文档视界 最新最全的文档下载
当前位置:文档视界 › 高中物理竞赛热力学基础专项试题

高中物理竞赛热力学基础专项试题

高中物理竞赛热力学基础专项试题
高中物理竞赛热力学基础专项试题

高中物理竞赛热力学基础专项试题

一、选择题

.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2

a 是任意过程,

则上述两过程中气体做功与吸收热量的情况是 ( ) (A )b 1a 过程放热、作负功,b 2a 过程放热、作负功; (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。

【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+?知b 2a 过程放热,b 1a 过程吸热】

2.如图,一定量的理想气体,由平衡态A 即A B P P =。问在状态A 和状态B ( )

(A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。 【提示:由于A

B T

T <,必有A B E E <;而功、热量是

过程量,与过程有关】

3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。 【提示:等体过程不做功,有Q E =?,而2

mol M i

E R T M ?=

?,所以需传5J 】

4

【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】 5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( )

(A )2000J ; (B )1000J ; (C )4000J ; (D )500J 。 【卡诺热机的效率为21

1T T η=-

,W Q η=,可求得300

150%600η=-=,

则1000W Q J η==】 6.根据热力学第二定律( )

(A )自然界中的一切自发过程都是不可逆的; (B )不可逆过程就是不能向相反方向进行的过程;

(C )热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体; (D )任何过程总是沿熵增加的方向进行。

【(A )正确;(B )少“不引起其他变化”;(C )想想空调和冰箱热量;(D )少“孤立系统”条件】

7.如图所示为一定量的理想气体的p —V ) )

33m -B ()

D ()

(A )ABC 是等温过程;(B )B A T T >; (C )B A T T <; (D )B A T T =。

【提示:等温线是一条有关原点对称的反比例函数曲线】

8.对于室温下定体摩尔热容 2.5V C R =的理想气体,在等压膨胀的情况下,系统对外做功与从外界吸收的热量之比/W Q 等于 ( ) (A )1/3; (B )1/4; (C )2/5; (D )2/7。 【提示:等压膨胀吸热为()V mol

M

Q C R T M =

+?,内能变化为V mol

M

E C T M ?=

?,所以,功为

mol

M

W R T M =

?,则13.5

A Q =

9.气缸内储有2.0mol 的空气,温度为27℃,若使空气的体积等压膨胀到原来的3倍,则因为空气而对外界所作的功为 ( )

(A )897J ; (B )4986J ; (C )9972J ; (D )14958J 。

【提示:等压膨胀对外功为W R T ν=?,而等压变化满足盖?吕萨克方程121

2

V V T T =,可

求出2900T K =,则28.316009972W J =??=】

10.一定量的理想气体,处在某一初始状态,现在要使它的温度经过一系列状态变化后回到初始状态的温度,可能实现的过程为 ( )

(A )先保持压强不变而使它的体积膨胀,接着保持体积不变而增大压强; (B )先保持压强不变而使它的体积减小,接着保持体积不变而减小压强; (C )先保持体积不变而使它的压强增大,接着保持压强不变而使它体积膨胀; (D )先保持体积不变而使它的压强减小,接着保持压强不变而使它体积膨胀。 【提示:(A )选项温度一直升高,(B )选项温度一直降低,(C )选项温度一直升高】

11.气体的定压摩尔热容P C 大于定体摩尔热容V C ,其主要原因是 ( ) (A )膨胀系数不同; (B )温度不同; (C )气体膨胀需作功; (D )分子引力不同。

【提示:P V C C R =+的原因是定压时气体膨胀做功,

但定体时气体体积不变不做功】

533/(10)

V m -21334

12.压强、体积和温度都相同(常温条件)的氧气和氦气在等压过程中吸收了相等的热量,它们对外作的功之比为 ( ) (A )1:1; (B )5:9; (C )5:7; (D )9:5。 【提示:双原子分子的氧气在等压过程中吸收热量为2

25

()2

O O mol M Q R R T M =

+?,单原子分子的氦气在等压过程中吸收热量为3

()2

He He mol M Q R R T M =

+?,当2O He

Q Q =时,

2O He

T T ?

5

7

O He

T

T ?=?而2mol M i E R T M ?=

?,

所以22222275

2253

22

O O O O O O He He He

He He He R T R T W Q E T

W Q E T R T R T ?-?-??===

-???-?】

13.一摩尔单原子理想气体,从初态温度1T 、压强1p 、体积1V ,准静态地等温压缩至体积2V ,外界需作多少功? ( ) (A )121ln

V V RT ; (B )2

11ln V V

RT ; (C ))(121V V p -; (D )1122V p V p -。 【提示:等温过程做功为2

1

V

V mol M RT

W dV

M V

=?】

14.对于理想气体系统来说,在下列过程中,那个过程系统所吸收的热量、内能的增量和对外做功三者均为负值 ( )

(A )等容降压过程;(B )等温膨胀过程;(C )等压压缩过程;(D )绝热膨胀过程。

【提示:等容过程不做功,等温过程无内能的增量,绝热过程无热量传递,等压压缩过程系统对外作负功,温度降低,向外放热】 15.如图所示,一定量的理想气体经历ACB 过700 J ,则

