文档视界 最新最全的文档下载
当前位置:文档视界 › 雷达故障检修方法分析

雷达故障检修方法分析

雷达故障检修方法分析
雷达故障检修方法分析

雷达故障检修方法分析

[摘要]本文介绍了气象台站检修雷达所需的工具、测量仪器、配件、相关技术资料及维修人员水平等必要条件,重点分析了检修雷达故障的基本原则、观察故障现象及检修的常用方法,为基层台站机务员维修雷达提供一些参考。

【关键词】雷达故障;检修;方法分析;基本原则

检修雷达是一项综合性很强的技术工作,它不仅仅是一门雷达技术,还涉及到数字电子、微机软件、机械力学、自动控制技术、计算机及网络等领域。要想顺利完成维护保障任务,台站需具备一些基本良好性能的测量仪器、易损性器材、各种维修工具。具备雷达的图纸、技术说明书、使用说明书及相关资料(包括电路原理图,机械结构图,元件位置图,线缆连接图等),以便随时查用。维修人员一定要必须熟练掌握维修技术,掌握电子基础理论、雷达的基础知识。了解该雷达各个部分的功用、组成、结构、主要性能。掌握雷达的原理框图、基本工作过程和信号流程。熟悉雷达的性能参数和电路中一些主要工作点参数,熟悉测试仪表的性能、使用方法和测试方法。掌握元器件的好坏的鉴别方法、代用原则和替换方法;

1.检修故障的基本原则

检修工作通常由观察故障现象开始,通过询问值班员了解故障发生的经过、现象,再仔细观察和作外部检查,通过对雷达各分机的显示、指示和测量等装置全面观察,查看报警信息,结合工作原理,对照信号流程和各部分电路的作用,经认真分析和逻辑判断,就能得知哪部分电路工作正常,哪部分电路工作不正常,从而确定故障产生的原因和可能的故障部位。

要全面弄清故障现象,必须做好研究工作,通常除了向值班人员了解故障发生前后的情况外,还应运用直觉法,扳动相关开关,调节有关旋钮来观察故障现象的变化,以便更充分、更准确地了解故障的全面情况。在检修过程中,要注意以下几条原则:

1.1 由大部位到小部位

确定故障部位时,应首先根据已掌握的故障现象,按照雷达组成框图,先把故障的可能范围由整个雷达缩小到某个系统(或分机),再由系统(或分机)缩小到某一支路(或某块电路插板),再由某一支路缩小到某一级,最后由某一级缩小到具体的故障点(元件或导线等)。即按“系统→支路→级→点”的次序逐步孤立、缩小范围来进行。

1.2 由简到繁、由易到难、由外到内部

浅谈倒车雷达工作原理及常见故障分析

浅谈倒车雷达工作原理及常见故障分析 [摘要]本文简要的分析了超声波倒车雷达的原理,并对常见故障现象进行分析。[关键词]倒车雷达、工作原理,超声波,故障分析 引言 倒车雷达又称泊车辅助系统,一般由超声波传感器(俗称探头)、控制器和显示器等部分组成,现在市场上的倒车雷达大多采用超声波测距原理,驾驶者在倒车时,启动倒车雷达,在控制器的控制下,由装置于车尾保险杠上的探头发送超声波,遇到障碍物,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出警示信号,得到及时警示,从而使驾驶者倒车时做到心中有数,使倒车变得更轻松,预防事故的发生,保障行车安全. 一、工作原理 倒车雷达由超声波传感器(俗称探头),控制器和显示器(或蜂鸣器)等部分组成.倒车雷达一般采用超声波测距原理,在控制器的控制下由传感器发射超声波信号,当遇到障碍时,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出其他警示信号.从而达到安全泊车的目地.

二、超声波工作原理: 利用超声传感器产生的超声波对车后发射,如在一定范围内碰到物体,就有一反射波返回发射源(超声传感器的表面),主机利用发射波和反射波之间的延迟时间和声波速度就能测得距离。 [超声波信号发射] 当汽车处于倒车状态时,倒车雷达开始启动,控制器控制探头发射超声波信号后,再检测超声波的回波信号.超声波的发射是由控制器发射一串脉冲信号,经放大电路放大后,通过探头发射出去. [超声波的接收] 当超声波发射完成后,控制器立即检测是否有经障碍物反射回来的超声波信号,通过主机上的滤波电路,并计算发射的时间,利用S=T*V/2就可以得出障碍物距离。 三、倒车雷达工作原理框图 MCU通过预定的程序设计,控制相应电子模拟开关驱动发射电路,使超声波传感器工作。超声波回波信号通过专有的接收滤波放大电路进行处理后,由MCU的IO口对其进行检

