文档视界 最新最全的文档下载
当前位置:文档视界 › ZnO的性质

ZnO的性质

ZnO的性质

1.纳米氧化锌的性质

1.1表面效应

表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化,随着粒径减小,表面原子数迅速增加,另外 ,随着粒径的减小,纳米粒子的表面积、表面能及表面结合都迅速增大这主要是由于粒径越小,处于表面的原子数越多表面原子的晶场环境和结合能与内部原子不同表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质 ,易与其它原子相结合而稳定下来,故具有很大的化学活性 ,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加伴随表面能的增加 ,其颗粒的表面原子数增多 ,表面原子数与颗粒的总原子数的比值被增大 ,于是便产生了“表面效应”,即“表面能”与“体积能”的区分就失去了意义 ,使其表面与内部的晶格振动产生了显著变化 ,导致纳米材料具有许多奇特的性能

1.2体积效应

当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化 ,这就是纳米粒子的体积效应这种体积效应为实用开拓了广阔的新领域。

压电陶瓷测量原理..

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为CR I I C R ωδ1tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: 机械品质因数可根据等效电路计算而得 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。 S=dE 两式中的压电应变常数 d 在数值上是相同的,即E S D d ==σ 另一个常用的压电常数是压电电压常数 g ,它表示应力与所产生的电场的关系,或应变与所引起的电位移的关系。常数 g 与 d 之间有如下关系: εd g = 式中ε为介电系数。在声波测井仪器中,压电换能器希望具有较高的压电应变常数和压电电压常数,以便能发射较大能量的声波并且具有较高的接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电的方法把能量加到压电材料上时,由于压电效应和逆压电效应,机械能(或电能)中的一部分要转换成电能(或机械能)。这种转换的强弱用机电耦合系数 k 来表示,它是

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电陶瓷参数整理

压电材料的主要性能参数 (1) 介电常数ε 介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。 介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为 ε=C ·t/A 式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距 当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。由于所需的检测频率较低,所以ε应大一些。因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。 (2)压电应变常数 压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U = 式中 U ——施加在压电晶片两面的压电; △t ——晶片在厚度方向的变形。 压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。其值大,发射性能好,发射灵敏度越高。 (3)压电电压常数33g 压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小: 31(m/N)P U g V P =? 式中 P ——施加在压电晶片两面的应力; P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。 压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。其值大,接收性能好,接收灵敏度高。 (4)机械品质因数 机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。产生损耗的原因在于内摩擦。

m E E θ=储损 m θ值对分辨力有较大的影响。机械品质因数越大,能量的损耗越小,晶片持 续振动时间长,脉冲宽度大,分辨率低。 (5)频率常数 由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 0 22L L C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。 则: 02 L t C N tf == 这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。因此,同样的材料,制作高频探头时,晶片厚度较小;制作低频探头时,晶片厚度较大。 (6)机电耦合系数K 机电耦合系数K 是综合反映压电材料性能的参数,它表示压电材料的机械能与电能之间的耦合效应。机电耦合系数可定义为 K =转换的能量输入的能力 探头晶片振动时,同时产生厚度方向和径向两个方向的伸缩变形,因此机电耦合系数分为厚度方向t K 和和径向p K 。t K 大,检测灵敏度高;p K 大,低频谐振波增多,发射脉冲变宽,导致分辨率降低,盲区增大。 (7)居里温度C T 压电材料与磁性材料一样,其压电效应与温度有关。它只能在一定的温度范围内产生,超过一定温度,压电效应就会消失。使压电材料的压电效应消失的温度称为压电材料的居里温度,用C T 表示。 探头对晶片的一般要求: (1) 机电耦合系数K 较大,以便获得较高的转换效率。