经历ACBDA 过程时吸热为 ( ) (A )700 J ; (B )-700 J ; (C )500 J ; (D )-500 J 。

【提示:∵A A B B P V P V =,∴A B T T =,表明A 、B 两位置等温, 等温过程无内能的增量;B D →为等容过程,不做功,吸收热 量全部使得内能增加;D A →为等压过程,放出热量,对外做

负功,同时内能减少,对外做的负功为()1200DA A A D W P V V J =-=-;∴理想气体经历BDA 过程内能不变,对外做的负功为1200J -,由Q E W =?+知1200BDA Q J =-,则

1200700500ACBDA Q J =-+=-】

16.“理想气体和单一热源接触做等温膨胀时,吸收的热量全部用来对外做功”。对此说法,有以下几种评论,哪个正确? ( ) (A )不违反热力学第一定律,但违反热力学第二定律; (B )不违反热力学第二定律,但违反热力学第一定律; (C )不违反热力学第一定律,也不违反热力学第二定律; (D )违反热力学第一定律,也违反热力学第二定律。 【提示:热力学第二定律强调的是“…循环工作的热机…”】

17.在P V -图上有两条曲线a b c 和a d c ,

( ) (A )其中一条是绝热线,另一条是等温线; (B )两个过程吸收的热量相同; (C )两个过程中系统对外作的功相等; (D )两个过程中系统的内能变化相同。 【提示:只有内能是状态量】

18.理想气体卡诺循环过程的两条绝热线下的面积大小

(图中阴影部分)分别为1S 和2S ,则两者的大小关系为:( ) (A )12S S >;(B )12S S <;(C )12S S =;(D )无法确定。 【提示:由于理想气体卡诺循环过程的另两条是等温线,所以两者 内能变化相同;绝热过程无吸放热量,所以功为内能变化的负值,相等】 19.关于可逆过程和不可逆过程有以下几种说法:

(1)可逆过程一定是准静态过程;(2)准静态过程一定是可逆过程;

(3)对不可逆过程,一定找不到另一过程使系统和外界同时复原;

(4)非静态过程一定是不可逆过程。

以上几种说法,正确的是:()

(A)(1)(2)(3);(B)(2)(3)(4);(C)(1)(3)(4);(D)(1)(2)(3)(4)。

20.一绝热容器被隔板分为两半,一半是为真空,一半为理想气体,若抽去隔板,气体将自由膨胀,达到平衡后

() (A)温度不变,熵增加;(B)温度升高,熵增加;

(C)温度降低,熵增加;(D)温度不变,熵不变。

【见书P246页例4,气体自由膨胀不对外做功,气体的内能也没有改变,所以温度不变;但气体自由膨胀后,不可能自发的回到原始的一半是真空状态,所以熵增加】

二、填空题

1.有1mol刚性双原子分子理想气体,在等压膨胀中对外做功W,则其温度变化T

?=;从外界吸收的热量P Q=。

【双原子分子内能变化为5

2

E R T

ν

?=?,等压膨胀中吸热为5()

2

Q R R T

ν

=+?,则由热力学第一定律,W R T

ν

=?,而1

ν=,有T?=/

W R;

P

Q=7/2

W】

2.有1mol单原子分子理想气体,

从状态

111

()

A p V T

,,变化至状态

222

()

B p V T

,,,如图所示,

则此过程气体对外做功W=;

吸收热量Q=。

【气体对外做功可由p V

-图的梯形面积求出,有W=

O

2

)

T

53)

m 12211()()2p p V V +-;单原子分子内能变化为213

()2E R T T ν?=-,再由热力学第一定律,Q W E =+?=

12212113

()()()22

p p V V R T T +-+-】

13--7.如图所示,一定量理想气体经历一循环过程,则该气体在 循环过程中吸热和放热的情况是:

1→2过程: ,2→3过程: ,3→1过程:

。 【提示,注意到给出的是V T -图,所以1→2过程是等压膨胀,系统吸热并对外做功,内能增加;2→3过程是等容降温,不做功,内能减少,系统放热;3→1过程是等温压缩,系统做负功,内能不变,系统放热】

4.如图所示,一理想气体系统由状态a 沿acb 到达状态b ,系统吸收热量350J ,而系统做功为130J 。

(1)经过过程adb ,系统对外做功40J ,则系统吸收的热量Q 1= 。 (2)当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为60J ,则系统吸收的热量Q 2= 。

【内能为状态量,与过程无关,则a 到b 的内能变化与路径无关,由热力学第一定律Q W E =+?,可得:220E J ?=。(1)1

40220Q

J J =+=260J ;(2)260(220)Q J J =-+-=280J -】

13-8.如图所示,一定量的空气由状态A 沿直线B ,

则此过程气体所作的功W = 。 【如上题,气体对外做功可由p V -图的梯形面积

求出,

1

()()2

A B B A W P P V V =

+-=150J 】

13-13.一压强为510Pa ,体积为3310m -的氧气自27℃加热到127℃,(1)若保持压强不变,需要热量为 ,对外作功为 ;(2)若保持体积不变,需要热量为 ;,对外作功为 。

21

3)

5P 【由PV RT ν=可求出氧气的mol 数为53

1010300PV RT R

ν-?==。内能变化为2

i

E R T ν

?=?,有

5310105

10083.323002i E R T J

ν-??=?=??=;等压过程()P V Q C R T ν=+?有53

101071003002

P Q -?=??=116.7J ,利用Q W E =+?知P W Q E =-?=33.4J 。

等容过程气体不对外做功,而内能是温度的单值函数,∴V Q E =?=83.3J

,V

W =0】

13-18.如图,使1mol 的氧气(1)由A ,

(1)氧气所作的功W 1= 焦吸收热量Q 1= 焦耳;