某型机载气象雷达显示器常见故障检测与维修

长沙航空职业技术学院毕业设计(论文) 题目:某型机载气象雷达显示器常见故障检测与维修 学生姓名李海勇 系别航空装备维修工程系 专业飞机控制设备与仪表 班级机载0901班 学号200900141052 指导教师尹倩倩老师 职称讲师 二0一二年五月二十日 长沙航空职业技术学院

长沙航空职业技术学院 2012 届毕业生毕业设计(论文)任务书 学生姓名李海勇学号200900141052系别航空系班级机载0901 指导教师尹倩倩老师 设计(论文)题目:某型机载气象雷达显示器常见故障检测和维修1.总体设计提纲: (1)机载气象雷达系统的组成及其各部分的作用; (2)气象雷达的探测原理和显示器的显示原理; (3)气象雷达显示器的组成和工作原理; (4)举例分析了气象雷达显示器常见故障的检测和维护; (5)彩色显示器常用的检修方法。 2.阶段设计任务: 第一阶段:拆装某型飞机机载设备,查找相关实物及资料; 第二阶段:查找相关文献资料,写出初步设计论文大纲; 第三阶段:开始论文的落实,并将论文初稿交老师修改; 第四阶段:再次查找资料并进行论文的查错及补漏; 3、技术和量化要求: 机载气象雷达显示系统是机载重要的显示系统之一。雷达显示系统需要数据采集器/集中器,显示管理处理器,字符/图形发生器,显示单元等组件。所以要想做好气象雷达显示器常见故障的检修工作就必须了解或掌握气象雷达整个系统的工作原理,除了这些还得需要掌握显示器组成和各个部分工作的电路原理,掌握必要的故障检测方法。 4、参考文献和资料目录:[1] 空客飞机制造公司飞机维护手册 [2]民用航空电子系统 [3]彩色显示器常见故障及检修

雷达液位计常见故障及其处理方法.doc

雷达液位计常见故障及其处理方法 雷达液位计常见故障及其处理 近年来,雷达液位计以其液位测量死区小、连续测量精度高、受介质特性影响小、测量范围大、耐高温高压能力强和采用非接触式测量方式等优点,在化工行业得到广泛的推广和应用。 由于被测对象比较复杂,受高温高压高腐蚀,还有泡沫、搅拌、蒸汽等诸多原因的严重破坏,雷达液位计频繁出现故障,仪表维护量大,严重影响了生产装置。因此,了解雷达液位计日常故障问题及其处理方法,就变得很有必要。下面,仪控君就为大家整理了雷达液位计的故障问题处理方法,希望能对大家有所帮助。 雷达液位计常见故障之检查供电是否正常 如果生产现场发现雷达液位计在液位升到一定值后变化非常缓慢,应该立即检查雷达液位计的供电情况是否正常,相关工作人员也要在日常的维护中,详细检查雷达液位计的通电情况,通电后有无正常输出。液位变化缓慢或者根本没有变化,需要在第一时间检查设备的保险丝是否烧坏,如果并无电流输出,则基本可以判断是仪表出现问题,应视情况更换或者维修。此外,应该在仪表安装调试的环节加强管理,防止仪表参数设置不准确而影响生产。相关工作人员也需要加强日常的维护工作,定期的进行停运检修,从而保证雷达液位计仪表的正常运行。 雷达液位计常见故障之检查通讯设备是否正常 一旦发现通讯设备不正常,可以通过安装雷达调试软件,读取雷达的组态数据,监控雷达传感器的状态。主要检查雷达传感器能够准确的判断反射回波与假回波的区别,反射波的强度是否达到预定的标准,如果上述测试没有问题,则需要检查其他的电子元件,如果判断出雷达液位计的通讯单元出现损坏,则需要视情况更换元件,从而保证雷达液位计的通讯正常。相关工作人员在日常的维护工作中,也应该加强对雷达液位计的通讯情况的

