文档视界 最新最全的文档下载
当前位置:文档视界 › 数字电视系统的关键技术及标准概述

数字电视系统的关键技术及标准概述

数字电视系统的关键技术及标准概述
数字电视系统的关键技术及标准概述

一、什么是数字电视

数字电视(Digital TV)是从电视信号的采集、编辑、传播、接收整个广播链路数字化的数字电视广播系统。数字电视利用MPEG标准中的各种图像格式,把现行模拟电视制式下的图像、伴音信号的平均码率压缩到大约4.69—21Mbps,其图像质量可以达到电视演播室的质量水平,胶片质量水平,图像水平清晰度达到500—1200线以上,并采用AC—3声音信号压缩技术,传输5.1声道的环绕声信号。

二、数字电视的分类

按清图像晰度分类,数字电视包括数字高清晰度电视(HDTV)、数字标准清晰度电视(SDTV)和数字普通清晰度电视(LDTV)三种。HDTV的图像水平清晰度大于800线,图象质量可达到或接近35mm宽银幕电影的水平;SDTV的图像水平清晰度大于500线,主要是对应现有电视的分辨率量级,其图象质量为演播室水平;LDTV的图像水平清晰度为200-300线,主要是对应现有VCD的分辨率量级。

按信号传输方式分类,数字电视可分为地面无线传输数字电视(地面数字电视)、卫星传输数字电视(卫星数字电视)、有线传输数字电视(有线数字电视)三类。

按照产品类型分类,数字电视可分为数字电视显示器、数字电视机顶盒和一体化数字电视接收机。

按显示屏幕幅型比分类,数字电视可分为4∶3幅型比和16∶9幅型比两种类型。

三、数字电视系统的关键技术及标准

1、数字电视的信源编解码技术

视频编解码技术

数字电视尤其数字高清晰度电视与模拟电视相比,在实现过程中,最为困难的部分就是对视频信号的压缩。在1920×1080显示格式下,数字化后的码率在传输中高达995Mbit/s,这比现行模拟电视的传输信息量大得多。因而数字电视的图像不能象模拟电视的图像那样直接传输,而是要多一道压缩编码工序。视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20~30Mbit/s。

音频编解码技术

与视频编解码相同,音频编解码主要功能是完成声音信息的压缩。声音信号数字化后,信息量比模拟传输状态大得多,因而数字电视的声音不能象模拟电视的声音那样直接传输,而是要多一道压缩编码工序。

信源编解码的相关标准

国际上对数字图像编码曾制订了三种标准,分别是主要用于电视会议的H.261、主要用于静止图像的JPMG标准和主要用于连续图像的MPEG标准。

在HDTV视频压缩编解码标准方面,美国、欧洲和日本设有分歧,都采用MPEG-2标准。MPEG压缩后的信息可以供计算机处理,也可以在现有和将来的电视广播频道中进行分配。在音频编码方面,欧洲、日本采用了MPEG-2标准;美国采纳了杜比(Dolby)公司的AC-3方案,MPEG-2为备用方案。但随着技术的进步,1994年完成的MPEG-2随着技术的进步现在显得越来越落后,国际上正在考虑用MPEG-4 A VC来代替目前的MPEG-2。

中国方面,中国的数字音视频编解码标准工作组制定了面向数字电视和高清激光视盘播放机的A VS标准。该标准据称具有自主知识产权,与MPEG-2标准完全兼容,也可以兼容MPEG-4 A VC/ H.264国际标准基本层,其压缩水平据称可达到MPEG-2标准的2-3倍,而与MPEG-4 A VC相比,A VS更加简洁的设计降低了芯片实现的复杂度。

2、数字电视的复用系统

数字电视的复用系统是HDTV的关键部分之一。从发送端信息的流向来看,它将视频、音频、辅助数据等编码器送来的数据比特流,经处理复合成单路串行的比特流,送给信道编码及调制。接受端与此过程正好相反。在HDTV复用传输标准方面,美国、欧洲、日本没有分歧,都采用了MPEG-2 标准。美国已有MPEG-2解复用的专用芯片。

3、数字电视的信道编解码及调制解调

数字电视信道编解码及调制解调的目的是通过纠错编码、网格编码、均衡等技术提高信号的抗干扰能力,通过调制把传输信号放在载波或脉冲串上,为发射做好准备。目前所说的各国数字电视的制式,标准不能统一,主要是指各国在该方面的不同,具体包括纠错、均衡等技术的不同,带宽的不同,尤其是调制方式的不同。

数字传输的常用调制方式:

正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。

残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。

编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。

四、世界上现有的主要数字电视标准

1、美国数字电视标准ATSC

美国地面电视广播迄今仍占其电视业务的一半以上,因此,美国在发展高清晰度电视时首先考虑的是如何通过地面广播网进行传播,并提出了以数字高清晰度电视为基础的标准-ATSC(Advanced Television System Committee先进电视制式委员会)。美国HDTV地面广播频道的带宽为6MHZ,调制采用8VSB。预计美国的卫星广播电视会采用QPSK调制,有

线电视会采用QAM或VSB调制。

ATSC数字电视标准由四个分离的层级组成,层级之间有清晰的界面。最高为图像层,确定图像的形式,包括象素阵列、幅型比和帧频。接着是图像压缩层,采用MPEG-2压缩标准。再下来是系统复用层,特定的数据被纳入不同的压缩包中,采用MPEG-2压缩标准。最后是传输层,确定数据传输的调制和信道编码方案。对于地面广播系统,采用Zenith公司开发的8-VSB传输模式,在6MHz地面广播频道上可实现19.3Mb/s的传输速率。该标准也包含适合有线电视系统高数据率的16-VSB传输模式,可在6MHz有线电视信道中实现38.6Mb/s的传输速率。

下面两层共同承担普通数据的传输。上面两层确定在普通数据传输基础上运行的特定配置,如HDTV或SDTV;还确定A TSC标准支持的具体图像格式,共有18种(HDTV 6种、SDTV 12种),其中14种采用逐行扫描方式。

在6种HDTV格式中,因为1920×1080格式不适合在6MHz信道内以60帧/秒进行逐行扫描,故以隔行扫描取代之。SDTV的640×480图像格式与计算机的VGA格式相同,保证了与计算机的适用性。在12种SDTV格式中,有9种采用逐行扫描,保留3种为隔行扫描方式以适应现有的视频系统。

另外,ATSC还开发并通过了可为采用50Hz帧频的国家使用的另行标准。HDTV格式的象素阵列相同,但帧频为25Hz和50Hz;SDTV格式的垂直分辨率为576行,水平分辨率则不同;也包含352×288格式,适应必要的窗口设置。

2、欧洲数字电视标准DVB

欧洲数字电视标准为DVB,即Digital Video Broadcasting,数字视频广播。从1995年起,欧洲陆续发布了数字电视地面广播(DVB-T)、数字电视卫星广播(DVB-S)、数字电视有线广播(DVB-C)的标准。欧洲数字电视首先考虑的是卫星信道,采用QPSK调制。欧洲地面广播数字电视采用COFDM调制,8M带宽。欧洲有线数字电视采用QAM调制。

DVB-T(ETS 300 744) 为数字地面电视广播系统标准。这是最复杂的DVB传输系统。地面数字电视发射的传输容量,理论上与有线电视系统相当,本地区覆盖好。采用编码正交频分复用(COFDM)调制方式,在8MHz带宽内能传送4套电视节目,传输质量高;但其接收费用高。

DVB-S(ETS 300 421) 为数字卫星广播系统标准。卫星传输具有覆盖面广、节目容量大等特点。数据流的调制采用四相相移键控调制(QPSK)方式,工作频率为11/12GHz。在使用MPEG-2MP@ML格式时,用户端若达到CCIR 601演播室质量,码率为9Mb/s;达到PAL 质量,码率为5Mb/s。一个54MHz转发器传送速率可达68Mb/s,可用于多套节目的复用。DVB-S标准几乎为所有的卫星广播数字电视系统所采用。我国也选用了DVB-S标准。

DVB-C(ETS 300 429) 为数字有线电视广播系统标准。它具有16、32、64QAM(正交调幅)三种调制方式,工作频率在10GHz以下。采用64QAM时,一个PAL通道的传送码率为41.34Mb/s,可用于多套节目的复用。系统前端可从卫星和地面发射获得信号,在终端需要

电缆机顶盒。

3、日本数字电视的标准ISDB

日本数字电视首先考虑的是卫星信道,采用QPSK调制。并在1999年发布了数字电视的标准--ISDB。ISDB是日本的DIBEG(Digital Broadcasting Experts Group 数字广播专家组)制订的数字广播系统标准,它利用一种已经标准化的复用方案在一个普通的传输信道上发送各种不同种类的信号,同时已经复用的信号也可以通过各种不同的传输信道发送出去。ISDB 具有柔软性、扩展性、共通性等特点,可以灵活地集成和发送多节目的电视和其它数据业务。

4、DVB与ATSC的比较

欧洲DVB标准和美国A TSC标准的主要区别如下:

方形像素:在ATSC标准中采纳了“方形像素”(Square Picture Eelements),因为它们更加适合于计算机;而DVB标准最初没有采纳,最近也采纳了。此外,范围广泛的视频图像格式也被DVB采纳,而ATSC对此则不作强制性规定。

系统层和视频编码:DVB和ATSC标准都采纳MPEG-2标准的系统层和视频编码,但是,由于MPEG-2标准并未对视频算法作详细规定,因而实施方案可以不同,与两个标准都无关。

音频编码:DVB标准采纳了MPEG-2的音频压缩算法;而A TSC标准则采纳了AC-3的音频压缩算法。

信道编码:两者的扰码器(Radomizers)采用不同的多项式;两者的里德—所罗门前向纠错(FEC)编码采用不同的冗余度,DVB标准用16B,而ATSC标准用功20B;两者的交织过程(Interleaving)不同;

在DVB标准中网格编码(Trellix coding)有可选的不同速率,而在ATSC标准中地面广播采用固定的2/3速率的网格编码,有线电视则不需采用网格编码。

调制技术:卫星广播系统中DVB标准采用QPSK,而A TSC标准不涉及卫星广播。有线电视系统中DVB标准采用任选的16/32/64QAM,而ATSC标准采用16VSB,两者完全不同。地面广播系统中DVB标准采用具有QPSK、16QAM或64QAM的COFDM(2K个或8K个载波);而ATSC标准采用8VSB。

