唯一零点”矛盾. 若00x >,同理可得,在0

2

x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =. 于是ln 1ln a

b

-

=,故ln ln 0a b +=,所以1ab =. 考点:指数函数、基本不等式、利用导数研究函数单调性及零点

【名师点睛】对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数

范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数. 8.【2016高考天津理数】(本小题满分14分)

设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈, (I)求)(x f 的单调区间;

(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...4

1

. 【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)详见解析 【解析】

试题解析:(Ⅰ)解:由b ax x x f ---=3)1()(,可得a x x f --=2

)1(3)('. 下面分两种情况讨论:

(1)当0≤a 时,有0)1(3)('2

≥--=a x x f 恒成立,所以)(x f 的单调递增区间为),(+∞-∞.

(2)当0>a 时,令0)('=x f ,解得331a

x +

=,或3

31a x -=. 当x 变化时,)('x f ,)(x f 的变化情况如下表:

所以)(x f 的单调递减区间为)331,331(a a +-

,单调递增区间为)331,(a --∞,),3

31(+∞+a

. (Ⅱ)证明:因为)(x f 存在极值点,所以由(Ⅰ)知0>a ,且10≠x ,由题意,得0)1(3)('2

00=--=a x x f ,即3

)1(2

0a

x =

-, 进而b a

x a b ax x x f ---

=---=3

32)1()(003

00. 又b a ax x a b x a x x f --+-=----=-32)1(3

8)22()22()23(0003

00 )(3

3200x f b a x a =---=,且0023x x ≠-,由题意及(Ⅰ)知,存在唯一实数满足)()(01x f x f =,且

01x x ≠,因此0123x x -=,所以3201=+x x ;

(Ⅲ)证明:设)(x g 在区间]2,0[上的最大值为M ,},max{y x 表示y x ,两数的最大值.下面分三种情况同理:

(1)当3≥a 时,3

3120331a

a +≤<≤-

,由(Ⅰ)知,)(x f 在区间]2,0[上单调递减,所以)(x f 在区间]2,0[上的取值范围为)]0(),2([f f ,因此

|}1||,21max{||})0(||,)2(max{|b b a f f M ----== |})(1||,)(1max{|b a a b a a +--++-=

?

?

?<++--≥+++-=0),(10

),(1b a b a a b a b a a ,所以2||1≥++-=b a a M . (2)当

34

3<≤a 时,3321233133103321a

a a a +≤<+<-<≤-,由(Ⅰ)和(Ⅱ)知,

)3

31()3321()0(a f a f f +=-

≥,)331()3321()2(a

f a f f -=+≤,

所以)(x f 在区间]2,0[上的取值范围为)]3

31(),331([a f a f -+

,因此 |}39

2||,392max {||})331(||,)331(max {|b a a a

b a a a a f a f M -----=-+

= |})(39

2||,)(392max{|b a a a b a a a +-+--

= 4

14334392||392=???≥++=

b a a a .

综上所述,当0>a 时,)(x g 在区间]2,0[上的最大值不小于4

1

. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【名师点睛】1.求可导函数单调区间的一般步骤

(1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );

(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.

(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.

2.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到.

9.【2016高考新课标3理数】设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .

(Ⅰ)求()f x ';

(Ⅱ)求A ;

(Ⅲ)证明|()|2f x A '≤.

【答案】(Ⅰ)'

()2sin 2(1)sin f x a x a x =---;(Ⅱ)2

123,056

11,18532,1a a a a A a a a a ?

-<≤??++?=<

-≥???

;(Ⅲ)见解析.

【解析】

试题分析:(Ⅰ)直接可求()f x ';(Ⅱ)分1,01a a ≥<<两种情况,结合三角函数的有界性求出A ,但须注意当01a <<时还须进一步分为11

0,155

a a <≤

<<两种情况求解;(Ⅲ)首先由(Ⅰ)得到|()|2|1|f x a a '≤+-,然后分1a ≥,11

0,155

a a <≤<<三种情况证明.