(2)由A 等体地变到C ,再由C 等体地变到B ,

氧气所作的功W 2= 焦耳, 吸收热量Q 2= 焦耳。

【(1)等温过程内能变化为0,做功1ln ln

B

B A A A

A

V V W RT P V V V ν===

4000ln 2,由Q W E =+?知吸收的热量1Q =4000ln 2;A →C 等容过程,气体不对外做功,温度降低,内能减少,对外放热;C →B 等压过程,温度升高变回原来的数值,气体吸热膨胀对外作功,∴A →C →B 内能不变,对外作功为C →B 的等压过程:

52()100.02B B A W P V V =-=?=2000J

,22Q W ==2000J 】

13-21.1mol 的氢气在温度为300Κ,体积为0.025m 3的状态下经过一个热力学过程变为原来体积的两倍,(1)若热力学过程是等压膨胀,氢气吸收的热量P Q = ,对外作功P W = ;

(2)若热力学过程是等温膨胀,氢气吸收的热量V Q = ,对外作功V W = ;(3)若热力学过程是绝热膨胀,氢气吸收的热量Q = 。

【(1)等压过程7()2

P V Q C R T R T ν=+?=?,而等压过程又满足121

2

V V T T =,∴22111

(1)V T T T V -=-,

有172P Q RT ==8725.5J ,∵内能变化为2

i

E R T ν

?=?所以1P W RT ==2493J ;

(2)等温过程0E ?=,2

11

ln

V

V V Q W RT V ν===2493ln 2J ;

(3)绝热过程与外界不交换热

量,Q =0】

9.如图所示,容器中间为隔板,左边为理想气体,右边为真空。

今突然抽去隔板,则系统对外作功W = 。

【气体自由膨胀不对外做功,气体的内能也没有改变,∴W =0】 10.有ν摩尔理想气体,作如图所示的循环过程a c b a

其中a cb 为半圆弧,b a 为等压过程,a c p p 2=,在此 循环过程中气体净吸收热量为Q ()p b a vC T T -。(填:>、<或=)。

【填:<。a cb 过程为吸收热量1Q 并对外做功,内能增加,b a →的等压过程为放出2()p b a Q vC T T =-的热量,内能降低。而12Q Q Q W =-=,为半圆面积,由图可见,12

a bVV 围成的矩形面积大于半圆面积】

11.一可逆卡诺机的高温热源温度为127℃,低温热源温度为27℃,其每次循环对外做的净功为8000J 。则此热机的效率为 ,从高温热源吸收 的热量。今维持低温热源温度不变,提高高温热源的温度,使其每次循环对外做的净功为10000J ,若两个卡诺循环都工作在相同的两条绝热线之间。则第二个热循环机从高温热源吸收 的热量,其效率为 ,高温热源的温度为 。 【提示:可逆卡诺机的效率为2

1

1T T η=-

,可求第一个空;同时,热机的效率为2

1

1Q Q η=-

,可求第二个空。在同样的绝热线之间,它们的总热量相等,所以第三个空与第二个空相同;再利用A

Q

η=

可求第四个空,不说你也知道怎样求第五个空。25%,32000J ,32000J ,31.25%,436(163

)K C 】

13--9.某人每天大约向周围环境散发6810J ?热量,若该人体温为310K ,周围环

境温度为300K ,忽略该人每天进食带到体内的熵,则他每天的熵变为

1J K -?;周围环境每天的熵变为 1J K -?;该人与环境每天的总熵变为

b

a

p

p

1J K -?。

【提示:从熵变的单位可判断熵变的公式为Q

S T

?=。所以Q S T -?=人人(因为人放出

热量,取负值),Q S T ?=

环境环境(因为环境吸收热量,取正值),Q Q

S T T -?=+总人环境

42.5810-?,42.6710?,2910?】

三、计算题

13-14.如图所示,系统从状态A 沿ABC 变化到状态C

外界有326 J 的热量传递给系统,同时系统对外作功126 J 。

当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统

作功52 J ,则此过程中系统是吸热还是放热? 13-17.空气由压强为51.5210Pa ?,体积为

然后再经

3

3

5.010m -?的状态等温膨胀到压强为5

1.0110Pa ?,

等压压缩到原来的体积。计算空气所作的功。

13-23.0.32kg 的氧气作如图所示的ABCDA 循

环,设

212V V =,1300T K =,2200T K =,求循环的效率。

13-24.如图所示是某单原子理想气体循环过程的V ―T 制冷

图,图中2C A V V =,问(1)图中所示循环是代表机还是热机?(2)如果是正循环(热机循环),求出

循环效率。

13-25.一热机低温热源温度为7℃,效率为40%,若将其效率提高到50%,则

12

V C V

高温热源提高了多少?

13-27.一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间,假定该热机每小时能从地下热源获取111.810J ?的热量,则理论上热机的最大功率为多少?