5、三种数字地面广播系统的比较

ISDB-T和欧洲的DVB-T非常类似,可以说是经修改的欧洲方案,传输方案仍是COFDM,使用的编码方式相同,调制方法也相同,也分为2K和8K两种模式。因为日本电视射频带宽为6MHz,所以载波数、载波间隔有所差别。ISDB-T与DVB-T、A TSC A TV的比较如下:

6、DVB、ATSC和ISDB成员近况

据悉,DVB成员已经达到265个(来自35个国家和地区),主要集中在欧洲并遍及世界各地,我国的广播科学研究院和TCL电子集团也在其中。ATSC成员30个,其中有美国国内成员20个、来自阿根廷、法国、韩国等7个国家的成员10个,中国的广播科学研究院也参加了ATSC组织。ISDB筹划指导委员会委员17个,其他成员23个,其成员都是日本国内的电子公司和广播机构。

五、中国的数字电视标准

1、中国的卫星数字电视标准

中国卫星数字电视采用QPSK调制方式,与欧洲、美国和日本采用的标准相同。由于中国限制个人直接接收卫星数字电视节目,所以目前是由有线电视台集中接收数字电视信号,并将其转化为模拟信号通过有线网络传输给广大用户收看的。

2、中国的有线数字电视标准

中国有线数字电视的标准还在报批过程中,预计采用QAM调制方式,与欧洲、美国和日本相同。中国有线数字电视的发展基础较好,且播出所需的投入成本较小,已经在部分大中型城市试播。有线数字电视因不受国家政策限制,有可能会得到很快推广。

3、中国的地面数字电视标准

数字电视地面广播与数字卫星广播相较,有容易普及、接收价格低廉的特点;与数字有线电视广播相较,则较不易受城市施工建设、自然灾害、战争等因素造成的网络中断影响。因此,在传输状况、应用需求等方面,地面传输方式更加复杂,全球各地在地面数字电视传输系统方案的选择上争议也最大。

自2001年4月起,中国国家广电总局便开放数字电视广播系统的规格建议书的提交;并已在2001年10月开始在北京、上海及深圳三地进行数字地面广播标准的测试工作,在2002年至2003年间测试完成之后,开始进行最后标准的制定,目前还在制定过程之中。

目前中国各方面提交的地面数字电视标准提案共5套,分别是:

国家HDTV总体组(The HDTV Technical Executive Experts Group)一号提案:高级数字电视广播系统(ADTB-T);

国家HDTV总体组(The HDTV Technical Executive Experts Group)二号提案:数字电视地面广播系统(BDB-T/OFDM);

广电总局广播科学研究院(Academy of Broadcasting Science, State Administration of Radio, Film and TV)的射频子带分割双载波混合调变系统(CDTB-T);

清华大学(Tsinghua University)地面数字多媒体电视广播传输协议(TDS-OFDM based DMB-T);

成都电子科技大学(Chengdu Electronic Technology University)的同步多载波扩频地面数字电视传输系统(SMCC/COFDM)。

目前,这五种标准中,呈现出清华大学与上海交大的两种标准对垒之势。

清华大学的DMB-T标准

该标准在OFDM(正交频分复用)的保护间隔(Guard Interval)中,去掉了导频部分,复用同步头。该同步头利用DSS(直接扩散方式,扩散符号使用的是PN系列),提高了灵敏度,有利于汽车等移动状态下接收信号。与欧洲方式相比,灵敏度提高了10%左右,信噪比的要求也可以降低到-20dB。同时信号的传输效率也提高了10%。

清华DMB-T协议简介

DMB-T (Terrestrial Digital Multimedia/Teelevision Broadcasting) 基于TDS-OFDM (Time Domain Synchronous -Orthogonal Frequency Division Multiplexing)调制技术

分级的帧结构

强纠错编码技术

灵活的信道调制技术

OFDM 3780 个子载波,QPSK+QAM。抗多径和多普勒效应,支持单频网

高效可靠的时域同步技术

帧同步:Walsh 编码的PN序列,QPSK调制。可靠同步,基站识别,终端定位和绝对时间同步,只接收需要信息,达到省电便携和移动的条件和目的

准确快速的信道估计技术

便于实现的快速算法

清华DMB-T方案的技术特点

具有自主知识产权(目前已有19个专利)

信道容量大(最高每秒32兆位,适于高清晰度电视广播)

接收灵敏度高(简单天线可以收视,适于便携式接收机)

同步恢复快(小于5ms),信道估计准确,抗干扰能力强(24dB扩频增益),克服数字电视的悬崖效应,支持数据广播

能够抗静态多径(简单天线接收)和动态多径干扰(适于运动环境下接收)

能够抗各种家电脉冲干扰

频率规划效率高(支持同频网,可用低发射功率覆盖大范围)

采用分级编码技术,使标清和高清电视信号传输得到兼容

采用了扩频技术,大大提高了时域信号同步性能

在传输系统的信号调制和纠错编码两大部分都有创新

整体性能优于现有数字电视传输系统

具有可扩展性(交互式多媒体广播、蜂窝式广播网,等等)

上海交大的ADTB-T标准

ADTB-T是一种“单载波”方案,采用4位或16位QAM变调方式,并在其中融入了独特的平均化技术,使用8MHz 带宽,拥有5Mbit/s、10Mbit/s、20Mbit/s三种传输模式。目前正在开发第4代接收样机,同时正在进行高速移动接收试验。

关于移动接收信号的性能,据称超过了DVB-T。关于所需的灵敏度,据悉为-82dBm(最大20Mbit/秒)~-92dBm(最大5Mbit/秒)。

其主要的技术组成和特点包括:

有效的数据结构:满足灵活的综合数字业务和抗干扰要求

单载波调制技术:4/16/64O-QAM

双导频辅助同步技术:稳健的上下导频辅助同步系统

优秀的信道编解码技术:级联的交织内外码FEC

强大的对抗信道衰落的均衡技术:0dB多经和前、后向回波

更多高效的接收处理技术:普通高频头+复杂的数字信号处理

大容量移动接收:移动条件下最高速率可达12Mbps

ADTB-T核心技术与创新点:

首次实现大容量(12Mbps)的高速移动接收

首次实现单载波的单频网技术

提供了高/中/低码率业务混合传输的可能性

稳定可靠的固定接收性能,兼容有线接收

信号的峰均比低,载噪比门限低,有利于频谱规划,作到更好的信号覆盖

对抗相位噪声的能力强

跟踪快速变化信道的能力强

采用双导频信号,载波恢复和时钟恢复更稳健,可靠

取得近20项发明专利

4、中国已经颁布的数字电视技术相关标准

目前中国已颁发的与数字电视相关的标准如下:

数字(高清晰度)电视标准体系(概况)

数字电视基础标准

GB/T7400.11 数字电视术语

GY/T134 数字电视图像质量主观评价方法

GY/T144 广播电视SDH干线网管理接口协议

GY/T145 广播电视SDH干线网网元管理信息模型规范

GY/Z174 数字电视广播业务信息(SI)规范

GY/Z175 数字电视广播条件接收系统(CA)规范

演播室参数标准

GB/T 14857 演播室数字电视编码参数规范

GB/T 17953 4∶2∶2数字分量图像信号的接口

GY/T 155 高清晰度电视节目制作及交换用视频参数值

GY/T 156 演播室数字音频参数

GY/T 157 演播室高清晰度电视数字视频信号接口

GY/T 158 演播室数字音频信号接口

GY/T 159 4∶4∶4数字分量视频信号接口

GY/T 160 演播室数字电视辅助数据信号格式

GY/T 161 数字电视附属数据空间内数字音频和辅助数据的传输规范

GY/T 162 高清晰度电视串行接口中作为附属数据信号的24比特数字音频格式 B11 GY/T 163 数字电视附属数据空间内时间码和控制码的格式

B12 GY/T 164 演播室串行数字光纤传输系统

B13 GB/T14919 数字声音信号源编码技术规范

B14 GB/T14920 四声道数字声音副载波系统技术规范

B15 GY/T167 数字分量演播室的同步基准信号

B16 GY/T165 电视中心播控系统数字播出通路技术指标和测量方法

视频编码及复用标准

GB/T 17975.2 信息技术——运动图像及其伴音信号的通用编码

MPEG-2视频标准在数字(高清晰度)电视广播中的实施准则(征求意见稿)

MPEG-2系统标准在数字(高清晰度)电视广播中的实施准则(征求意见稿)

信道编码及调制标准

GB/T 17700-1999卫星数字电视广播信道编码及调制标准

GY/T170-2001有线数字电视广播系统信道编码及调制规范

GY/T143 有线电视系统调幅激光器发送机和接收机入网技术条件和测量方法

GY/T146 卫星数字电视上行站通用规范

GY/T147 卫星数字电视接收站通用技术要求

GY/T148 卫星数字电视接收机技术要求

GY/T149 卫星数字电视接收站测量方法——系统测量

GY/T150 卫星数字电视接收站测量方法——室内单元测量

GY/T151 卫星数字电视接收站测量方法——室外单元测量

GY/T198-2003《有线数字电视广播QAM调制器技术要求和测量方法》

世界三大数字电视标准简介

2008-04-22 13:13

数字电视相对模拟电视的巨大优势使之成为公认的下一代电视系统,而要将数字电视变成现实,业界需要完成复杂的系统性工作,而其中最重要的一环就是数字电视标准的制定。标准的作用在于定义整个数字电视系统的具体实现细节,主要内容涵盖数字节目的前期制作、数字节目的显示格式、数字节目的传输几个方面。在所有这些标准确定之后,整套数字电视系统才可以组合并运转起来,整个数字电视产业也才可能真正启动。