压电陶瓷压电性能测定实验报告

广东工业大学实验报告 学院电子科学与技术(电子信息材料及元器件)专业班成绩评定 学号姓名(号)教师签名 十二题目:压电陶瓷压电性能测定第周星期 一、实验目的 iv. 了解压电常数的概念和意义; v. 掌握压电陶瓷压电常数的测定方法。 vi. 学会操作ZJ-3AN 型准静态d33 测量仪。 二、实验内容 1. 实验老师介绍使用压电常数测量仪测试d33 的原理与步骤; 2. 测试压电陶瓷的压电常数。 三、实验(设计)仪器设备和材料清单 ZJ-3AN 型准静态d33 测量仪、压电陶瓷晶片等。 四、实验原理 压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有 压电效应的材料。 当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数 量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。 逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化 造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。 压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦 合的线性响应系数。通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。 五、实验步骤 1. 用两根多芯电缆把测量头和仪器本体连接好,接通电源; 2. 把Φ20 尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为 止; 3. 把仪器后面板上的“显示选择” 开关置于“d33” 一侧,此时面板右上方绿灯 亮; 4. 把仪器后面板上的“量程选择” 开关置于“×1” 档; 5. 按下“快速模式”,仪器通电预热10 分钟后,调节“调零” 旋钮使面板表指 电子科学与技术专业实验指导书

热电材料的电学性能

1、实验目的 装订线 1. 通过实验了解热电材料的Seebeck系数和电阻率的测定方法; 2. 测量在特定温度范围内热电材料电学电学性能随温度的变化 关系; 3. 结合实验结果分析并热电材料电功率因子与温度的关系。2、实验原理 1. 塞贝克系数 塞贝克效应是材料的一个物理性能,是一种由电流引起的可逆热效应或者说是温度差引起的电效应,其示意图如下: 对于两种不同的导体串联组成的回路,在导体b的开路位置y和z之间,将会有一个电位差,称为热电动势,数值是:,当T不是很大时,为常数,定义为两种导体的相对Seebeck系 数,即 (1) Seebeck系数常用的单是uV/K, Seebeck系数的测量原理如下图所示,1、3和2、4分别是NiCr和NiSi热电偶臂。测量时两段温差保持10℃,S两端存在 温差时会产生热电势差Vs,相对于热电偶的其中一个电偶臂 1、3的Seebeck系数为

2. 电阻率 从原理上讲,对电阻为R,长度为L,截面积为A的样品,电导率=R(A/L)。然而,由于半导体热电材料通常电阻率较小,接触电阻相对较大,容易引入实验误差。实验中电阻率的测定采用下图所示的两探针原理以避免接触电阻的影响。电阻率测量在试样两端等温进行,当△T足够小时,才对样本施加测试电流,这是电阻 R=V R/I const, V R为样品两端电压探针的电压降,I const为恒流源电流,取一特定值。为消除附加的Seebeck电压影响,试验通过改变电流方向进行两次电压测量,取其平均值。得R值后,有公式=R(A/L)算出其电阻率。

3、实验设备与装备 测量装置温度由AI-708P智能控制器控制。样品两端电压利用Agilent970A数据采集仪输入微机。 所用电源为恒流源。测量时抽真空以防样品氧化。 4、实验方法与步骤 1. 实验样品的制备方法: 原料称量→悬浮熔炼→(快速凝固→)机械研磨→热压成型(获 得样品) 2. 实验样品的安装 双眼中先将被测样品两端抛光,并真空镀银或覆盖银浆,形成欧姆接触,以保证样品与纯铜夹具间的良好接触。 3. 热电性能的测定 夹好样品后抽真空,然后根据两个AI-708P控制仪中事先设定的升温程序程序升温至不同的温度,在每一个选定的温度,待温度稳定后才开始测量。 4. 数据处理得到的Seebeck系数和电阻率 5、实验结果处理 本次实验采用5#组数据。 1.以Seebeck系数对温度作图: 首先以直线拟合,获得结果为y=-52.1-0.176x 但是由图上各点位置看出,并非理想结果。误差较大。 再以二次曲线拟合,如图: 可见曲线精确度高了不少,此时方程为 y=-188.87+0.54x-0.000935x2 个人认为还是二次曲线比较理想一些。 电阻率对温度作图

压电陶瓷电特性测试与分析

压电陶瓷电特性测试与 分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

摘 ?要:?通过对器件进行阻抗测试可得到压电振子参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和指标较好。 关键词:?压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对