(ⅰ)当1

05

a <≤

时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.

(ⅱ)当

115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4a g g g a

-->>. 又1(1)(17)|()||(1)|048a a a g g a a

--+--=>,所以2161

|()|48a a a A g a a -++==.

综上,2

123,05611

,18532,1a a a a A a a a a ?

-<≤??++?=<

?

-≥???

. ………9分 (Ⅲ)由(Ⅰ)得'

|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-. 当105

a <≤时,'

|()|1242(23)2f x a a a A ≤+≤-<-=. 当

115a <<时,13

1884

a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'

|()|31642f x a a A ≤-≤-=,所以'

|()|2f x A ≤. 考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性.

【归纳总结】求三角函数的最值通常分为两步:(1)利用两角和与差的三角公式、二倍角公式、诱导公式将解析式化为形如sin()y A x B ω?=++的形式;(2)结合自变量x 的取值范围,结合正弦曲线与余弦曲线进行求解.

10.【2016高考浙江理数】(本小题15分)已知3a ≥,函数F (x )=min{2|x ?1|,x 2?2ax +4a ?2}, 其中min{p ,q }=,>p p q q p q.≤???

,,

(I )求使得等式F (x )=x 2?2ax +4a ?2成立的x 的取值范围; (II )(i )求F (x )的最小值m (a ); (ii )求F (x )在区间[0,6]上的最大值M (a ).

【答案】(I )[]2,2a ;(II )(i )(

)2

0,3242,2a m a a a a ?≤≤?=?-+->+??(ii )()348,342,4a a a a -≤

【解析】

试题分析:(I )分别对1x ≤和1x >两种情况讨论()F x ,进而可得使得等式()2F 242x x ax a =-+-成立的x 的取值范围;(II )(i )先求函数()21f x x =-,()2242g x x ax a =-+-的最小值,再根据()F x 的定义可得()F x 的最小值()m a ;(ii )分别对02x ≤≤和26x ≤≤两种情况讨论()F x 的最大值,进而可得

()F x 在区间[]0,6上的最大值()a M .

试题解析:(I )由于3a ≥,故

当1x ≤时,()

()()2

2

242212120x ax a x x a x -+---=+-->,

当1x >时,()

()()2

2422122x ax a x x x a -+---=--.

所以,使得等式()2F 242x x ax a =-+-成立的x 的取值范围为

[]2,2a .

考点:1、函数的单调性与最值;2、分段函数;3、不等式.

【思路点睛】(I )根据x 的取值范围化简()F x ,即可得使得等式()2F 242x x ax a =-+-成立的x 的取值范围;(II )(i )先求函数()f x 和()g x 的最小值,再根据()F x 的定义可得()m a ;(ii )根据x 的取值范围求出()F x 的最大值,进而可得()a M .

11.【2016高考新课标2理数】(Ⅰ)讨论函数x

x 2f (x)x 2

-=

+e 的单调性,并证明当0x >时,(2)20x x e x -++>;

(Ⅱ)证明:当[0,1)a ∈时,函数2

x =(0)x e ax a g x x

-->()有最小值.设()g x 的最小值为()h a ,求函数

()h a 的值域.

【答案】(Ⅰ)详见解析;(Ⅱ)2

1(,].24

e .

【解析】

试题分析:(Ⅰ)先求定义域,用导数法求函数的单调性,当(0,)x ∈+∞时,()(0)f x f >证明结论;(Ⅱ)

用导数法求函数()g x 的最值,在构造新函数00h()2

x e a x =+,又用导数法求解.

试题解析:(Ⅰ)()f x 的定义域为(,2)(2,)-∞-?-+∞.