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

雷达图数据如何更改

雷达图数据如何更改 导语: 雷达图是一种有效的数据展示图表,它能够清晰的展示数据,让关系繁杂的数据变得一目了然,数据趋势变得明显,数据内在关系变得明确。那么,如何修改雷达图的数据,如何绘制出让领导满意,让同事羡慕的雷达图呢? 免费获取商务图表软件:https://www.docsj.com/doc/6f10204818.html,/businessform/ 雷达图如果是手工绘制,是非常麻烦的,不过可以用软件制图。在制作雷达图时,需要将各项数据,按重要程度集中画在一个圆形的图表中,来展示一个其中的比率情况,读表者可以快速获取到有效信息。 一款软件助你轻松绘制雷达图、蜘蛛图 亿图图示专家可以轻松绘制相关图表,软件为用户提供多个雷达图(蜘蛛图)的模板,只需改变数据值,软件便能自动更新雷达图(蜘蛛图)的状态。亿图软

件不仅能帮助用户创建普通雷达图,还可以创建面积雷达图、百分比雷达图、极性图等。 创建雷达图 打开亿图图示软件,选择“新建”——“图表”——“蜘蛛(雷达)图”——“创建”,即可开启画布。

操作界面左侧为符号库,使用者可以从这里,选择合适的雷达图模板,添加至画布中。根据不同的展示场景,雷达图可分为普通雷达图、面积雷达图、百分比雷达图、极性图。本文以普通雷达图为例,介绍基本的操作技巧。

从文件加载数据 亿图图示软件支持用户从本地导入数据,一键生成雷达图。具体的操作方法如下: 1、启动文本模板:另外创建一个空白画布,将符号库中的“如何使用”拖动至画布。

选择复制“example 1”或“example 2”中的文本内容。 2、编辑数据:在电脑本地新建txt记事本,将上文所复制的文本内容,粘贴在txt记事本里。根据模板,进行自定义修改。第一行是类别的名称,从左到右,依次填写。第二行至第n行是系别,第一列为系别名称,其它列为数据。每个数据之间需要用逗号隔开,避免导入出错。

雷达故障分析

波导开关和波导管导致的雷达故障分析 作者:万海焰杨祝平 进入夏季,雷雨频发,气象雷达作为飞机自备的气象导航设备,对于飞行员饶飞雷雨区、保障飞行安全的重要性不言而喻,其作为飞行员的眼睛的作用非常突出,本文从实际例子出发,简述波导开关和波导管导致的气象雷达故障,文章结尾提出维修建议,仅做参考。 一、故障现象: 机组空中反映右气象雷达故障,空中选择右侧雷达时无雷达图像,该机前一航班已反映该故障,并在北京更换右雷达收发机,且测试正常。 二、故障处理过程 地面在CMC上测试右侧气象雷达通过,但选择气象位测试右侧雷达却无雷达图像,判断波导电门故障,更换电门后测试雷达图像正常。这不禁让人疑惑,为什么CMC上测试能通过,而实际上右侧气象雷达失效,下面就雷达系统原理简要作一分析。同时此次飞机故障还发现了从波导开关出来的第一段公共波导管裂开损伤,已经穿透波导管,如下图所示,因无波导管备件,临时修复执飞两个航班正常,后因波导管在振动情况下裂开程度加大,导致了波导在波导管里传输时射频能量损失,出现波形失真,当损失足够大时,就会导致发射的雷达射频波能量很少,从而接收的雷达回波经过二次损失也会很弱,进而导致无雷达图像情况的出现,这也是在平时维护过程中应极力避免的,因为每次拆装波导开关都需要拆装该波导管。

三、故障原理分析 747-400飞机的雷达系统是一个相对独立的系统,其输入信号有惯性基准组件IRU、大气数据计算机ADC、无线电高度表RA、EGPWS 和TCAS等,其中,左和中IRU给左雷达收发机提供稳定信号,右和中IRU给右雷达收发机提供天线稳定信号;ADC提供空速、地速和偏流角以计算风切变;RA提供高度信号以自动启动前位风切变;EGPWS、TCAS和WXR三者的警告有相互级别不同的抑制作用。 747-400飞机的雷达系统由雷达收发机、雷达控制面板、EFIS控制面板“WXR”开关、波导管、波导开关、雷达罩、天线和天线驱动组件组成。 因为本次故障现象中,左侧气象雷达使用正常,这就排除了两部雷达收发机收发回路公共部分故障的可能性了,即波导管公共部分(波导开关出来至天线部分)、天线和天线驱动组件均无故障。故障的可能性集中在雷达收发机、控制面板、波导开关和下图的从波导开关至右侧雷达收发机之间的雷达反馈波导”R/T FEEDER W A VEGUIDE”,通过串件或地面CMC测试都可以排除雷达收发机、控制面板的故障可能性。下面重点分析下波导电门。