无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT 陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试) GB 11312-89 压电陶瓷材料和压电晶体声表面波性能测试方法 GB 11310-89 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 压电陶瓷蜂鸣片由一块两面印刷有电极的压电陶瓷板和一块金属板(黄铜或不锈钢等)组成。当在压电振动板的两个电极间施加直流电压

材料电学性能

高分子材料的电学性能 高分子092班学号:5701109061 姓名:林尤琳 摘要:种类繁多的高分子材料的电学性能是丰富多彩的。多数聚合物材料具有卓越 的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。 关键词:高分子材料电学性能静电导电介电常数 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。电学性能是材料最基本的属性之一,这是因为构成材料的原子和分子都是由电子的相互作用形成的,电子相互作用是材料各种性能的根源。电子的微观相互作用同时是产生材料宏观性能,包括电学性能的微观基础。在电场作用下产生的电流、极化现象、静电现象、光发射和光吸收现象都与其材料内部的电子运动相关。深入、系统了解材料的电学性能在材料的制备、应用等方面都具有非常重要的意义。(1) 一、聚合物的介电性 介电性是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质。通常用介电常数和介电损耗来表示。(2) 根据高聚物中各种基团的有效偶极距μ,可以把高聚物按极性的大小分成四类: 非极性(μ=0):聚乙烯、聚丙烯、聚丁二烯、聚四氟乙烯等 弱极性(μ≤0.5):聚苯乙烯、天然橡胶等 极性(μ>0.5):聚氯乙烯、尼龙、有机玻璃等 强极性(μ>0.7):聚乙烯醇、聚酯、聚丙烯腈、酚醛树脂、氨基塑料等 聚合物在电场下会发生以下几种极化:(1)电子极化,(2)原子极化,(3)偶极极化。聚合物的极化程度用介电常数ε表示 式中:V为直流电压;Qo、Q分别为真空电容器和介质电容器的两极板上产生的电荷;Q’为由于介质极化而在极板上感应的电荷。 非极性分子只有电子和原子极化,ε较小;极性分子除有上述两种极化外,还有偶极极化,ε较大。此外还有以下因素影响ε: (1)极性基团在分子链上的位置。在主链上的极性基团活动性小,影响小;在柔性侧基上的极性基团活动性大,影响大。 (2)分子结构的对称性。分子结构对称的,极性会相互抵消或部分抵消。 (3)分子间作用力。增加分子间作用力(交联、取向、结晶)会使ε较大;减少分子间作用力(如支化)会使ε较小。 (4)物理状态。高弹态比玻璃态的极性基团更易取向,所以ε较大。 聚合物在交变电场中取向极化时,伴随着能量损耗,使介质本身发热,这种现象称为聚合物的介电损耗。通常用介电损耗角正切tanδ来表示介电损耗。一般高聚物的介电损耗时非常小的,tanδ=10-3~10-4。 介电损耗主要是取向极化引起的,通常ε越大的因素也越会导致较大的介电损耗。非极性聚合物理论上讲没有取向极化,应当没有介电损耗,但实际上总是有杂质(水、增塑剂等)