222

(1)(2)(2)'()0,(2)(2)x x x x x e x e x e f x x x -+--==≥++

且仅当0x =时,'()0f x =,所以()f x 在(,2),(2,)-∞--+∞单调递增, 因此当(0,)x ∈+∞时,()(0)1,f x f >=- 所以(2)(2),(2)20x

x

x e x x e x ->-+-++>

(II )22(2)(2)2

()(()),x x e a x x g x f x a x x

-+++=

=+ 学优高考网 由(I )知,()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥ 因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0'()0g x =, 当00x x <<时,()0,'()0,()f x a g x g x +<<单调递减; 当0x x >时,()0,'()0,()f x a g x g x +>>单调递增. 因此()g x 在0x x =处取得最小值,最小值为

000

000022000(1)+()(1)().2

x x x e a x e f x x e g x x x x -++===+

于是0

0h()2

x e a x =+,由2(1)()'0,2(2)2x x x e x e e x x x +=>+++单调递增 所以,由0(0,2],x ∈得0022

01().2022224

x e e e e h a x =<=≤=+++

因为2x e x +单调递增,对任意2

1(,],24e λ∈存在唯一的0(0,2],x ∈0()[0,1),a f x =∈

使得(),h a λ=所以()h a 的值域是2

1(,],24

e

综上,当[0,1)a ∈时,()g x 有()h a ,()h a 的值域是2

1(,].24

e

考点:函数的单调性、极值与最值. 【名师点睛】求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );

(3)由f ′(x )>0(f ′(x )<0)解出相应的x 的范围.

当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应的区间上是减函数,还可以列表,写出函数的单调区间.

注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念. 12.【2016年高考北京理数】(本小题13分) 设函数()a x

f x xe

bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,

(1)求a ,b 的值; (2)求()f x 的单调区间.

【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞. 【解析】

试题分析:(1)根据题意求出()f x ',根据(2)22f e =+,(2)1f e '=-,求a ,b 的值; (2)由题意知判断)(x f ',即判断1

1)(-+-=x e x x g 的单调性,知()0g x >,即()0f x '>,由此求得()

f x 的单调区间.

试题解析:(1)因为bx xe

x f x

a +=-)(,所以

b e x x f x a +-='-)1()(.

依题设,???-='+=,1)2(,22)2(e f e f 即???-=+-+=+--,

1,22222

2e b e e b e a a 解得e b a ==,2;(2)由(Ⅰ)知ex xe

x f x

+=-2)(.

由)1()(1

2--+-='x x e x e x f 即02>-x e

知,)(x f '与11-+-x e x 同号. 令1

1)(-+-=x e

x x g ,则1

1)(-+-='x e

x g .

所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减; 当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增. 故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值, 从而),(,0)(+∞-∞∈>x x g .

综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞. 考点:导数的应用.

【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.

13.【2016年高考四川理数】(本小题满分14分) 设函数f (x )=ax 2-a -ln x ,其中a ∈R. (Ⅰ)讨论f (x )的单调性;

(Ⅱ)确定a 的所有可能取值,使得11()x

f x e x

->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).

【答案】(Ⅰ)当x ∈

(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x 单调递增;(Ⅱ)1

[,

)2

a .

【解析】

试题分析:(Ⅰ)对()f x 求导,对a 进行讨论,研究'()f x 的正负,可判断函数的单调性;(Ⅱ)要证明不等式11()x

f x e x

->

-在(1,)+∞上恒成立,基本方法是设11()()(

)(1)x h x f x e x x

,当1x 时,

12

11()2e x h x ax

x

x ,'()0h x =的解不易确定,因此结合(Ⅰ)的结论,缩小a 的范围,设

()g x =111e

x x --11

x x e x xe ---,并设()s x =1

e x x --,通过研究()s x 的单调性得1x >时,()0g x >,从而

()0f x >,这样得出0a ≤不合题意,又102a <<时,()f x 的极小值点12x a

=

>,且(

)(1)02f f a

<=,也不合题意,从而12a ≥,此时考虑12

11()

2e x h x ax

x x 得

'()

h x 2

1

11

x

x

x x

0>,得此时()h x 单调递增,从而有()(1)0h x h >=,得出结论.

(II )令()g x =

111

e

x x --,()s x =1e x x --. 则'()s x =1e 1x --. 而当1x >时,'()s x >0,

所以()s x 在区间1+)∞(,内单调递增. 又由(1)s =0,有()s x >0, 从而当1x >时,()f x >0.