想气体,13-33.有mol ν定体热容3

2

V C R =的理

所示的

从状态A (A P 、A V 、A T )分别经如图ADB 过程和ACB 过程,到达状态B (B P 、熵变各

B V 、B T )

。问在这两个过程中气体的为多少?图中AD 是等温线。

《大学物理学》热力学基础解答

一、选择题

B B

C

D B A C D C D C C A C D C D C C A 三、计算题

13-14.解:热力学第一定律:Q W E =+?。 状态A 沿ABC 变化到状态C 的过程中,326ABC Q J =126ABC W J =,∴326126200E J ?=-=;

当系统从状态C 沿另一曲线CA 返回到状态A 时,

200E J ?=-,52CA W J =-,∴52200252CA Q J =--=-,放热。

13-17.解:(1)等温膨胀气体的内能不变,有热力学第一定律:2

111

ln

V Q W RT V ν==。 由1122PV PV =可知533311

252 1.5210 5.0107.5101.0110

PV V m P --???===??

A

C B

D

A P P =D P =

∴532111117.53

ln

1.5210 5.010ln 760ln 52

V Q W PV V -===???=, (也可以用531

11112 1.523ln

1.5210 5.010ln 760ln 1.012

P Q W PV P -===???=) ∵ln 3 1.099 1.1=≈,ln 20.69310.7=≈,∴1760(ln 3ln 2)7600.4304W J =-=?=; (2)等压压缩是外界对气体作功,

∴5332212() 1.0110(5.0107.510)253W P V V J --=-=??-?=-, 则空气所作的功为1230425351W W W J =+=-=。 13-23.解:0.32kg 的氧气mol 数为:10mol ν=。

(1)AB 为等温膨胀过程:0AB E ?=,

AB AB Q W ν==有108.31300ln 224930ln 217279AB AB Q W J ==??==

; (2)BC 为等体降压过程:0BC W =,

215

()108.31(100)207752

BC BC V Q E C T T J ν=?=-=???-=-;

(3)CD 为等温压缩过程:0CD E ?=,

1221

ln

108.31200ln 16620ln 2115192

CD CD V Q W RT J V ν===??=-=-; (4) DA 为等体升温过程:0DA W =,

125

()108.31100207752

DA DA V Q E C T T J ν=?=-=???=;

∴整个循环吸热(不包括放热)为:38054AB DA Q Q Q J =+= 所做的总功为:5760AB CD W W W J =+=, 循环效率为:576015%38.54

W Q η=

==。 13-24. 解:将V ―T 图转换为P ―V 图求解。

A →

B 为等压膨胀,B →

C 为等容降压,C →A 如图所示。

12

V C

V

(1) 可见循环是顺时针,为热机循环; (2)A →B 为等压膨胀:

吸热:5()2

AB B A Q R T T ν=?-,对外作功:()AB B A W R T T ν=-; B →C 为等容降温:0BC W =,0BC Q <(放热), C →A 为等温压缩:

ln

ln 2A

CA CA A A C

V Q W RT RT V νν===-(放热,作负功)

, 考虑到

A B A B V V T T =

,有:2B B A A A

V

T T T V ==, 则:()ln 222ln 2

12.3%55()2

B A A B A R T T RT W Q R T T ννην---=

===?-。

13-25. 解:利用2

1

1T T η=-。 则当1280140%T -

=时,1467T K =,当1280

150%T -='

时, 1560T K =。 ∴1293T T T K ?=-=,则高温热源提高了93℃。 13-27.解:由题意知1500T K =,2300T K =,∴2

1

140%T T η=-=, 则1137max 240%/ 1.810/3.6102105

P Q hour W =?=???=? ∴理论上热机的最大功率为20000千瓦。 13-33. 解:熵变的表达式是

211

S S S ?=-=?(1)从状态A 经ADB 过程到达状态B 时,熵变为:D

B AD DB

ADB

A

D d Q d Q S T T

?=+??。 AD ln

D

AD AD A A

V Q W RT V ν==, A

C B

D

A P =D P =A

C

DB 是等压膨胀过程,52

DB d Q R d T ν=?,

∴552

ln

ln

ln 2B

D

D B ADB D

A A D

R d T V V T

S R R R V T

V T νννν??=+=+?。 (2)从状态A 经ACB 过程到达状态B 时,熵变为:C

B A

C CB

ACB A C d Q d Q S T T

?=+??。 AC 是等压膨胀过程,52AC

d Q R d T ν=?,CB 是等容升温过程,3

2

CB CB d Q E Rd T ν=?=?,

5

353

2

2

ln ln 22C

B

C B ACB A

C

A C

R d T R d T T T S R R T

T

T T νννν???=+=+?

?