数字电视按传输方式分为地面、卫星和有线三种。1995年,欧洲150个组织成立了DVB(Digital Video Broadcasting,数字视频广播)联盟,这个联盟现在已经拥有近200个成员。1997年,DVB联盟发表了它的数据广播技术规范,包括卫星数字电视传输标准DVB-S、有线电视传输系统标准DVB-C和地面传输标准DVB-T,为卫星、有线和地面电视频道传送高速数据铺平了道路。其中,DVB-S 规定了卫星数字广播调制标准,使原来传送一套PAL制节目的频道可以传播四套数字电视节目,大大提高了卫星的效率。DVB-C规定了在有线电视网中传播数字电视的调制标准,使原来传送一套PAL制节目的频道可以传播四至六套数字电视节目。DVB-S和DVB-C这两个全球化的卫星和有线传输方式标准,目前已作为世界统一标准被大多数国家所接受(包括中国)。而对于地面数字电视广播标准,经国际电讯联盟(ITU)批准的共有三个,分别为:欧盟的DVB-T标准、美国的ATSC(Advanced Television System Committee,先进电视制式委员会)标准和日本的ISDB-T(Integrated Services Digital Broadcasting,综合业务数字广播)标准,因此,数字电视标准之争主要集中在地面数字广播系统。

DVB-T标准采用的大量导频信号插入和保护间隔技术使得系统具有较强的多径

反射适应能力,在密集的楼群中也能良好接收,除能够移动接收外,还可建立单频网,适合于信号有屏蔽的山区。另外,欧洲系统还对载波数目、保护间隔长度和调制星座数目等参数进行组合,形成了多种传输模式供使用者选择。但欧洲标准也存在缺陷:①频带损失严重;②即使防止了大量导频信号,对信道估计仍是不足;③在交织深度、抗脉冲噪声干扰及信道编码等方面的性能存在明显不足;

④覆盖面较小。

美国ATSC标准

美国于1996年12月24日决定采用以HDTV为基础的ATSC作为美国国家数字电视标准。美国联邦通信委员会(FCC)决定用9年时间完成模拟电视向数字电视的历史性过渡。

ATSC标准具备噪声门限低(接近于14.9dB的理论值)、传输容量大(6MHz带宽

传输19.3Mbps)、传输远、覆盖范围广和接收方案易实现等主要技术优势。但是也存在一系列问题,最主要的是不能有效对付强多径和快速变化的动态多径,造成某些环境中固定接收不稳定以及不支持移动接收。

日本ISDB-T标准

日本于1996年开始启动自主的数字电视标准研发项目,在欧洲COFDM技术的基础上,增加具有自主知识产权的技术,形成ISDB-T地面数字广播传输标准,于1995年7月在日本电气通信技术审议会上通过。2001年,该标准正式被ITU接受为世界第3个数字电视传输国际标准。

频谱分段传输与强化移动接收是日本ISDB-T标准的两个主要特点,是对地面数字电视体系众多参数及相关性能进行客观分析优化组合的结果,但是此标准是日本根据本国具体情况及产业发展战略进行权衡取舍的。在实现系统特定功能的同时也为之付出相应的代价,如频谱分段传输对系统频率分集性能与净载荷率的影响,采取以频谱分段为基础实现不同误码保护率分层传输对系统复杂度的影响,在系统内层采用延时长达数百毫秒交织环节对系统及业务同步响应的影响等。目前,世界各国都根据本国的具体情况,慎重地选择地面数字电视标准。从世界范围看,除了美国外,还有加拿大、阿根廷、韩国等国家采用美国的ATSC标准。而欧洲所有国家和澳大利亚、新加坡、印度等国则选用了欧洲联盟的DVB-T标准。我国正积极开展数字电视标准的研究,国家标准即将出台。从保护国内产业的角度出发,制定具有我国独立自主知识产权、技术上领先的数字电视传输标准,将对我国电视、通信、互联网等产业发展带来不可低估的影响,有利于发达国家向我国开放技术,亦可因数字技术本身的特性,保护国家的信息安全。按照计划,我国将在2010年实现数字电视的普及,2015年将全面取代现有的模拟电视系统。因此,对产业界来说,数字电视也意味着巨大的市场机遇。

DVB回波均衡

2008-04-22 17:30

由于回波干扰和信道的线性失真会在接收符号间产生符号间干扰(ISI),目前有效消除ISI的技术有两种:时域均衡和正交频分复用(OFDM)。

时域均衡一般是在匹配滤波器后插入一个横向滤波器,它由一条带抽头的延时线构成,抽头间隔等于符号周期。每个抽头的延时信号经加权后送到一个相加电路输出,其形式与有限冲激响应滤波器(FIR)相同,相加后的信号经抽样送往判决电路。每个抽头的加权系数是可调的,通过调整加权系数可以消除符号间干扰(ISI)。

OFDM,为实现最大频谱效率,一般取载波最小间隔等于符号周期的倒数,此时,各载波上的信号频谱互相重叠,但载波间隔的选择使这些载波在整个符合周期上是正交的,即在符合周期上的任何两个载波的乘积都为零。这样,即使各载波上的信号频谱间存在重叠,也能无失真的复原。

ISDB-T标准介绍(一)

2008-04-23 15:33

关键字:ISDB-T, SBDTV-T, 数字电视标准,日本地面数字电视,巴西地面数字电视

本文将为读者介绍ISDB-T标准的关键技术及系统框架。我们首先概述了日本ISDB-T的由来,然后介绍ISDB-T的若干关键技术,在此基础上再介绍了整个ISDB-T系统,最后介绍了一下ISDB-T在日本和巴西的进展一、概述

80年代中期日本便开始了模拟高清晰度电视的研究,它试图制订出一个国际性的模拟高清晰度标准。然而时,欧洲和美国开始了数字高清晰度电视标准的研究,并将日本抛在后面。90年代中期,欧洲和美国相继制定各自的数字电视地面传输标准,分别为DVB-T(Digital Video Broadcasting,数字视频广播)和ATSC-T(Advanc Television System Committee,高级电视系统委员会)标准,它们分别采用正交频分复用(OFDM, Orthogonal Frequency Division Multiplex)调制技术和格状编码残留边带(VSB, Vestige Side Band)调制技术。面对这种情况日本于96年成立了数字广播专家组DiBEG(Digital Broadcasting Expert Group),于98年制定出了自己的标准――ISDB-T(Integrated Services Digital Broadcasting,综合业务数字广播)。ISDB-T采用频带分割传输正交分复用(BST-OFDM, Bandwidth Segmented Transmission OFDM)调制技术,期望在一个信道中实现音频、视频文字等多同种业务的混合播报。

ISDB-T于2001年被ITU接收为世界上第三个数字电视传输国际标准。2006年6月,巴西决定采用ISDB 作为本国的数字广播标准。巴西在日本的ISDB-T的基础上进行了若干修改,使之具有本地化的特点,形成了SBDTV-T。总体而言,ISDB-T和SBDTV-T的几乎相同。在下面的讨论中,我们以ISDB-T来统称两种标准。

在介绍ISDB-T前,我们有必要了解一下ISDB。和美国的ATSC标准一样,ISDB是一个数字电视广播标体系统。按照信号的调制和传输方式的不同,ISDB可以分ISDB-S,ISDB-C和ISDB-T,如图一所示。其中ISDB-S是卫星数字广播电视标准,它采用TC-8PSK调制技术;ISDB-C是有线数字广播电视标准,它采用64QA 调制技术;ISDB-T地面数字广播电视标准,它采用BST-OFDM调制技术。ISDB-T是ISDB系列标准中的一个也是广为关注的一个,因为它可以很大程度的扩展播报的服务和接收的方式。

图一ISDB标准体系

二、ISDB-T的关键技术

图二ISDB-T技术特点

图二说明了ISDB-T的关键技术以及它们如何满足日本数字地面广播的性能要求。下面将一一介绍。2.1OFDM调制

OFDM调制技术近年来在宽带通信中得到广泛应用。OFDM的基本思想是通过采用允许子信道频谱重叠,相互间又不影响的频分复用方法来并行传送数据。作为一种多载波并行传输系统,OFDM通过延长传输符号的期,增强了抵抗回波的能力,使传输具有相当的鲁棒性。

2.2频带分割

OFDM信号传输方式具有频谱共享潜在能力。欧洲标准DVB-T采用了高低优先级码流来实现分级传输(如三),但它是通过改变调制方式(16/64QAM-QPSK)进行星座嵌套而获得,并不是真正意义上的独立通道分层输。

图三16QAM星座图由两个QPSK星座图叠加生成

ISDB-T信号可以在6MHz带宽中传递HDTV服务或多节目服务, 它通过频谱分割来实现分层传输。ISDB 整个带宽分割成13个频率段,每个频率段称为OFDM子频段。若干个OFDM子频段可以组合成一个层,用于输一种业务,如图四。ISDB-T最多支持三个层的业务复用,并且每一层都可以单独进行信道编码和载波调制。就是频带分割传输正交频分复用(BST-OFDM)的基本思想。

图四层次传输

ISDB-T支持两种模式的传输:宽带传输和窄带传输,如图五。宽带传输使用了所有的OFDM子频段,这些OFDM子频段组织十分灵活,可以用13个频段传输HDTV数据,也可以用1个频段传输One-Seg数据,其它频段传输一般数据和TV数据。宽传输用于固定接收、车载接收和One-Seg接收。当数据不足以填充13个OFDM子频段时就用空数据包填充多余的OFDM子频段。带传输只能用来传输音频和数据,且最多有3个OFDM子频段。窄带传输主要用于数字广播接收,当然也可以用于One-Seg接收

图五传输模式

2.3深度时间交织

大家知道,信号在传输过程中,不可以避免地会发生错误,这就需要一种纠错措施。信道编码就在在信号在信道中传输前加入一些冗余信息,接受端接收到信号后,先判断信号是否有错误,如果有就利用冗余信息进行误矫正。

图六信道编码过程

图六列出了ISDB-T信道编码的过程。其中,字节交织处于外编码和内编码之间,用于将分散Viterbi解码器输出信号的突发错误。比特交织处于是卷积编码和符合映射之间,用于分散Viterbi解码器输入信号的符号错误时间交织在符号映射之后,主要分散因噪声脉冲、多普勒效应引起的时域突发错误。频率交织在时间交织之后主要分散因载波干扰、多径衰减引起的时域突发错误。

图七表明了时间交织的作用。如果符号没有经过时间交织,那么当采集脉冲受到干扰时,这个符号的所承载的信息完全丢了,因为错误太集中,冗余编码无法恢复出丢失的信号。如果对符号进行了时间交织,那么当前

个符号的信息就分散到了一个相当长的时间段内,这样,当某个脉冲对应的交织后的符号丢失时,我们可以通解交织,将这个符号的部分码片找到,错误的码片就可以利用冗余信息来得到。