雷达液位计的原理选型常见故障及解决方法

雷达液位计的原理选型常见故障及解决方法 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

雷达液位计的原理、特点、安装、维护及常见故障1.雷达液位计的测量原理 雷达液位计采用发射--反射--接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下: D=CT/2 式中 D——雷达液位计到液面的距离 C——光速 T——电磁波运行时间 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。 VEGAPULS雷达液位计采用脉冲微波技术,其天线系统发射出频率为、持续时间为的脉冲波束,接着暂停278ns,在脉冲发射暂停期间,天线系统将作为接收器,接收反射波,同时进行回波图像数据处理,给出指示和电信号。

2.雷达液位计的特点 (1)雷达液位计采用一体化设计,无可动部件,不存在机械磨损,使用寿命长。 (2)雷达液位计测量时发出的电磁波能够穿过真空,不需要传输媒介,具有不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发的介质如粗苯的液位测量。(3)雷达液位计几乎能用于所有液体的液位测量。电磁波在液位表面反射时,信号会衰减,当信号衰减过小时,会导致雷达液位计无法测到足够的电磁波信号。导电介质能很好地反射电磁波,对VEGAPULS雷达液位计,甚至微导电的物质也能够反射足够的电磁波。介电常数大于的非导电介质(空气的介电常数为也能够保证足够的反射波,介电常数越大,反射信号越强。在实际应用中,几乎所有的介质都能反射足够的反射波。 (4)采用非接触式测量,不受槽内液体的密度、浓度等物理特性的影响。 (5)测量范围大,最大的测量范围可达0~35m,可用于高温、高压的液位测量。 (6)天线等关键部件采用高质量的材料,抗腐蚀能力强,能适应腐蚀性很强的环境。 (7)功能丰富,具有虚假波的学习功能。输入液面的实际液位,软件能自动地标识出液面到天线的虚假回波,排除这些波的干扰。 (8)参数设定方便,可用液位计上的简易操作键进行设定,也可用HART协议的手操器或装有VEGA Visual Operating软件的 PC机在远程或直接接在液位计的通信端进行设定,十分方便。

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

雷达图怎么做好看

雷达图怎么做好看 导语: 对比一些枯燥的Excel表格数据,言简意赅的雷达图要更受欢迎。作为职场人,如何将Excel的数据更好的展示出来,也是职场中必备的一项技能!如果你也在为此感到困扰,不妨跟着小编了解一下,别人家精美专业的雷达图是怎么做出来的! 免费获取商务图表软件:https://www.docsj.com/doc/6f10204818.html,/businessform/ 雷达图如果是手工绘制,是非常麻烦的,不过可以用软件制图。在制作雷达图时,需要将各项数据,按重要程度集中画在一个圆形的图表中,来展示一个其中的比率情况,读表者可以快速获取到有效信息。 一款软件助你轻松绘制雷达图、蜘蛛图 亿图图示专家可以轻松绘制相关图表,软件为用户提供多个雷达图(蜘蛛图)的模板,只需改变数据值,软件便能自动更新雷达图(蜘蛛图)的状态。亿图软

件不仅能帮助用户创建普通雷达图,还可以创建面积雷达图、百分比雷达图、极性图等。 创建雷达图 打开亿图图示软件,选择“新建”——“图表”——“蜘蛛(雷达)图”——“创建”,即可开启画布。

操作界面左侧为符号库,使用者可以从这里,选择合适的雷达图模板,添加至画布中。根据不同的展示场景,雷达图可分为普通雷达图、面积雷达图、百分比雷达图、极性图。本文以普通雷达图为例,介绍基本的操作技巧。

从文件加载数据 亿图图示软件支持用户从本地导入数据,一键生成雷达图。具体的操作方法如下: 1、启动文本模板:另外创建一个空白画布,将符号库中的“如何使用”拖动至画布。

选择复制“example 1”或“example 2”中的文本内容。 2、编辑数据:在电脑本地新建txt记事本,将上文所复制的文本内容,粘贴在txt记事本里。根据模板,进行自定义修改。第一行是类别的名称,从左到右,依次填写。第二行至第n行是系别,第一列为系别名称,其它列为数据。每个数据之间需要用逗号隔开,避免导入出错。