。 【注:533ln ln ln

ln 2

2

2C C B

B ACB A

C

A A

T T T T

S R R R R T T T T νννν?=+=+, 而AC 等压过程满足:C A A

C

V V T T =,有C A A

C

V V T T =,DB 等压过程满足:D

B

D

B

V V T T =

,有D D B

B

V T V T =,

∵C

B

V

V =,有C C D

D B

A

B A A D

T T V T T V T T T T =

?=÷,则

553ln

ln ln ln ln ln ln 222C C D B B B B ADB A D A D D A D

T T V T T T T

S R R R R R R R V T T T T T T ννννννν?=+=-+=+,

考虑到A D T T =,可得出的结论】

2012年全国高中物理竞赛夏令营模拟试题

2010年全国高中物理竞赛模拟试题 (全卷10题,共200分,做题时间120分钟) 1.(10分)正点电荷q1和负点电荷-q2(q2>0)固定在x轴上,分居于垂直x轴的光滑绝缘薄板的两侧,带正电的小球也处于x轴上且靠着板,如图所示,起初,板处于负电荷不远处,球处于平衡,板开始沿x轴缓慢平移扩大与负电荷的距离,当距离扩大到L/3时,小球从x轴“逃逸”, 求比值q 1/q 2 。物体对电场的影响忽略,重力也不计。 2.(18分)步行者想要在最短的时间内从田野A处出发到田野B处,A、B两处相距1300m,一条直路穿过田野,A处离道路600m,B处离道路100m,步行者沿田野步行速度为3km/h,沿道路步行速度为6km/h,问步行者应该选择什么样的路径?最短时间为多少?讨论A、B两处位于道路同侧与异侧两种情况。 3.(16分)滑轮、重物和绳组成如图所示系统,重物1和2的质量已知:m1=4kg、m2=6kg,应如何 设置第三个重物的质量m 3 ,才能使系统处于平衡。滑轮和绳无重,滑轮摩擦不计,不在滑轮上的绳均处于水平或竖直。

4.(20分)一根长金属丝烧成螺距为h、半径为R的螺旋线,螺旋线轴竖直放置,珠子沿螺旋线滑下,求珠子的稳定速度υ ,金属丝与珠子之间的摩擦因数为μ。 5.(20分)用长1m的不可伸长的弹性轻线系上两个同样小球,使它们静止在光滑水平面上,彼此相距50cm,现使其中一个球沿着垂直与两球心连线方向,以速度υ =0.1m/s抛去,求经过3min后 两球速度。 6.(30分)质量为M的航天站和对接上的质量为m的卫星一起沿着圆轨道绕地球运行,其轨道半径为地球半径R的n倍(n=1.25)某一时刻,卫星沿运动方向从航天站上射出后,沿椭圆轨道运行,其远地点到地心距离为8nR。当质量之比m/M为何值时,卫星刚好绕地球转一圈后再次回到航天站。(m<M) 7.(20分)在循环1-2-3-1中1-2是等温线,2-3是等容线,3-1是绝热线,在此循 ;在循环1-3-4-1中,1-3是绝热线,3-4是等温线,4-1是等容环中热机效率为η 1 线,在此循环中热机效率为η ;求热机沿循环1-2-3-4-1的效率η。工作物质是理想的单 2 原子气体。

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动。根据牛顿第二定律,物体的加速度m K m F a -== 回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大 小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中 0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟 x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(? ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得 x a 2ω-= 由牛顿第二定律简谐振动的加速度为 x m k m F a -== 因此有 m k = 2ω (5) 简谐振动的周期T 也就是参考圆上质点的运动周期,所以 图5-1-1 图5-1-2

全国中学生物理竞赛真题汇编热学

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

高中物理竞赛的数学基础(自用修改)

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 1.1函数自变量和因变量绝对常量和任意常量 1.2函数的图象 1.3物理学中函数的实例 §2.导数 2.1极限 如果当自变量x无限趋近某一数值x0(记作x→x0)时,函数f(x)的数值无限趋近某一确定的数值a,则a叫做x→x0时函数f(x)的极限值,并记作 (A.17)式中的“lim”是英语“limit(极限)”一词的缩写,(A.17)式读作“当x趋近x0时,f(x)的极限值等于a”。 极限是微积分中的一个最基本的概念,它涉及的问题面很广。这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。 求极限公式

(2) (3) (4) 等价无穷小量代换 sinx~x; tan~x; 2.2极限的物理意义 (1)瞬时速度 对于匀变速直线运动来说, 这就是我们熟悉的匀变速直线运动的速率公式(A.5)。 (2)瞬时加速度 时的极限,这就是物体在t=t0时刻的瞬时加速度a: (3)水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向(见图A-5),于是各处渠底的高度h便是x的函数:

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

高中物理竞赛热现象和基本热力学定律

高中物理竞赛——热现象和基本热力学定律 1、平衡态、状态参量 a 、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。 b 、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P 、V 和T )。 c 、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。 2、温度 a 、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t 、华氏温标F (F = 5 9t + 32)和热力学温标T (T = t + 273.15)。 b 、(理想)气体温度的微观解释:K ε = 2 i kT (i 为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。 c 、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。) 3、热力学过程 a 、热传递。热传递有三种方式:传导(对长L 、横截面积S 的柱体,Q = K L T T 21-S Δt )、对流和辐射(黑体表面辐射功率J = αT 4) b 、热膨胀。线膨胀Δl = αl 0Δt 【例题3】如图6-5所示,温度为0℃时,两根长度均为L 的、均匀的不同金属棒,密度分别为ρ1和ρ2 ,现膨胀系数分别为α1和α2 ,它们的一端粘合在一起并从A 点悬挂在天花板上,恰好能水平静止。若温度升高到t ℃,仍需它们水平静止平衡,则悬点应该如何调整? 【解说】设A 点距离粘合端x ,则 ρ1(2 L ? x )=ρ2(2 L + x ) ,得:x = ) (2)(L 2121ρ+ρρ-ρ 设膨胀后的长度分别为L 1和L 2 ,而且密度近似处理为不变,则同理有 ρ1(2 L 1 ? x ′)=ρ2 (2 L 2 + x ′) ,得:x ′= ) (2L L 212211ρ+ρρ-ρ 另有线膨胀公式,有 L 1 = L (1 + α1t ),L 2 = L (1 + α2t ) 最后,设调整后的悬点为B ,则AB = x ′? x