ISDB-T中,内交织采用并联比特交织方式,以均衡内码解码输人端误码能量,交织延时仅为120个调制符号;系统外织采用12臂同步回旋交织器,最大交织延时为2244个字节, 与RS(204,188,t=8)配合最大理论纠错容限为96的连续错误号。时间交织的长度是204个OFDM符号,远大于前二者,达0.88s。ISDB-T的深度时间交织使得它在接收条件十分恶劣的情也具有良好的接收性能。

图七时间交织的原理

2.4 TMCC

TMCC就是传输复用配置控制信号。TMCC信号告诉接收终端如何解释接收的数据。它包括了以下几个方的信息:

+指示传输系统是宽带传输还是窄带传输

+指示传输参数将在若干帧后改变

+指示传输系统使用多少个OFDM子频段

+指示中间OFDM子频段是否用于部分接收

+指示全频段接收时,业务的层次配置情况,它包含多少层,每一层的信息编码和载波调制参数

ISDB-T标准介绍(二)

2008-04-23 15:38

三.ISDB-T系统

3.1 ISDB-T系统框架

ISDB-T可以在6M带宽内传输包括视频(连续图像和伴音)、音频、一般数据等业务的一套或编码有两种:MPEG-2和H.264。前者用于播放日本的SDTV和HDTV,后者用于日本的One-Seg和巴西视频编码。音频编码采用图八是ISDB-T的发送端框架图。信源编码输出后的基本流经MPEG2复用后得到TS,多个T 到由TS帧组成的流。一个TS帧由若干个长度为204字节的新TS包组成。每个新TS包由原始T 成,它对应于一个层次的数据包。TS帧的长度相同于OFDM帧的长度。OFDM帧是接收端的最小进入TS再复用器的TS的速率与各层指定的参数不一定匹配,所以有必要在TS帧中插入一些空数TS帧中属于各个层的包按规定的次序排列,这样接收端就能按这个规定提取指定的层而不需要额对应关系。

由TS帧构成的流经RS编码后,就会被分成最多三个层。每个层分别按指定的参数进行后续制,然后这个符号按层组织成对应于OFDM子频段的数据段,分别以段为单位进行时间交织和频信息(如离散导频,连续导频,TMCC等)后经OFDM后输出IF信号,再上变频到RF,最后经馈分层传输可以使各层传输不同的数据服务,也可以提供同一种数据不同质量等级的服务,以实收转换。

图八ISDB-T发送端框架图ISDB-T的接收端是发送端的逆过程,从此不再赘述。图九从系统实现的角度对其进行了描述。

图九ISDB-T接收端框架图

3.2 传输参数

ISDB-T有三种传输模式,一个信道只能采用一种模式。这三种模式分别对应于三种副载波可实现不同速率的数据传输。图十列出了带宽为6M时的可选传输参数。

图十传输参数

3.3 部分接收

部分接收是指接收端只接收宽带传输中的中间OFDM子频带(如果允许的话)和窄带传输的中One-Seg接收和数字音频接收都是部分接收。需要说明的,One-Seg接收只使用了13个OFDM 种,它可用传输视频、音频、一般数据等各种业务数据。由于带宽的限制,One-Seg提供的视频是准和HDTV。

既然可以用全频段提供更好的服务,为什么还需要One-Seg呢?电池容量!电池容量是移动多就是为什么有了DVB-T,又出现了DVB-H,有了ATSC-T又要研究ATSC-M&H的主要原因。为什量呢?如图十一,对于全频带信息,要完全采集到所有的频率的信息需要超过8MHz的采样频率,率的信息,采样频率可以降到原来的1/8。采样频率低了,电量就节省了。这里就涉及到一个争论准DVB-H是用时间分片的方式来实现省电。它让终端在一段很短的时间内接收高速率的数据,然

再接收数据。DVB-H认为这种“工作--休眠”的模式可以省电。ISDB-T的专家们则认为,这种因为相对于非时间分片的模式,在时间分片模式下工作时,接收端必须成倍地提高采样率才能得到身就要成倍地增加耗电量。因此,他们认为时间分片的方式增加了实现难度,但节电效果并不明显

图十一部分接收受的省电原理

3.4 日本与巴西的对比

我们在前面提到过日本地面数字电视和巴西数字电视的关系。从技术角度而言,两者的差别并不大。图十二西的SBDTV-T几乎完全继承了日本ISDB-T的特点,前者只是做了一些本地化的修改。

图十二日本ISDB-T和巴西SBDTV-T的比较

四、ISDB-T现状

4.1 ISDB-T在日本

2003年,日本开始在三个主要城市开通ISDB-T服务,其后,它于2006t年在全国范围内开也积极地向世界推销该标准,游说的国家包括巴西、泰国、新加坡、智利、菲律宾、委内瑞拉等。

功拿下巴西这一重要的市场,并在其它地区成为候选标准。

到2007年7月为止,日本使用ISDB-T的人数达到3950万,地面数字电视接收终端部件的其中,One-Seg移动终端部件的采购量为1100万份,车载接收终端部件采购量为65万份。

4.2 ISDB-T在巴西

巴西于2006年6月决定将ISDB-T作为本国地面数字电视标准。巴西通信部决定于2007年始地面数字电视首播,然后于2008年推广到所有的地方首府。但摆在设备生产商面前的难题是,顶盒售价无法低于200美元,这一价格与政府100美元的期望相差甚远。政府正在考虑是否从中盒子。到2008年3月为止,圣保罗地区的ISDB-T接收端机顶盒销售不到10000台,这使得ISD 于先前的估计。设备商认为政府没有兑现大力推广的承诺并且课税太多,而政府则认为认备商提少,并且价格太贵。

总之,ISDB-T已经开始在全球两个重要的市场铺张开来,并呈现出巨大的商机。(完)https://www.docsj.com/doc/764027204.html,/html/08-07/49220808018200.shtml

数字(高清晰度)电视标准体系(概况)

数字(高清晰度)电视标准体系(概况) 数字电视基础标准GB/T7400.11 数字电视术语GY/T134 数字电视图像质量主观评价方法GY/T144 广播电视SDH 干线网管理接口协议GY/T145 广播电视SDH 干线网网元管理信息模型规范GY/Z174 数字电视广播业务信息(SI)规范GY/Z175 数字电视广播条件接收系统(CA)规范演播室参数标准GB/T 14857 演播室数字电视编码参数规范GB/T 17953 4∶2∶2 数字分量 图像信号的接口GY/T 155 高清晰度电视节目制作及交换用视频参数值GY/T 156 演播室数字音频参数GY/T 157 演播室高清晰度电视数字视频信号接口GY/T 158 演播室数字音频信号接口GY/T 159 4∶4∶4 数字分量视频信号接口GY/T 160 演播室数字电视辅助数据信号格式GY/T 161 数字电视附属数据空间内数字音频和辅助数据的传输规范GY/T 162 高清晰度电视串行接口中作为附属数据信号的24 比特数字音频格式B11 GY/T 163 数字电视附属数据空间内时间码和控制码的格式B12 GY/T 164 演播室串行数字光纤传输系统B13 GB/T14919 数字声音信号源编码技术规范B14 GB/T14920 四声道数字声音副载波系统技术规范B15 GY/T167 数字分量演播室的同步基准信号B16 GY/T165 电视中心播控系统数字播出通路技术指标和测量方法视频编码及复用标准GB/T 17975.2 信息技术――运动图像及其伴音信号的通用编码MPEG- 2 视频标准在数字(高清晰度)电视广播中的实施准则(征求意见稿) MPEG-2 系统标准在数字(高清晰度)电视广播中的实施准则(征求意见稿) 信道编码及调制标准GB/T 17700-1999 卫星数字电视广播信道编码及调制标准GY/T170- 2001 有线数字电视广播系统信道编码及调制规范GY/T14 3 有线电视系统调幅激光器发送机和接收机入网技术条件和测量方法GY/T146 卫星数字电视上行站通用规范GY/T147 卫星数字电视接收站通用技术要求GY/T148 卫星数字

数字电视标准

数字电视标准概述 一、什么是数字电视 数字电视(Digital TV)是从电视信号的采集、编辑、传播、接收整个广播链路数字化的数字电视广播系统。数字电视利用MPEG标准中的各种图像格式,把现行模拟电视制式下的图像、伴音信号的平均码率压缩到大约4.69—21Mbps,其图像质量可以达到电视演播室的质量水平,胶片质量水平,图像水平清晰度达到500—1200线以上,并采用AC—3声音信号压缩技术,传输5.1声道的环绕声信号。 二、数字电视的分类 1.按清图像晰度分类,数字电视包括数字高清晰度电视(HDTV)、数字标准清晰度电视(SDTV)和数字普通清晰度 电视(LDTV)三种。HDTV的图像水平清晰度大于800线,图象质量可达到或接近35mm宽银幕电影的水平;SDTV 的图像水平清晰度大于500线,主要是对应现有电视的分辨率量级,其图象质量为演播室水平;LDTV的图像水平清晰度为200-300线,主要是对应现有VCD的分辨率量级。 2.按信号传输方式分类,数字电视可分为地面无线传输数字电视(地面数字电视)、卫星传输数字电视(卫星数字电 视)、有线传输数字电视(有线数字电视)三类。 3.按照产品类型分类,数字电视可分为数字电视显示器、数字电视机顶盒和一体化数字电视接收机。 4.按显示屏幕幅型比分类,数字电视可分为4∶3幅型比和16∶9幅型比两种类型。 三、数字电视系统的关键技术及标准 1、数字电视的信源编解码技术 ?视频编解码技术 数字电视尤其数字高清晰度电视与模拟电视相比,在实现过程中,最为困难的部分就是对视频信号的压缩。在1920×1080显示格式下,数字化后的码率在传输中高达995Mbit/s,这比现行模拟电视的传输信息量大得多。因而数字电视的图像不能象模拟电视的图像那样直接传输,而是要多一道压缩编码工序。视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20~30Mbit/s。 ?音频编解码技术 与视频编解码相同,音频编解码主要功能是完成声音信息的压缩。声音信号数字化后,信息量比模拟传输状态大得多,因而数字电视的声音不能象模拟电视的声音那样直接传输,而是要多一道压缩编码工序。 ?信源编解码的相关标准 国际上对数字图像编码曾制订了三种标准,分别是主要用于电视会议的H.261、主要用于静止图像的JPMG标准和主要用于连续图像的MPEG标准。 在HDTV视频压缩编解码标准方面,美国、欧洲和日本没有分歧,都采用MPEG-2标准。MPEG压缩后的信息可以供计算机处理,也可以在现有和将来的电视广播频道中进行分配。在音频编码方面,欧洲、日本采用了MPEG-2标准;美国采纳了杜比(Dolby)公司的AC-3方案,MPEG-2为备用方案。但随着技术的进步,1994年完成的MPEG-2随着技术的进步现在显得越来越落后,国际上正在考虑用MPEG-4 A VC来代替目前的MPEG-2。 中国方面,中国的数字音视频编解码标准工作组制定了面向数字电视和高清激光视盘播放机的AVS标准。该标准据称具有自主知识产权,与MPEG-2标准完全兼容,也可以兼容MPEG-4 AVC/ H.264国际标准基本层,其压缩水平据称可达到MPEG-2标准的2-3倍,而与MPEG-4 AVC相比,AVS更加简洁的设计降低了芯片实现的复杂度。