压电陶瓷性能参数解析

压电陶瓷性能参数解析The final revision was on November 23, 2020

压电陶瓷的性能参数解析 制造优良的压电陶瓷元器件,通常要对压电陶瓷性能提出明确的要求。因为压电陶瓷性能对元器 件的质量有决定性的影响。因此,要讨论和认识压电陶瓷的元器件,就必须首先要了解压电陶瓷 的性能参数与量度方法。压电陶瓷除了具有一般介质材料所具有的介电性和弹性性能外,还具有 压电性能。压电陶瓷经过极化处理之后,就具有了各向异性,每项性能参数在不同方向上所表现 的数值不同,这就使得压电陶瓷的性能参数比一般各向同性的介质陶瓷多得多。压电陶瓷的众多 的性能参数是它被广泛应用的重要基础。(1)介电常数介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求 材料的介电常数要小。介电常数ε与元件的电容C,电极面积A和电极间距离t之间的关系 为ε=C·t/A (1-1) 式中,各参数的单 位为:电容量C为F,电极面积A为m2,电极间距t为m,介电常数ε为F/m。有时使 用相对介电常数εr(或κ),它与绝对介电常数ε之间的关系为εr=ε/εo (1-2) 式中,εo为真空(或自由空间)的介电常数,εo=×10-12(F/m),而εr则 无单位,是一个数值。压电陶瓷极化处理之前是各向同性的多晶体,这是沿1(x)、 2(y)、3(z)方向的介电常数是相同的,即只有一个介电常数。经过极化处理以后,由于沿极化方 向产生了剩余极化而成为各向异性的多晶体。此时,沿极化方向的介电性质就与其他两个方向的 介电性质不同。设陶瓷的极化方向沿3方向,则有关系ε11=ε22≠ε33 (1-3)即经过极化后的压电陶瓷具有两个介电常数ε11和ε33。由于压电陶瓷存在压电 效应,因此样品处于不同的机械条件下,其所测得的介电常数也不相同。在机械自由条件下,测 得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件 下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械 自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条 件下测得的介电常数数值是不同的。根据上面所述,沿3方向极化的压电陶瓷具有四个介电 常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗介质损耗是包括压电陶瓷在 内的任何介质材料所具有的重要品质指标之一。 在交变电场下,介质所积蓄的电荷有两部分:一 种为有功部分(同相),由电导过程所引起的; 一种为无功部分(异相),是由介质弛豫过程所 引起的。介质损耗的异相分量与同相分量的比值 如图1-1所示,Ic为同相分量,IR为异相分 量,Ic与总电流I的夹角为δ,其正切值为 (1- 4)

材料电学性能

第二章 材料电学性能
在很多场合,材料的选择使用受到其电学性能的影响 各种材料的电学性能存在着极大的差异,随着应用场合的不 同,需要选择使用不同的材料 如:导线需要有很高的导电性;而绝缘保护层,则需要高的 电绝缘性
1

导体、半导体、绝缘体同时出现在一个电子芯片上
2

超导材料及其应用技 术被认为是21世纪具 有战略意义的高新材 料与技术,将在能源、 交通、信息、科学仪 器、医疗装置、国防、 重大科学研究装置等 方面有广泛应用,而 且是一种其它技术无 法替代的高新技术
3

绝缘材料的应用
4

纳米ZnO2带的TEM像
超 长 纳 米 SnO2 带 (A) 的SEM和TEM像(B)
2002年乔治亚理工王中林教授等成功合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系 列半导体氧化物纳米带,纳米带呈现高纯、结构均匀和单晶体,几乎无缺陷和位 错;纳米线呈矩形截面,典型宽度为20-300nm,宽厚比为5-10,长度可达数毫米 这种半导体氧化物纳米带是一种理想的材料体系,可以用来研究载流子维度受限 的输运现象和制造基于这一性能的功能器件
5

美国凤凰城(Phoenix)和阿里桑那洲(Arizona)的莫托罗拉实验室的科学家们,在 2001年9月宣布,他们借助在硅和砷化镓之间生长一个钛酸锶(SrTiO3)的界面层的 方法,在大直径硅衬底上淀积高质量化合物半导体GaAs单晶薄膜获得成功 大直径GaAs/Si复合片材的研制成功不仅给以GaAs、InP为代表的化合物半导体(激 光)产业带来挑战,而且以其廉价,可克服GaAs、InP大晶片易碎和导热性能差等缺 点以及与目前标准的半导体工艺兼容等优点受到关注 最大的一个潜在应用是为实现人们长期以来的梦想━━光电子器件与常规微电子器 件和电路在一个芯片上的集成提供技术基础 6

压电陶瓷材料的主要性能及参数

压电陶瓷材料的主要性能及参数 自由介电常数εT33(free permittivity) 电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。 相对介电常数εTr3(relative permittivity) 介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。 介质损耗(dielectric loss) 电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。 损耗角正切tgδ(tangent of loss angle) 理想电介质在正弦交变电场作用下流过的电流比电压相位超前90 0,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ+ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。即:? 电学品质因数Qe(electrical quality factor) 电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。若用并联等效电路表示交变电场中的压电陶