舒幼生《物理竞赛培优教程》word版下载

第二节电场和电场强度 【知识要点】 从电场的观点看,电荷间的相互作用可分为两个基本问题:电荷产生电场和电场对电荷的作用. 电场强度,简称场强,是指放人电场中某一点电荷受到的电场力 F 跟它的电量q 的比值.数学表达式为 q为检验电荷, F 为q在场中受到的力.场强的方向规定为正电荷的受力方向. 只要有电荷存在,在电荷的周围就存在着电场.静止电荷在其周围的真空中产生电场,叫静电场,该电荷称为真空中静电场的场源电荷,电场对放人场中的电荷有力的作用. 在点电荷组成的电场里、任一点的场强等于各个点电荷单独存在时各自在该点产生的场强的矢量和,这就是场强叠加原理. 几种典型电场的场强: ( 1 )点电荷电场:由场强的定义和库仑定律可得,真空中点电荷的场 强分布为 ( 2 )均匀带电球壳的电场设有带电量为Q ,半径为R 的均匀带电球壳.由电场线的分布可知,只要球壳内没有电荷,壳内就没有电场线分 为0 布,即内部的场强 E 内 对于球壳外,电场线分布与点电荷Q 在球心处的电场线一样.因此 壳外的场强 E 外为 ( 3 )匀强电场 设有电荷面密度为δ的无限大带电平板,求其两侧的场强.根据场强叠加原理,空间某一点的场强,应是板上所有点电荷在该点产生场的叠加.由于平板是无穷大,根据对称性,板两侧的电场方向如图9 一 2 一 1 所示,且是匀强电场,但用叠加原理求场强的 大小要用到高等数学. 下面我们用不很严密的方法介绍一个定理,并根据它 求上述场强,先考虑点电荷,设一电量为Q 的点电荷, 则空间的场分布为

现取以Q 为球心,R 为半径作一球面,则Q 发出的电场线全部穿过这个面.像这样穿过一个面的电场线总数叫做穿过这个面的电通量,用 符号Φ表示.对于点电荷 由上式可知电通量与所取的面无关,即取任一面,只要这个面内包含Q ,通过此面的电通量为4πk Q . 推论 1 若所取的面不包含Q ,则通过此面的电通量为零. 推论 2 通过任意一个闭合曲线的电通量等于该面所包围的电荷电量的代数和的 4 π倍. 推论2通常叫高斯定理,利用高斯定理可以很方便地求出许多对称场的场强分布.如无限大平板,我们可以取关于板对称的圆柱体面,如图所示,设圆柱面的横截面半径为r ,高为l ,则 因此,电荷面密度为,的无限大带电平板两侧的场强为 E = 2πkδ 【例题分析】 例 1 如图9 一 2 论所示,电荷均匀分布在半球面上, 它在这半球面的中心O 处的电场强度等于E0,( l )证明 半球面底部的平面是等势面;( 2 )两个平面通过同一直径, 夹角为 a ,从半球中分出一部分球面.试求所分出的这部分球面上的电荷在O 处的电场强度 E . 分析与解 (l )证明一个平面是等势面一般有以下两条思路: a .根据电势叠加原理求出各点的电势,判断是否相等; b .根据场强叠加原理求出各点的场强,判断场强方向是否垂直平面. 设想有另一个完全相同的半球面与此半球面构成完整的球壳,则球壳及其内部各点电势都相等.根据对称性可知上、下两个半球壳分别在底面上各点引起的电势是相等的,再由电势叠加原理可知,当只有半球壳存在时,半球壳在底面上各点引起的电势也是相等的,而且电势是两个球壳的一半.场强是矢量,场强叠加比电势叠加要复杂.此题直接在底面上计算场 强较困难.我们可用反证法来说明场强方向一定垂直底面.假 定半球壳在底面产生的场强不垂直底面,则当把半球壳补完 整时,两半球壳在底面产生的合场强也不垂直底面,这与球 壳是等势体相矛盾.因此,假设不成立. ( 2 )由对称可知,E0的方向如图9 一 2 一 3 所示, 同样我们可知分出两部分的电场强度E1、E2,由矢量图可 得

2017第34届全国中学生物理竞赛复赛理论考试试题和答案

2017第34届全国中学生物理竞赛复赛理论考试试题和答案

第34届全国中学生物理竞赛复赛理论考试试题解答 2017年9月16日 一、(40分)一个半径为r 、质量为m 的均质实心小圆柱被置于一个半径为R 、质量为M 的薄圆筒中,圆筒和小圆柱的中心轴均水平,横截面如图所示。重力加速度大小为 g 。试在下述两种情形下,求小圆柱质心在其平衡位置附近做微振动的频率: (1)圆筒固定,小圆柱在圆筒内底部附近作无滑滚动; (2)圆筒可绕其固定的光滑中心细轴转动,小圆柱仍在圆筒内底部附近作无滑滚动。 解: (1)如图,θ为在某时刻小圆柱质心在其横截面上到圆筒中心轴的垂线与竖直方向的夹角。小圆柱受三个力作用:重力,圆筒对小圆柱的支持力和静摩擦力。设圆筒对小圆柱的静摩擦 力大小为F ,方向沿两圆柱切点的 切线方向(向右为正)。考虑小圆柱质心的运动,由质心运动定理得 sin F mg ma θ-= ① R θ θ1 R