当0a ≤,1x >时,()f x =2

(1)ln 0a x x --<. 故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >.

当1

02a <<

2a

>1. 由(I )有)(1)02f f a <=,从而02g a

>,

所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当1

2

a

时,令()()()(1)h x f x g x x , 当1x 时,3

2

12

22

2

111112121

()2e

0x

x x x x h x ax

x

x

x x x x

x x ,

因此,()h x 在区间(1,)单调递增.

又因为(1)=0h ,所以当1x 时,()

()

()

0h x f x g x ,即 ()

()f x g x 恒成立.

综上,1

[,

)2

a .

考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.

【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

最新-2017新课标高考数学导数分类汇编(文)

2011-2017新课标(文科)导数压轴题分类汇编 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )> ln x x -1 【解析】 (1)22 1 ( ln ) '()(1)x x b x f x x x α+-= -+ 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 1 1ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h -- =---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(l n ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高考真题理科数学导数

2012年高考真题理科数学解析汇编:导数与积分 一、选择题 1 .(2012年高考(新课标理))已知函数1 ()ln(1)f x x x = +-;则()y f x =的图像大致为 2 .(2012年高考(浙江理))设a >0,b >0. ( ) A .若2223a b a b +=+,则a >b B .若2223a b a b +=+,则a b D .若2223a b a b -=-,则a

5 .(2012年高考(山东理))设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是 “函数3 ()(2)g x a x =-在R 上是增函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6 .(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴 所围图形的面积为 ( ) A . 2π 5 B . 43 C . 32 D . π2 7 .(2012年高考(福建理))如图所示,在边长为1的正方形OABC 中任取一点 P,则点P 恰好取自阴影部分的概率为 ( ) A . 14 B . 15 C . 16 D . 17 8 .(2012年高考(大纲理))已知函数3 3y x x c =-+的图像与x 轴恰有两个 公共点,则c = ( ) A .2-或2 B .9-或3 C .1-或1 D .3-或1 二、填空题 9 .(2012年高考(上海理))已知函数 )(x f y =的图像是折线段ABC ,若中 A (0,0), B (21,5), C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ . 10.(2012年高考(山东理))设0a >.若曲线y x = 与直线,0x a y ==所围成封闭图形 的面积为2 a ,则a =______. 11.(2012年高考(江西理))计算定积分 1 21 (sin )x x dx -+=? ___________. 12.(2012年高考(广东理))曲线33y x x =-+在点()1,3处的切线方程为 ___________________. 三、解答题 13.(2012年高考(天津理))已知函数 ()=ln (+)f x x x a -的最小值为0,其中>0a . (Ⅰ)求a 的值; (Ⅱ)若对任意的[0,+)x ∈∞,有2 ()f x kx ≤成立,求实数k 的最小值; 1-y x O 第3题图 1 1

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

人教版2017年高考数学真题导数专题

2017年高考真题导数专题   一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)e x﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 5.设函数f(x)=(1﹣x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x (x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;

(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值. 8.已知函数f(x)=e x cosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0,2],满足|﹣x0|≥. 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x) =e x f(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)=e x(e x﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高考导数大题30道(2020年整理).doc

导数大题 1 .已知函数()b ax x x f ++=2 3的图象在点P (1,0)处的切线与直线03=+y x 平行? (1)求常数a 、b 的值; (2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )? 2 .已知函数R a ax x x f ∈+-=,)( 3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围; (2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值? 3 .设函数x e x x f 22 1)(=. (1)求函数)(x f 的单调区间; (2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围. 4 .已知函数.),2,1()(3)(3 l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程; (2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =?

()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围? 7 .已知函数2 ()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值; (Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数); 8 .已知函数21 2 ()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值; (2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。 10.已知函数2 ()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-? ⑴求函数)(x f 的解析式; ⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围; ⑶讨论函数21()ln(1)()2 h x x f x k =+- -零点的个数?

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

相关文档 最新文档