故障树分析方法在脉冲雷达故障检测中的应用

电子设计工程 Electronic Design Engineering 第21卷 Vol.21 第3期No.32013年2月Feb.2013 故障树分析方法在脉冲雷达故障检测中的应用 姜来春 (解放军91550部队辽宁大连116023) 摘要:故障树分析方法是一种实用的故障分析方法,文章通过对某单脉冲雷达建立故障树模型,进行定性、定量分析计算。利用构建故障树来进行无线电测量设备故障诊断分析,不仅可以方便推理机构寻找潜在故障或进行故障诊断,而且可以进一步预测未来系统故障发生的概率,便于测量设备故障的检测与定位。关键词:脉冲雷达;故障树分析;故障诊断;重要度中图分类号:TN954 文献标识码:A 文章编号:1674-6236(2013)03-0027-03 Fault tree analysis method in the application of pulse radar fault detection JIANG Lai -chun (PLA Unit of 91550,Dalian 116023,China ) Abstract:Fault Tree Analysis is a practical fault analysis methods ,this paper establishes a single -pulse radar of fault tree model ,which does qualitative and quantitative https://www.docsj.com/doc/6f10204818.html,ing to building fault tree analysis to radio measuring equipment fault diagnosis analysis ,not only it is convenient for inference engine looking for potential fault or fault diagnosis ,but also which predicts the future system fault probability ,and which conveniently detects and locates the measuring equipment failure. Key words:monopulse radar ;fault tree analysis ;fault diagnosis ;importance 收稿日期:2012-09-21 稿件编号:201209161 作者简介:姜来春(1965—),男,辽宁大连人,硕士,高级工程师。研究方向:无线电测量。 测控装备技术保障的特点是测控装各地域上比较分散、专业技术支持人员少而集中,而装备技术保障的水平直接影响测控任务的圆满完成。近年来复杂系统的故障诊断技术越来越受到重视,故障诊断技术[1]已成为一个十分活跃的研究领域,提出了基于故障字典、故障树分析、模糊逻辑、神经网、专家系统、故障预测等理论的故障诊断方法。随着电子技术的发展,对故障诊断问题有必要重点研究,必须把以往的经验提升到理论高度,同时在坚实的理论基础上,系统地发展和完善一套严谨的现代化电子设备故障诊断方法,并结合先进的计算机数据处理技术,实现电子电路故障诊断的自动检测、定位及故障预测。 1故障树分析方法 故障树分析[2]是一种主要的系统可靠性和可用性预测方 法,广泛的应用于工程实践中。它是在系统设计过程中,通过对可能造成系统失效的各种因素(例如硬件、软件、环境、人为等因素)进行分析,画出逻辑框图(即故障树),从而确定系统失效原因的各种可能组合方式及其发生概率,以计算系统失效概率,并采取相应的纠正措施,以提高系统可靠性、安全性的一种设计分析方法和评估方法。 将系统级的故障现象(称为顶事件)与最基本的故障原因(称为底事件)之间的内在关系表示成树形的网络图,各层事件之间通过“与”、“或”、“非”、“异或”等逻辑运算关系相关联。基于故障树模型可以对系统进行定性和定量的分析,故障诊断则是一个从观测到的顶层故障现象出发、逐步向下演绎,最终找出对应的底层故障原因的过程。它把系统故障与组成系统的部件故障联系在一起,并有层次地分别描述出系统在实效的进程中,各种中间事件的相互关系。故障树模型是描述诊断对象结构、功能和关系的一种定性因果模型,它体现了故障传播的层次性和子节点(即下层故障源)与父节点(即上层故障现象)之间的因果关系。 图1 故障树示意图 Fig.1Fault tree diagram