式中,a 是小圆柱质心运动的加速度。由于小圆柱与圆筒间作无滑滚动,小圆柱绕其中心轴转过的角度1 θ(规定小圆柱在最低点时1 0θ=)与θ之间的关系为 1 ()R r θθθ=+ ② 由②式得,a 与θ的关系为 22 12 2 ()d d a r R r dt dt θθ==- ③ 考虑小圆柱绕其自身轴的转动,由转动定理得 212 d rF I dt θ-= ④ 式中,I 是小圆柱绕其自身轴的转动惯量 2 12 I mr = ⑤ 由①②③④⑤式及小角近似 sin θθ≈ ⑥ 得 22 203() θθ+=-d g dt R r ⑦ 由⑦式知,小圆柱质心在其平衡位置附近的微振动是简谐振动,其振动频率为 1π6()g f R r =- ⑧ (2)用F 表示小圆柱与圆筒之间的静摩擦力的大小,1 θ和2 θ分别为小圆柱与圆筒转过的角度(规定

高中物理竞赛热学公式整合

高中物理竞赛热学公式整合 第一章 热力学平衡态和气体物态方程 1> pV TR ν= ——理想气体物态方程 8.314R =11??J mol kg -- 2> 222213 x y z v v v v === ——分子的速度分布 3> 213 p nmv = 23 k p n E = ——理想气体的压强公式 4> 32k E kT = ——分子运动的能量公式 231.3810A R k N -==?1?J K - 5> p nkT = ——阿伏伽德罗定律 6> 12i p p p p =++???+ ——道尔顿分压定律 第二章 气体分子的统计分布律 1> 23/2224()2mv kT dN m v e dv N kT ππ-= ——麦克斯韦速率分布律 2> P v = ——最概然速率 v =——平均速率 r v ==——方均根速率 3> /0 P E kT n n e -= ——玻尔兹曼分布律 /0m g z k T n n e -= ——气体分子在重力场中按高度的分布律 4> 0Mgz RT z p p e -= ——等温气压公式 0ln z p RT z Mg p =

5> 1(2)2 E t r s kT = ++ ——分子的平均总能量(能量按自由度均分定理) 6> 1(2)2 m U t r s RT M =++ ——理想气体的内能 1(2)2 m U t r s R T M ?=++? 7> ,1(2)2V m C t r s R =++ ——理想气体的摩尔定容热容 第三章 略 第四章 热力学第一定律 1> A pdV δ= ——元功的表达(系统对外界所做的) 2> 2 1V V A pdV =? ——系统对外界所做的功 3> 21U U Q A '-=+ 或 21U U Q A -=- ——热力学第一定律(积分形式) d U Q A δδ'=+ 或 dU Q A δδ=- ——热力学第一定律(微分形式) 4> ()U U T = ——焦耳定律 5> 0lim T Q Q C T dT δ?→?==? ——热容 ()V V U C T ?=? ——定容热容 ()()[]p p p Q U pV C dT T δ?+==? ——定压热容 6> ,()V V m V C u C T ν?==? ——气体摩尔定容热容 ,()()p m p m p C u pV C T ν?+= =? ——气体摩尔定压热容 U u ν = 7> ——理想气体的摩尔热容 8> ,,p m V m C C R =+ ——迈耶公式

高中物理竞赛教程:4.1《基本粒子》.doc

第四讲 基本粒子 §4、1、基本粒子 4.1.1、 什么是基本粒子 在古代就有一些哲学家认为物质是由原子组成的,原子是组成物质的最小颗粒,不可再分。有基本的涵义,可称为基本粒子。自19世纪初,英国科学家道尔顿以化学反应为依据,提出物质是由原子组成的学说以来,人们相继发现了电子、质子、中子、正电子、中微子、介子等大量的基本粒子,基本粒子数目的大量增加,使人们认识到它们也不可能是最基本的组分,所以有“基本料子不基本”的说法。 中微子的发现,中子不是稳定粒子,它衰变为质子和电子:e P n 01111 -+→,实验发现此衰变中动量不守恒。经不断实验发现,中子衰变的正确反应应为v e P n ++→-01111 0。v 为中微子的符号,v 为v 反粒子的符号。 4.1.2、 粒子的自旋 到本世纪30年代末,加上在宇宙射线中发现的μ子,人们认为,电子、质子、中子、中微子、μ子和光子都是基本粒子。除中子和μ子是不稳定粒子外,其余都是稳定的。基本粒子的主要特征除质量的电荷外,还有自旋,这是一个量子力学概念,表征粒子的内部属性,相当于经典物概念是微粒的自转。它遵从量子力学的规律,以π2h 为单位,只能取整数0、1、2……,或半整数1/2、3/2……。上述6种粒子,除光子自旋为1外,其余都是自旋为1/2的粒子。自旋为整数的粒子又称为玻色子;自旋为半整数的粒子又称为费米子。 4.1.3、 粒子和反粒子 经实验发现,每一种粒子都存在相应的反粒子。反粒子和粒子的质量、自旋都相同,电量相同而符号相反。对不带电