数字电视机顶盒系统资料

理学院 School of Sciences 课程论文 课程名称电视原理与系统 课程编码011820 开课学期七论文题目数字电视机顶盒的原理与发展现状 学号姓名XXX 班级指导教师

数字电视机顶盒的原理与发展现状 摘要:随着我国经济的发展和科技的进步,广播电视网也正在向产品化、网络化、数字化的方向发展。其中,数字机顶盒作为系统中的用户终端设备是一项关键的设备。由于数字机顶盒能够将数字电视信号进行转换,成为模拟电视机可以接收到的PAL/NTSC 信号,同时也能够支持因特网浏览、视频点播、可视电话、DVD播放等多媒体的功能以及放大、解密、加扰的功能,和普通模拟电视机进行组合便能够构成完整独立的数字电视接收机,因此其市场发展前景可谓是及其广阔。 关键词:数字机顶盒;信号转换;电视接收机

1. 机顶盒的概念、分类和特点 1.1 机顶盒的概念 机顶盒,顾名思义,因人们常常将它放在电视机的上面而得名,机顶盒的全称叫做“数字电视机顶盒”,英文缩写“STB”(Set Top Box)。它是一种将数字电视信号转换成模拟信号的变换设备,它把经过数字化压缩的图像和声音信号解码还原成模拟信号送入普通的电视机[1]。其作用是为了增强或扩展电视机功能,可分为模拟机顶盒和数字机顶盒,现在,我们所说的机顶盒通常指数字电视机顶盒。它是一种能够让普通电视机呈现数字电视的高品质画面,并可通过网络进行教育和商业化活动、交互式数字化娱乐的消费类电子产品。目前的数字电视机顶盒已成为一种嵌入式计算设备,具有完善的实时操作系统,提供强大的CPU计算能力,用来协调控制机顶盒各部分硬件设施,并提供易操作的图形用户界面,如增强型电视的电子节目指南,给用户提供图文并茂的节目介绍和背景资料。同时,机顶盒具有“傻瓜计算机”能力,这样通过内部软件功能和对网络稍加进行双向改造,很容易实现如因特网浏览、视频点播、家庭电子商务、电话通信等多种服务,可谓一网打天下。 1.2数字电视机顶盒的分类及特点 1.2.1上网机顶盒 上网机顶盒是利用电话网或有线电视网作为传输介质,使用电视机作为显示器,,实现没有电脑确可以上网的功能,使电视机与互联网有机融合。换言之,可以把上网机顶盒看作是一种非PC类的交月租,另外每增加一用户,仅需增加一台机顶盒,多用户时成本低,缺点是只能收卫星电视节目,不能接收香港台、清溪新闻等,适宜宾馆安装。 1.2.2数字卫星机顶盒 数字卫星机顶盒是一种用来接收卫星数字电视信号并转化成高质量的音视频信号 输出的设备,优点是画质清晰,不用互联网络接入设备。因其使用需要一定带宽,有时可能出现因用户的数量增多而引起的收看不太顺畅的情况。 1.2.3数字地面机顶盒 其功能与数字卫星机顶盒类似,只是传输平台不同,其传输平台为地面广播信道。其优点是可以随时移动收看,但这种无线信道的情况相对有线电视网络复杂,并且存在的多径接收、邻频干扰等问题。 1.2.4数字有线电视机顶盒 其基本原理与数字地面机顶盒相同,只是传输平台不同,其传输平台是有线电视所

我国现行数字电视标准研究

我国现行数字电视标准研究 摘要:研究我国现行数字电视标准可以对于我国数字电视标准未来发展具有重 要意义。本文首先对数字电视作出简要阐述,然后说明国外数字电视标准,最后 结合实际情况,对比国外数字电视标准,对我国现行数字电视标准展开研究,希 望可以对业内起到一定参考作用。 关键词:我国;数字电视;标准 数字电视标准的制定、运行对于我国数字电视发展具有积极影响,可以让 用户接受电视服务变得更为丰富,电视画面变得更为优质。与此同时,数字电视 标准对于以用户为中心的视讯播放模式构建具有重要意义,对于我国视讯产业发 展具有推动作用。 1 数字电视相关概述 数字电视,即能够处理电视信号、发送电视信号、产生电视信号与接收电视 信号的电视系统,其具有明显的信息化特点。和模拟电视相比,数字电视具有较 强的抗干扰能力、信号双向流通能力以及高频率利用率,分析内容、传输信号、 接收信号等方面均和模拟电视存在较大差异,在具体应用中,一方面,数字电视 可以让节目内容更为繁多、细化,让信息资源变得更为丰富,另一方面,数字电 视可以让电视台广告收入得以增加,可以帮助电视台对自身产业进行拓展,对电 视台未来发展具有积极影响[1]。 在数字电视标准方面,在标准制定过程中,需要对传统技术、网络化技术、 数字化技术应用予以全面考量,规范处理设备接口情况,并在此基础上对数字信 号细节处理流程进行规范设定。统一的数字系统标准可以让网络、设备得以联通,可以让数字信号得以传播,在数字系统体系中,其具有高度综合性,且各个环节 运行具有高度稳定特点。现阶段,欧洲国家、美国、日本数字电视标准得到了广 泛应用,对于我国数字电视标准运行及未来发展具有借鉴意义。 2 国外数字电视标准 2.1 欧洲国家标准 在欧洲国家中,其通用标准主要为DVB标准。在包含数字视频广播传输系统基 础上,此标准可以对卫星传输形式、无线电视传输形式、有线电视传输形式予以 囊括,可以让数字电视播放与高清电视播放需求得到满足。在标准压缩编码方面,其主要采用ISO标准与IECMPEG-2标准,可以统一音频与视频的信源编码,MPEG-2结构为数据容器,利用DVB服务标准,可以提升整体信息格式准确性, 进而将多元传输服务提供给用户,让数字信号转换有效性得到保证。 2.2 美国标准 美国所采用标准主要为ATSC标准,此标准包含主要模块为图像层模块、图像 压缩层模块、传输层模块和系统复用层模块。在图像层中,主要包含元素为像素 阵列、幅型、帧频等元素;在系统复用层中,可以让压缩包内模块得到特定数据 信息的有效融入,在该层中,压缩包和数据信息具有对应性[2]。 2.3 日本标准 日本主要采用ISDB标准,日本数字电视技术经过多年发展,当前,此标准已经较为成熟。且复用方案标准化作用得到了充分发挥,可以针对差异化信号开展传 输处理工作。与此同时,此标准具有灵活性、柔韧性特点,可以让多种节目得到 有效集成,可以让差异化数据业务得以发送。 3 我国数字电视标准

数字电视机顶盒标准

数字电视机顶盒标准

————————————————————————————————作者:————————————————————————————————日期:

字电视机顶盒标准 [ 2006-10-17 09:56:00 ]标签:无 信息产业部组织制定的《数字电视接收设备术语》等25项电子行业标准于近日正式对外发布。该25项行业标准均为推荐性标准,分为术语及试验方法、接口、机顶盒、机卡分离和显示器五个方面。 考虑到当前相关产业状况,为使标准得到更好的贯彻,对该系列标准中涉及显示器清晰度指标的《数字电视液晶背投影显示器通用规范》等6项标准给予过渡期,并于2007年1月1日起实施,其余标准自颁布之日正式实施。 目前,由于显像管、聚焦等原因,绝大多数所谓的“高清”电视都没有达到国家高清晰显示器的标准,数字电视机标准明确细化规定了“高清”数字电视机显示屏幕长与宽的比例、图像屏幕清晰度等指标。有关权威人士指出,新的标准出台之后,将使得“假高清”在市场上再也没有藏身之地,从而可以有效地避免消费者由于被蒙蔽而带来的损失。 附件:批准发布的电子行业标准项目表 分类:数字电视接收设备--基础标准 分类:数字电视接收设备--接口标准

分类:数字电视接收设备--机顶盒标准 分类:数字电视接收设备--机卡分离标准 分类:数字电视接收设备--显示器标准 eg: 数字电视和高清电视是什么关系数字电视是一项全新的有线电视服务,同时数字电视还是一个庞大的家族,按照图像清晰度分类从高到低可包括:数字高清晰度电视(HDTV,即电影级图像)、数字增强清晰度电视(EDTV,即比DVD略高的图像)、数字标准清晰度电视(SDTV,即DVD级图像)以及数字普及型电视(即:VCD级图像)等四种。可见,高清电视(HDTV)只不过