瓷的试样,则Qe=1/ tgδ=ωCR 机械品质因数Qm(mechanical quanlity factor) 压电振子在谐振时储存的机械能与在一个周期内损耗的机械能之 比称为机械品质因数。它与振子参数的关系式为: 泊松比(poissons ratio) 泊松比系指固体在应力作用下的横向相对收缩与纵向相对伸长之比,是一个无因次的物理量,用δ表示:? δ= - S 12 /S11 串联谐振频率fs(series resonance frequency) 压电振子等效电路中串联支路的谐振频率称为串联谐振频率,用f s 表示,即 ? 并联谐振频率fp(parallel resonance frequency) 压电振子等效电路中并联支路的谐振频率称为并联谐振频率,用f p 表示,即f p =? 谐振频率fr(resonance frequency)

压电陶瓷参数整理

(1) 介电常数ε 介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。 介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为 ε=C ·t/A 式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距 当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。由于所需的检测频率较低,所以ε应大一些。因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。 (2)压电应变常数 压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U =V 式中 U ——施加在压电晶片两面的压电; △t ——晶片在厚度方向的变形。 压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。其值大,发射性能好,发射灵敏度越高。 (3)压电电压常数33g 压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小: 31(m/N)P U g V P =? 式中 P ——施加在压电晶片两面的应力; P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。

压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。其值大,接 收性能好,接收灵敏度高。 (4)机械品质因数 机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。产生损耗的原因在于内摩擦。 m E E θ=储损 m θ值对分辨力有较大的影响。机械品质因数越大,能量的损耗越小,晶片持 续振动时间长,脉冲宽度大,分辨率低。 (5)频率常数 由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 0 22L L C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。 则: 02 L t C N tf == 这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。因此,同样的材料,制作高频探头时,晶片厚度较小;制作低频探头时,晶片厚度较大。 (6)机电耦合系数K 机电耦合系数K 是综合反映压电材料性能的参数,它表示压电材料的机械能与电能之间的耦合效应。机电耦合系数可定义为 K =转换的能量输入的能力

压电陶瓷性能参数解析

压电陶瓷的性能参数解析 制造优良的压电陶瓷元器件,通常要对压电陶瓷性能提出明确的要求。因为压电陶瓷性能对元器件的质量有决定性的影响。因此,要讨论和认识压电陶瓷的元器件,就必须首先要了解压电陶瓷的性能参数与量度方法。 压电陶瓷除了具有一般介质材料所具有的介电性和弹性性能外,还具有压电性能。压电陶瓷经过极化处理之后,就具有了各向异性,每项性能参数在不同方向上所表现的数值不同,这就使得压电陶瓷的性能参数比一般各向同性的介质陶瓷多得多。压电陶瓷的众多的性能参数是它被广泛应用的重要基础。 (1)介电常数 介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。 介电常数ε与元件的电容C,电极面积A和电极间距离t之间的关系为 ε=C·t/A (1-1) 式中,各参数的单位为:电容量C为F,电极面积A为m2,电极间距t为m,介电常数ε为F/m。 有时使用相对介电常数εr(或κ),它与绝对介电常数ε之间的关系为 εr=ε/εo (1-2) 式中,εo为真空(或自由空间)的介电常数,εo=8.85×10-12(F/m),而εr则无单位,是一个数值。 压电陶瓷极化处理之前是各向同性的多晶体,这是沿1(x)、2(y)、3(z)方向的介电常数是相同的,即只有一个介电常数。经过极化处理以后,由于沿极化方向产生了剩余极化而成为各向异性的多晶体。此时,沿极化方向的介电性质就与其他两个方向的介电性质不同。设陶瓷的极化方向沿3方向,则有关系 ε11=ε22≠ε33(1-3) 即经过极化后的压电陶瓷具有两个介电常数ε11和ε33。 由于压电陶瓷存在压电效应,因此样品处于不同的机械条件下,其所测得的介电常数也不相同。在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表

相关文档
相关文档 最新文档