的粒子,粒子和反粒子有其它的区分标志,这里不具体描述。在粒子的符号上加一横,代表反粒子,如v 是反中微子。也有的粒子的反粒子就是自身,而无区别,如光子。1932年安得森发现了正电子,使反粒子的存在第一次得到了证实。其他反粒子也先后被发现。如反质子和反中子分别是1955年和1956年在加速器中发现的。粒子和反粒子是互为反粒子的,只是当初称呼电子、质子等为粒子而已。我们这个世界是由粒子组成的,而不是由反粒子组成的。 4.1.4、 强子——介子和重子 本世纪40年代到50年代,从宇宙射线中又发现了一批粒子。比如发现了π介子和K 介子,它们的自旋为零;又发现了与核子(质子和中子)属于同一类而质量更大的粒子,称为超子,有Λ超子、∑超子和Ξ超子,它们都是不稳定粒子。核子和超子统称为重子。介子和重子又统称为强子。因为它们之间的相互作用强大。 4.1.5、 粒子的奇异性 仔细地分析新发现的各种粒子的衰变反应,以及它们参与的其它反应,发现K 介子和超子具有产生快,衰变慢和同时产生两个或多个粒子的新特性,与π介子和核子所有的性质不同,当时认为有些奇异,引入了一个称为奇异数的量子数来标志这种奇异性。 + K 介子 和0K 介子的奇异数为1;+-∑∑∑Λ,0,1,0超子的奇异数为-1;0,ΞΞ-超子的奇异数为-2。具有奇异数的粒子,如其奇异数为s ,则其反粒子的奇异数为-s 。π介子和核子的奇异数为0。在强相互作用中,奇异数守恒。 4.1.6、 基本粒子分类 按照基本粒子之间的相互作用可分为三类: ①强子:凡是参与强相互作用的粒子,分为重子和介子两类。 ②轻子:都不参与强相互作用,质量一般较小。 ③光子:静质量为零,是传递电磁相互作用的粒子。

全国中学生物理竞赛模拟题

2014年高中物理竞赛复赛模拟训练卷 一.(20分)在用质子 ) (1 1 P 轰击固定锂 ) (7 3 Li 靶的核反应中,(1)计算放出α粒子的反应能。(2) 如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到α粒子的能量大约有多大? 有关原子核的质量如下: H 1 1,1.007825; He 4 2,4.002603; Li 7 3,7.015999。 二.(20分)2mol初始温度为270C,初始体积为20L的氦气,先等压膨胀到体积加倍,然后是绝热膨胀回到初始温度。(1)在P—V图上画出过程方程;(2)在这一过程中系统总吸收热量等于多少?(3)氦气对外界做的总功等于多少?其中绝热膨胀过程对外界做功是多少?

三.(15分)观测者S测得两个事件的空间和时间间隔分别为600m和8×10-7s,而观测者S1测得这两个事件同时发生。试求S1相对S的速度,以及S1测得这两个事件的空间距离。

四.(20分)神奇的自聚焦透镜:自聚焦透镜依靠折射率的恰当变化对近轴光线成像。该透镜呈圆柱状,截面半径为R,长为l。其折射率在截面内延半径方向呈抛物线状连续变小,可表示为

)2 11(22202r a n n r -= 式中n 0为中心的折射率,a 为比1小得多的正数。 (1) 求从圆心入射与圆柱平面夹角为0θ的光线在自聚焦透镜内传播的轨迹方程。 (2) 平行于z 轴的平行入射光经过自聚焦透镜后交汇于一点,求自聚焦透镜的焦距。 五.(20分)如图所示,有二平行金属导轨,相距l ,位于同一水平面内(图中纸面),处在磁感应强度为B 的匀强磁场中,磁场方向竖直向下(垂直纸面向里).质量均为m 的两金属杆ab 和cd 放

高中物理竞赛讲义-热力学第一定律

热力学第一定律 一、热力学第一定律 理想气体从一个状态缓慢变化到另一个状态的过程(准静态过程)中,做功和热传递会导致气体内能发生变化。 二、理想气体的内能 由于理想气体不考虑分子间作用力,因此没有分子势能,因此内能即为分子的总动能 由压强的表达式23p n ε= 和p nkT =,可得:32 kT ε=。注意ε的物理意义,ε是分子的平均平动动能。 1、对于单原子分子,总能量即平动动能 (3个自由度)32 kT ε= 总 2、对于双原子分子,总能量包括平动动能、转动动能(5个自由度)52 kT ε=总 3、对于多原子分子,总能量包括平动动能、转动动能(6个自由度)62kT ε=总 因此可得对应气理想体的内能: 1、单原子分子组成的理想气体,内能3322 A U NN kT NRT = = 2、双原子分子组成的理想气体,内能5522 A U NN kT NRT == 3、多原子分子组成的理想气体,内能6622A U NN kT NRT == 三、外力对气体做功的计算 1、恒力(恒压)做功 W F l pS l p V =-?=-?=-? 2、变力(变压)做功(微元法) i i i W W p V = ?=-?∑∑ 四、热量传递的计算 1、对于固体和液体: 一般来说体积变化可以忽略: Q cm T =? 其中,c 为比热:1kg 的物质,升温1°C 吸收的热量 2、对于气体: (1)如果体积不变,所有热量都用来改变温度: V Q Nc T =? 其中,c V 为摩尔定容比热:1mol 的物质,保持体积不变,升温1°C 吸收的热量 (2)如果压强不变,根据状态方程,温度变化,体积随之变化。因此,一部分热量都用来改变温度,另一部分用来做功:

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

相关文档
相关文档 最新文档