高清数字电视的格式标准720p

高清数字电视的格式标准720p 720P是美国电影电视工程师协会(SMPTE)制定的高等级高清数字电视的格式标准,有效显示格式为:1280×720.SMPTE(美国电影电视工程协会)将数字高清信号数字电视扫描线的不同分为1080P、1080I、720P(i是interlace,隔行的意思,p是Progressive,逐行的意思)。720P是一种在逐行扫描下达到1280×720的分辨率的显示格式。是数字电影成像技术和计算机技术的融合。 一、简介 数字电视的发展从1080i到720p再到1080p 1080i和720p同是国际认可的数字高清晰度电视标准。原NTSC国 家采用的是1080i/60Hz格式,与NTSC模拟电视场频相同。而欧洲以及中国等一些原PAL制国家则采用了1080i/50Hz模式,场频与PAL模拟电视相同。至于720p,则由于IT 厂商更深的渗透到了电视行业而成为了一个可选的标准,目前开始在以光盘为载体的HDTV 播放机领域拓展地盘。 二、发展实例 以日本数字电视标准为例,按照显示格式的不同,共分为以下5种规格: D1:480i格式,和NTSC模拟电视清晰度相同,行频为15.25kHz D2:480P格式,和逐行扫描DVD规格相同,行频为31.5kHz D3:1080i格式,分辨率为1920×1080i/60Hz,行频为33.75kHz D4:720p格式,分辨率为1280×720p/60Hz,行频为45kHz D5:1080p格式,分辨率为1920×1080逐行扫描,专业格式 其中以D3的1080i作为高清晰度电视的基本格式,但是也兼容720p格式的播放。而D5规格的1080p则作为高级的专业模式,普遍应用于电视台、电影制作。电视台发送的1080i 和720p电视信号都是由1080p信号源转换播出的。 可以看出,1080p是一个事实上存在的标准,但是1080p目前并不是民用领域使用的标准。1080p不是只有一种60Hz场频,其实真正应用得最多的是24Hz、25Hz、30Hz三种场频规格。我们知道电影是以每秒24幅的方式播放胶片的。以1080p/24Hz方式拍摄的数字图像可以无损失的传送到DLP/D-ILA等数字电影投影机上,以电影格式播放。1080p/24Hz是为电影准备的一种格式。

数字电视系统的关键技术及标准概述

一、什么是数字电视 数字电视(Digital TV)是从电视信号的采集、编辑、传播、接收整个广播链路数字化的数字电视广播系统。数字电视利用MPEG标准中的各种图像格式,把现行模拟电视制式下的图像、伴音信号的平均码率压缩到大约4.69—21Mbps,其图像质量可以达到电视演播室的质量水平,胶片质量水平,图像水平清晰度达到500—1200线以上,并采用AC—3声音信号压缩技术,传输5.1声道的环绕声信号。 二、数字电视的分类 按清图像晰度分类,数字电视包括数字高清晰度电视(HDTV)、数字标准清晰度电视(SDTV)和数字普通清晰度电视(LDTV)三种。HDTV的图像水平清晰度大于800线,图象 质量可达到或接近35mm宽银幕电影的水平;SDTV的图像水平清晰度大于500线,主要是对应现有电视的分辨率量级,其图象质量为演播室水平;LDTV的图像水平清晰度为200-300线,主要是对应现有VCD的分辨率量级。 按信号传输方式分类,数字电视可分为地面无线传输数字电视(地面数字电视)、卫星传 输数字电视(卫星数字电视)、有线传输数字电视(有线数字电视)三类。 按照产品类型分类,数字电视可分为数字电视显示器、数字电视机顶盒和一体化数字电视接收机。 按显示屏幕幅型比分类,数字电视可分为4∶3幅型比和16∶9幅型比两种类型。 三、数字电视系统的关键技术及标准 1、数字电视的信源编解码技术 视频编解码技术 数字电视尤其数字高清晰度电视与模拟电视相比,在实现过程中,最为困难的部分就是对视频信号的压缩。在1920×1080显示格式下,数字化后的码率在传输中高达995Mbit/s,这比现行模拟电视的传输信息量大得多。因而数字电视的图像不能象模拟电视的图像那样直接传输,而是要多一道压缩编码工序。视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20~30Mbit/s。 音频编解码技术 与视频编解码相同,音频编解码主要功能是完成声音信息的压缩。声音信号数字化后,信息量比模拟传输状态大得多,因而数字电视的声音不能象模拟电视的声音那样直接传输,而是要多一道压缩编码工序。 信源编解码的相关标准

数字电视机顶盒标准

字电视机顶盒标准 [ 2006-10-17 09:56:00 ]标签:无 信息产业部组织制定的《数字电视接收设备术语》等25项电子行业标准于近日正式对外发布。该25项行业标准均为推荐性标准,分为术语及试验方法、接口、机顶盒、机卡分离和显示器五个方面。 考虑到当前相关产业状况,为使标准得到更好的贯彻,对该系列标准中涉及显示器清晰度指标的《数字电视液晶背投影显示器通用规范》等6项标准给予过渡期,并于2007年1月1日起实施,其余标准自颁布之日正式实施。 目前,由于显像管、聚焦等原因,绝大多数所谓的“高清”电视都没有达到国家高清晰显示器的标准,数字电视机标准明确细化规定了“高清”数字电视机显示屏幕长与宽的比例、图像屏幕清晰度等指标。有关权威人士指出,新的标准出台之后,将使得“假高清”在市场上再也没有藏身之地,从而可以有效地避免消费者由于被蒙蔽而带来的损失。 附件:批准发布的电子行业标准项目表 分类:数字电视接收设备--基础标准 分类:数字电视接收设备--接口标准

分类:数字电视接收设备--机顶盒标准 分类:数字电视接收设备--机卡分离标准 分类:数字电视接收设备--显示器标准 eg: 数字电视和高清电视是什么关系数字电视是一项全新的有线电视服务,同时数字电视还是一个庞大的家族,按照图像清晰度分类从高到低可包括:数字高清晰度电视(HDTV,即电影级图像)、数字增强清晰度电视(EDTV,即比DVD略高的图像)、数字标准清晰度电视(SDTV,即DVD级图像)以及数字普及型电视(即:VCD级图像)等四种。可见,高清电视(HDTV)只不过

是数字电视家族内的一个成员。收看高清电视,必须是在实现了数字化后,在用户具备了符合要求的 电视机,通过高清机顶盒,开通高清电视频道,才能真正享受全新的高清视觉 【收藏到网摘博采百度】

樊昌信《通信原理》(第7版)课后习题(新型数字带通调制技术)【圣才出品】

第8章新型数字带通调制技术 思考题 8-1 何谓MSK?其中文全称是什么?MSK信号对每个码元持续时间T B内包含的载波周期数有何约束? 答:(1)MSK信号是指一种相位连续、包络恒定并且占用带宽最小的二进制正交2FSK 信号。 (2)其中文全称是最小频移键控。 (3)MSK信号每个码元持续时间T B内包含的波形周期数必须是1/4载波周期数的整数倍。 8-2 试述MSK信号的6个特点? 答:MSK信号的6个特点: (1)其频率间隔为2FSK信号的最小频率间隔; (2)其每个码元持续时间T B内包含的波形周期数必须是1/4载波周期数的整数倍; (3)附加相位在码元间是连续的; (4)包络是正弦形; (5)正交的两路码元是偏置的; (6)对相邻频道干扰小。

8-3 何谓GMSK?其中文全称是什么?GMSK信号有何优缺点? 答:(1)在进行MSK调制前将矩形信号脉冲先通过一个高斯型的低通滤波器。这样的体制称为GMSK。 (2)其中文全称是高斯最小频移键控。 (3)GMSK信号的优缺点: ①优点:进一步减小了对邻道的干扰。 ②缺点:有码间串扰。 8-4 何谓OFDM?其中文全称是什么?OFDM信号的主要优点是什么? 答:(1)OFDM是指一类多载波并行调制的体制。 (2)其中文全称是正交频分复用 (3)OFDM信号的主要优点: ①各路已调信号是严格正交的,接收端能完全地分离各路信号。 ②能够充分利用频带。 ③每路子载波的调制制度可以不同,根据各个子载波处信道特性的优劣不同采用不同的体制,并且可以自适应地改变调制体制以适应信道特性的变化。 8-5 在OFDM信号中,对各路子载频的间隔有何要求? 答:在OFDM信号中,为了使各路子载波信号相互正交,要求各路子载频间隔大于或等于1/T B,T B为码元持续时间。

DVB机顶盒功能概述

机顶盒 科技名词定义 中文名称:机顶盒 英文名称:set-top box;STB 定义:一种依托电视终端提供综合信息业务的家电设备。使用户能在现有电视机上观看数字电视节目,并可通过网络进行交互式数字化娱乐、教育和商业化活动。 应用学科:通信科技(一级学科);通信终端(二级学科) 本内容由全国科学技术名词审定委员会审定公布

(3)软件在线升级。软件在线升级可看成是数据广播的应用之一。数据广播服务器按DVB数据广播标准将升级软件广播下来,机顶盒能识别该软件的版本号,在版本不同时接收该软件,并对保存在存储器中的软件进行更新; (4)因特网接入和电子邮件。数字机顶盒可通过内置的电缆调制解调器方便地实现因特网接入功能。用户可以通过机顶盒内置的浏览器上网,发送电子邮件。同时机顶盒也可以提供各种接口与PC相连,用PC与因特网连接; (5)有条件接收。有条件接收的核心是加扰和加密,数字机顶盒应具有解扰和解密功能。总之,到目前为止,围绕数字机顶盒的数字视频、数字信息与交互式应用三大核心功能开发了多种增值业务。具体见下表: 编辑本段内容 基本业务模拟电视广播、FM广播,模拟付费(加扰)电视 数字视频卫星数字视频广播(DVB-S); 地面数字视频广播(DVB-T); 有线数字视频广播(DVB-C); MMDS数字视频广播; 数字付费(加扰)电视 数字音频 IP电话/传真; 音乐(MOD); 实时音频卡拉OK点播(KOD) 数字数据信息点播(IOD); 数据广播(BIS); 股市证券信息广播(SIS); VBI图文电视; 应用程序下载; 远程数据库流向; 电子商务; 家居银行 交互式多媒体互联网接入服务(IAS); 远程教育; 远程医疗; 网上购物; 网上收费; 电子广告; 股市证券服务(SES); 网上(音、视频)广播业务; 可视电话与电视会议; 社区多功能服务 编辑本段接口 1、信号输入 2、信号环路输出 3、RCA 4、YPbPr 5、S-VIDEO 6、SPDIF 7、USB

中国地面数字电视标准单频网系统

中国数字地面电视标准单频网系统 北京数码视线科技有限公司 张珉 一个简单数字地面单频网由MIP插入器,和若干个分布在不同区域内的发射机构成,MIP 插入器通过数字电视分配网向不同的发射机发送传输参数信令。例如:调制方式,保护间隔,纠错码格式等信令,使所有的发射机都工作在同一模式下。为了保持整个单频网的同步,必须将MIP插入器及发射机中所有的调制器和激励器同步到GPS上面,保证同一频率同一时间,同一比特的黄金定律。 此外,MIP插入器还可以远程调节每个发射机的时间延迟和发射功率,方便单频网集成。 图1:中国数字地面电视标准单频网演示系统图 1. 奇妙的单频网 2006年8月颁布的国标地面电视标准GB20600-2006包含了VSB单载波技术与TDS-OFDM的多载波技术,多载波信号由一系列不同级别的帧结构构成。 与传统的DVB-T(H)中的保护间隔不同,TDS-OFDM中的帧头中传送PN序列,这一创新不仅会方便接收端的信道预估及同步,同时提供了实现单频网的功能,在图1中的一个8 MHz 带宽内我们定义了三种传输模式以及与其对应的三种帧头长度,保护间隔越长发射机间的距离越大,传输的有效比特率越低。 带宽8 MHz 8 MHz 8 MHz 帧头模式FH-Mode 1 FH-Mode 2 FH-Mode 3 保护间隔1/9 1/6 1/4 数据帧持续时间500 s 500   s s 500 帧头间隔持续时间55.56 s    125 s  78.7 s 发射机最大传输距离17 km 24 km 38 km 图2:国标三种传输模式 在过去10年间,单频网(SFN)技术被有效的使用在DVB-T(H)数字地面电视网络覆盖

平阴县有线数字电视基本型机顶盒技术规范书

平阴县有线数字电视基本型机顶盒技术规范书 1、需要遵循的标准 1.1机顶盒应符合的标准 机顶盒应满足MPEG-2标准、DVB标准及中国广播电视的相关标准,应符合并通过我国或相关国际组织发布的家电类产品适用标准测试和认证,同时符合以下标准和规范: ●ISO/IEC IS 13818-1 “运动图像和与其相关声音的解码-- 系统” ●ISO/IEC IS 13818-2 “运动图像和与其相关声音的解码-- 图像” ●ISO/IEC IS 13818-3 “运动图像和与其相关声音的解码-- 声音” ●GY/T 170-2001 “有线数字电视广播信道编码与调制规范” ●EST 300 429 “电视、声音和数据业务的数字广播系统;有线 系统的帧结构、信道解码及其解调” ●GB 3659-1983 “电视视频通道测试方法” ●GB 7401-1987 “彩色电视图像质量主观评价方法” ●GB 3174-1995 “PAL-D制电视广播技术规范” ●GY/Z 174-2001 “数字电视广播业务信息规范” ●GY/Z 175-2001 “数字电视广播条件接收系统规范” ●GY/T 201-2004 “数字电视系统中的数据广播规范” ●GY/T 203-2004 “数字电视广播电子节目指南规范” ●GY/T106-99 “有线数字电视系统用户终端接收机入网技术条 件和测量方法”(暂行) ●GB/T 16649-1996 “智能卡接口规范” ●ISO7816 智能卡(Smart Card)规范 ●EN 300 428 “DVB系统中的服务信息(SI)规范(DVB-SI)” ●ETR 211 “DVB服务信息(SI)的使用和执行指南 (DVB-SI)” ●EN 300 472 “DVB的比特流中传送图文信息和规范 (DVB-TXT)” ●EN 301 192 “数据广播的DVB规范(DVB-DATA)” ●TS102201 DVB IRD的接口技术规范(DVB—IRD) ●EN50221 关于条件接收和其它DVB解码器应用的通用接 口 规范(DVB—CI) ●TS101197—1DVB 系统中同时加密(SimulCrypt)的技术 规范(DVB—SIM) ●ETR289 通用加扰系统描述(DVB—CSA) ●ETR154MPEG—2 系统、视频和音频在卫星、有线和地面广播应用 中的实现指南(DVB—MPEG) ●ITU—TJ.112 建议交互式有线电视业务传输系统 ●GB 2312-1980 “信息交换用汉字编码字符集”基本集

机顶盒的功能和业务概括

机顶盒的功能和业务概括 功能 数字机顶盒的基本功能是接收数字电视 如:(1)电子节目指南(EPG)。给用户提供一个容易使用、界面友好、可以快速访问想看节目的一种方式,用户可以通过该功能看到一个或多个频道甚至所有频道上近期将播放的电视节目 (2)高速数据广播。能给用户提供股市行情、票务信息、电子报纸、热门网站等各种消息 (3)软件在线升级。软件在线升级可看成是数据广播的应用之一。数据广播服务器按DVB数据广播标准将升级软件广播下来,机顶盒能识别该软件的版本号,在版本不同时接收该软件,并对保存在存储器中的软件进行更新 (4)因特网接入和电子邮件。数字机顶盒可通过内置的电缆调制解调器方便地实现因特网接入功能。用户可以通过机顶盒内置的浏览器上网,发送电子邮件。同时机顶盒也可以提供各种接口与PC相连,用PC与因特网连接 (5)有条件接收。有条件接收的核心是加扰和加密,数字机顶盒应具有解扰和解密功能。 新一代机顶盒的功用应包括:①接收广播方式的模拟电视和数字电视节目,②高速访问Internet,收发e-mail,③视频点播(VOD)和音乐点播功能,④电话、可视电话、会议电视,⑤连接VCR、VCD等消费电子产品的功能,⑥电子购物,⑦电子游戏等。[1] 业务 围绕数字机顶盒的数字视频、数字信息与交互式应用三大核心功能开发了多种增值业务。具体见下表:

数字视频卫星数字视频广播(DVB-S)地面数字视频广播(DVB-T) 有线数字视频广播(DVB-C) MMDS数字视频广播 数字付费(加扰)电视 数字音频IP电话/传真 音乐(MOD) 实时音频卡拉OK点播(KOD) 数字数据信息点播(IOD) 数据广播(BIS) 股市证券信息广播(SIS) VBI图文电视 应用程序下载 远程数据库流向 电子商务 家居银行 交互式多媒体互联网接入服务(IAS)远程教育 远程医疗 网上购物 网上收费 电子广告

数字电视机顶盒讲解

科亚电子数字机顶盒讲解

数字电视机顶盒 数字机顶盒是数字传输系统的终端设备。数字传输属于信息传输,应用了编码压缩、前向误码校正等先进技术,具有传输效率高、抗干扰能力强、容易进行各种复杂处理、容易存储管理等优点。 数字机顶盒是一种将数字电视信号转换成模拟信号的变换装置,通过对数字化压缩的图像声音信号进行解码还原,产生模拟视频和声音信号,以提供给观众高质量的电视节目。有了这个装置,用户不必更换电视机就可以用普通的模拟电视机收看数字电视节目。

数字电视机顶盒 数字机顶盒主要有数字卫星接收机(DVB-S)、数字有线接收机(DVB-C)和数字地面广播接收机(DVB-T、DMB-TH)三种。这三种数字机顶盒的主要区别在于传输信道和调制方式。数字卫星接收机接收来自卫星广播、采用QPSK (四相相移键控)调制的信号;数字有线接收机接收来自有线电视网络、采用QAM(正交幅度调制)调制的信号;数字地面广播接收机接收来自数字地面电视广播、采用COFDM(编码正交频分复用)调制的信号,DMB-TH采用TDS-OFDM (时域同步正交频分复用)调制的信号。

数字电视机顶盒 数字机顶盒的组成 数字机顶盒由调谐器、解调器、解复用器、解码器、系统控制部分、用户扩展接口和电源等部分组成。 ?一体化调谐器、解调器( QPSK 、QAM、COFDM)数字调谐器接收来自卫星天线、地面或有线电视网的射频信号,进行低噪声放大、滤波和变频,将其转换成中频信号。然后进行A/D转换,再进行信道解调和FEC处理,即进行QPSK、QAM、COFDM(TDS-OFDM)解 调,FEC处理包括Viterbi解码、Reed-Solomon解码、卷积去交织等处理。解调后的数据流经过Viterbi解码,去交织和解扰后,就成为每包188字节的标准传输流。

高清数字电视及互动服务系统方案介绍

高清数字电视&互动服务系统 解决方案 上海胤华电子有限公司

目录 项目背景 (3) 方案目的 (3) 设计思路 (4) 第一章:系统特点 (5) 1重点应用 (5) 1.1 主要应用之全高清 (6) 1.1.1 高清数字电视 (6) 1.2 关键应用之个性化 (7) 1.3 关键应用之互动 (8) 1.4 关键应用之酒店特性支持 (11) 第二章系统架构与功能 (12) 2.1 系统架构 (12) 2.1.1 呈现功能 (13) 2.1.2 系统管理后台功能 (15) 2.2 电视信号传输网 (16) 2.2.1 节目信源分析 (16) 第三章终端安装方式与安装要求 (19) 3.1 机顶盒隐蔽安装 (19) 3.2 电视机线缆连接 (19) 3.3 高清机顶盒 (20) 3.4 服务器安装与接口要求 (21) 3.5电视机系统整合要求 (22) 第四章系统维护 (24)

项目背景 目前随着下一代广播网(NGB)以及三网融合的工程推动,其中最核心的就是高清数字电视的推进;在逐渐满足家庭用户看电视、用电视的需求同时,作为高端酒店如何为客户打造一套数字化高清电视成为一大课题。并且随着高端酒店的业务发展需要。如何提高酒店的个性化、智能化与国际化内容服务,又是一件值得思考和研究的话题。 方案目的 基于酒店内部有线电视网络平台的基础上,迎合高端酒店智能化、个性化的需求,胤华提出的星级酒店高清数字电视系统专业方案,以全高清,全数字也设计宗旨,同时针对酒店行业特性,以改变服务模式,提升服务品质,优化客户体验为目标,打造一套高清数字与智能互动为一体的电视平台。

数字电视机顶盒使用说明

数字电视机顶盒使用说明 教你简单安装电信ITV网络电视 顶盒使用指南 ·连接电缆 请参照下图连接您的电源、信号线、电视以及其他相关设备。 图1-1复合视频(CVBS)+模拟音频+上行网络 ·初次安装配置 参见机顶盒安装指导及用户带宽要求手册。或者我们的技术人员上门为您服务,进行机顶盒的具体配置。

·遥控器 图3-1遥控器界面 “待机”键:机顶盒软关机 0--9:数字键盘区 “清除”键:在编辑操作进行输入时,左向删除错误的输入 “VOL+”、“VOL-”键:调整音量大小 光标导航按键以及OK确认按键

“返回”键:回到历史列表中的上一级页面 “系统”键:进入系统设置页面; “伴音”键:多语种之间切换; “刷新”键:刷新当前页面内容 “上页”、“下页”键:多页内容的翻页键 “静音”键:切换音量的输出(有/无) “输入”键:输入法切换 “电视”键:返回到刚刚看过的节目频道; “频道+”、“频道-”:频道节目之间的切换 “菜单”键:回到EPG主菜单; “前进”键:回到历史菜单列表中的前一个页面; “红”、“绿”、“黄”、“蓝”键:快捷键,特殊用途; “播放”、“停止”、“快进”、“快退”、“暂停”、“漫进”、“循环”、“录制”键:节目播放控制; “字幕”键:切换多语言字幕; “声道”键:左、右声道以及立体声切换; “主页”键:回到默认主页; ------------------------------------------------- 注: 1、如果收数字电视节目(组播),则不能快进,快退,暂停。

2、出现不正常死机时按重启键。 3、因每次操作需到网络上去读取数据,因此按键后需等待2秒钟,尤其快进、快退时,不要连续按键。 ------------------------------------------------- ·定购和观看节目 用户首次登录看到的界面如下: 图4-1IPTV电视的主页面 从首页面上看以看到七个一级菜单栏目:影视、文化、党建、新农村、娱乐、综合、帮 助。用户通过遥控器的、键移动切换一级菜单,通过、键上下移动切换二级菜单。 用户可通过机顶盒观看如下类别的节目:

卫星接收及有线电视系统说明..

第1章卫星接收及有线电视系统说明 1.1总体设计方案 1.1.1系统概况 构成了现代化高标准的办公写字间和完善的社会化服务功能,在该楼内卫星及有线电视系统做为现代信息化的一个组成部分,提供高质量的电视节目,即时传播世界各地的政治、经济、文化、军事动态等各种音视频信息等功能。。 1.1.2系统设计依据 1、GY/T106-99《有线电视广播系统技术规范》; 2、GB6510-86《30MHZ-1GHZ声音和电视信号的电缆分配系统》; 3、GBJ《民用建筑电缆电视系统工程设计规范》; 4、GBJ1200-88《工业企业共用天线电视系统设计规范》; 5、GBJ57-83《建筑防雷设计规范》 6、GBJ79-85《工业企业通讯接地设计规范》; 7、B11318.5-89 《30MHZ-1GHZ声音和电视信号的电缆分配系统设备与部件, 可靠性要求与试验方法》; 8、广发技字[1992]7号《关于有线电视现阶段网络技术体制的意见》; 9、GB50200-94《有线电视系统工程技术规范》。 10、GYJ33-88《广播电视工程建筑设计防火标准》 11、GB50303-2002《建筑电气工程施工质量验收标准》 1.2系统设计方案 1.2.1总体要求及总体设计方案 本有线电视网络系统按双向传输860MHZ信号容量进行系统设备配置。系统由大连有线电视台的有线电视电视节目和卫星电视节目、自办节目信号构成。在

共缆传输网络的任意一个终端,可接收所有的传送节目。 1.2.2系统前端设计与设备选择 节目源: 根据下发的《大连外商通关大厦卫星电视设计与施工招标文件》的要求,确定节目源为: 自办节目:来自DVD、录象机、多媒体计算机节目等。(根据甲方实际需要可选择配置) 大厦拟开通卫星电视节目表 卫星节目接收表

数字电视机顶盒原理与维修

第一章数字电视机顶盒原理与维修 1.有线数字电视机顶盒概述 有线数字电视机顶盒是一种既能收看电视节目,又能进行交互式数字化娱乐、教育和商业化活动的消费类信息家电。其主要功能是将从有线电视用户口接收下来的数字电视信号转换为模拟电视信号,使用户用家中的模拟电视机,就能收看数字电视节目,图像质量可以接近500线水平。 1-1基本功能: 1)接收有线数字电视节目; 2)电子节目指南(EPG); 3)高速数字广播; 4)软件在线升级; 5)因特网接入和电子邮件; 6)支持交互式应用; 7)有条件接收的核心是加扰和加密,数字机顶盒应有解扰解密功能。 1-2工作原理: 有线数字电视机顶盒接收数字电视节目、处理数据业务和完成多种应用的解析。从传输层提取信道编码信号,完成信道解码;还原压缩的信源编码信号,恢复原始音/视频流,同时完成数据业务和多种业务的接收、解析。数字电视的硬件结构由信号处理(信道解码和信源解码)、控制和接口几部分组成。机顶盒结构如图1所示。 机顶盒从功能上看是计算机和电视机融合的产物,但结构确与两者不同,从信号处理和应用操作上看,机顶盒包含以下层次: (1)物理层和连接层包括高频调谐器,QPSK、QAM、OFDM、VSB解调,卷积解码,去交织,里德-所罗门解码,去能量扩散。 (2)传输层包括解复用,它把传输流分成视频、音频和数据包。 (3)节目层包括MPEG-2视频解码、MPEG/AC-3音频解码。 (4)用户层包括服务信息、电子节目表、图形用户界面(GUI)、浏览器、遥控、有条件接收、数据解码。 (5)输出接口包括模拟音/视频接口、数字音/视接口、数据接口、键盘、鼠标等。 1-3工作过程: 数字高频头接收来自有线网的高频信号(通常在48.5~860MHz),通过QAM解调器完成信道解码,从载波中分离出包含音、视频和其他数据的传送数字流(TS)。传送数字流中一般包括多个音视频流及一些数据信息。解复用器则用来区分不同的节目,提取相应的音、视频流和数据流,送入MPEG-2解码器和相应的解析软件,完成数字信息的还原。对于付费电视,条件接收模块对音、视频流实施解扰并采用含有识别用户和进行记账功能的智能卡,保证合法用户正常收看。MPEG-2解码器完成音、视频信号的解压缩,经视频编码器和音频D/A变换,还原出模拟音、视频信号,在普通模拟电视上显示高质量电视图像,并提供多声

中国最新的数字电视传输标准[详]

数字电视标准概述一、什么是数字电视 来自.szfuwa./bbs/ 数字电视(Digital TV)是从电视信号的采集、编辑、传播、接收整个广播链路数字化的数字电视广播系统。数字电视利用MPEG标准中的各种图像格式,把现行模拟电视制式下的图像、伴音信号的平均码率压缩到大约4.69―21Mbps,其图像质量可以达到电视演播室的质量水平,胶片质量水平,图像水平清晰度达到500―1200线以上,并采用AC―3声音信号压缩技术,传输5.1声道的环绕声信号。 二、数字电视的分类 按清图像晰度分类,数字电视包括数字高清晰度电视(HDTV)、数字标准清晰度电视(SDTV)和数字普通清晰度电视(LDTV)三种。HDTV的图像水平清晰度大于800线,图象质量可达到或接近35mm宽银幕电影的水平;SDTV的图像水平清晰度大于500线,主要是对应现有电视的分辨率量级,其图象质量为演播室水平;LDTV的图像水平清晰度为200-300线,主要是对应现有VCD的分辨率量级。 按信号传输方式分类,数字电视可分为地面无线传输数字电视(地面数字电视)、卫星传输数字电视(卫星数字电视)、有线传输数字电视(有线数字电视)三类。 按照产品类型分类,数字电视可分为数字电视显示器、数字电视机顶盒和一体化数字电视接收机。 按显示屏幕幅型比分类,数字电视可分为4∶3幅型比和16∶9幅型比两种类型。 三、数字电视系统的关键技术及标准 1、数字电视的信源编解码技术 视频编解码技术 数字电视尤其数字高清晰度电视与模拟电视相比,在实现过程中,最为困难的部分就是对视频信号的压缩。在1920×1080显示格式下,数字化后的码率在传输中高达995Mbit/s,这比现行模拟电视的传输信息量大得多。因而数字电视的图像不能象模拟电视的图像那样直接传输,而是要多一道压缩编码工序。视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20?30Mbit/s。 音频编解码技术 与视频编解码相同,音频编解码主要功能是完成声音信息的压缩。声音信号数字化后,信息量比模拟传输状态大得多,因而数字电视的声音不能象模拟电视的声音那样直接传输,而是要多一道压缩编码工序。

有线电视数字机顶盒的关键技术详

有线电视数字机顶盒的关键技术详 1.有线电视数字机顶盒的基本原理 有线电视数字机顶盒的基本功能是接收数字电视广播节目,示意图如图1所示,调谐模块接收射频信号并下变频为中频信号,然后进行A/D转换变为数字信号,再送入QAM解调模块进行QAM解调,输出MPEG传输流串行或并行数据。解复用模块接收MPEG传输流,从中抽出一个节目的PES数据,包括视频PES、音频PES以及数据PES。解复用模块中包含一个解扰引擎,可在传输流层和PES层对加扰的数据进行解扰,其输出是已解扰的PES。视频PES送入视频解码模块,取出MPEG视频数据,并对MEPG视频数据进行解码,然后输出到PAL/NTSC编码器,编码成模拟电视信号,再经视频输出电路输出。音频PES 送入音频解码模块,取出MPEG音频数据,并对MPEG音频数据进行解码,输出PCM音频数据到PCM解码器,PCM解码器输出立体声模拟音频信号,经音频输出电路输出。 有线电视数字机顶盒的关键技术 该机顶盒由以下几部分组成:数字电视广播接收前端、MPEG解码、视音频和图形处理、电缆调制解调器、CPU以及存储器、以及各种接口电路。数字电视广播接收前端包括调谐器和QAM解调器,该部分可以从射频信号中解调出MPEG传输流;MPEG解码部分包括解复用、解扰引擎和MPEG解压缩,其输出为MPEG视音频基本流以及数据净荷。视音频和图形处理部分完成视音频的模拟编码以及图形处理功能。电缆调制解调模块由一个双向调谐器、下行QAM解调器、上行QPSK/QAM调制器和媒体访问控制(MAC)模块组成,该部分实现电缆调制解调的所有功能。CPU与存储器模块用来存储和运行软件系统,并对各个模块进行控制。接口电路则提供了丰富的外部接口,包括通用串行接口USB、高速串行接口1394、以太网接口、RS232、视音频接口等等。 该框图所描述的有线电视数字机顶盒是一种功能齐全的机顶盒,实际上,在具体实现时,厂商可以根据需要对其进行裁减。 2.实时操作系统

相关文档