多普勒天气雷达常见故障分析与维修

多普勒天气雷达常见故障分析与维修 发表时间:2018-10-23T15:34:09.080Z 来源:《科技研究》2018年8期作者:汪鸿滨 [导读] 并提出相应的维修维护措施,以确保多普勒天气雷达始终可以保持正常运行状态。 (甘肃省天水市气象局甘肃天水 741000) 摘要:本文主要根据甘肃省天水市气象局多普勒天气雷达运用实际,对多普勒天气雷达运行中常见故障进行分析,并提出相应的维修维护措施,以确保多普勒天气雷达始终可以保持正常运行状态。 关键词:多普勒天气雷达;常见故障;分析;维修维护 引言 多普勒天气雷达是综合气象观测系统的重要构成部分。随着科学技术的不断发展,多普勒天气雷达已经在我国大多数区域广泛运用,多普勒天气雷达的使用大幅度提升了气象要素以及各类天气现象探测业务的准确性,为中短期临近天气预报、灾害性天气的监测预测等气象业务的开展提供了更为有价值的资料依据,在气候监测以及气象预报中占据着举足轻重的地位。但是,在多普勒天气雷达实际运行过程中,有时候也会发生一些故障问题,在很大程度上影响了探测业务的顺利开展。基于此,本文针对多普勒天气雷达运行的常见故障以及维修维护措施进行分析,以进一步提升地方气象探测业务水平。 1.多普勒天气雷达组成以及运行原理 多普勒天气雷达属于一种高性能的数字化雷达,它主要由天线、天线罩、发射机、接收机、信号处理器、伺服系统、波导管以及显示器等部分组成。多普勒天气雷达采取全相干体质,共有七种型号,其中S波段有三种型号,分别为SA、SB、SC;C波段有四种型号,分别为 CINRAD-CB、CC、CJ 和 CD。 多普勒天气雷达运行原理:主要利用电磁波探测同目标物之间的距离和特性的无线电设备,散射是雷达探测大气的基础,天气雷达主要是在检测大气中散射波对目标物的性质进行测定。散射是电磁波照射到折射指数不均匀的物质上造成波传播方向发生变化的现象,其实质就是电磁波激发物质内部振动发射的次波不能被完全抵消。雷达在接收到散射电磁波的振幅、频率、相位等的信息后,可以很容易的获取到相关的天气系统。 2.雷达天线故障分析与维修 雷达天线在运行中时常会发生一些故障,所以需要注意日常维修维护。(1)雷达长时间运行,天线罩内部的机械部件会出现锈蚀,使得雷达运行出现故障。所以需要确保空气处于干燥状态且要求通风良好,防止机械部件出现锈蚀问题;(2)应对天线转轴部位实行年检,时常对油脂进行更新,及时查看磨损状态。对于俯仰箱内的轴承以及方位主轴等关键部件应该着重进行维修维护。在对油脂进行更新的时候应该注意,更新之前,应该提前利用汽油对残余油脂进行清洗,避免磨损之后的金属杂质被又一次带入轴承。此外,流环上的绝缘层特别容易因天线的转动时间长而出现磨损铜屑,进而致使出现短路,产生打火被烧毁。最科学合理的防御方法是采取酒精对汇流环以及弹簧触片进行清洗,在进行清洗时防止弹簧触片变形。在重新装设时重新对其压力进行调整,导致弹簧触片受力比较均匀,呈良好的接触状态。(3)为了避免发生故障时无法及时对相关部件维修更换,对气象探测业务造成不利影响,气象站应提前准备好方位电机的碳刷等配件。 3.发射机系统故障分析与维修 雷达发射系统故障通常有以下几个方面。(1)发射机无法正常运行,调制脉冲故障、调制脉冲过流。故障分析及维修方式:出现处理故障后,及时对雷达作系统故障复位,则故障得到排除,系统也能够正常运行,这表明监控系统所检测到为虚故障,也即是是因为对雷达系统内的部分检测点所设定的开关量比较灵敏,若检测值与设定值不一致,常常会形成虚报故障,但是系统的元件并没有损坏,因此,雷达监控系统一旦检测到有故障时,通常应先采取故障复位的措施进行处理,假如无法恢复正常,则需要对故障问题认真检查处理。(2)雷达系统作出“准加高压”的提示之后,而加高压时候雷达电源空气开关跳闸。故障分析及维修方式:通过分析发现,调制机柜内部的禁止脉冲信号出现接头接触不良的情况,导致脉宽调制器没有脉冲信号输进,致使调脉冲取样信号以及输出电压在短时间内均产生极大变化,导致调制脉冲波特别不稳,波形起伏较大,烧毁调制器IGBT模块,由此形成一反馈脉冲电流烧坏驱动板的驱动模块EXB841,还有二极管,系统中的控保电路为了避免器件发生损坏,将电源切断。针对上述故障,维修人员应该及时更换受损器件;对于输入禁止脉冲信号的接头需要利用酒精进行清洗之后旋紧,确保良好接触;采用示波器对EXB841进行更换之后需要调整好调制器触发脉冲。 为了减少发生发生系统故障的发生频率,需要定期将高频柜打开,清理灰尘、杂质,确保绝缘度;查看各监测仪数据显示是否正常,查看全部的插件是否插接良好,各类电缆接头位置是否旋紧,特别是高压点应该保持紧固,查看是否存在打火的状况,一旦发现故障问题应及时进行维修处理;此外,需要确保机房的干燥性,避免金属器件受潮氧化生锈而受损引发故障。 4.接收系统故障分析与维修 监测子系统没有故障提醒,但是终端没有回波显示。故障分析与维修:没有故障提示,表明系统内所设定的监测点的器件运行正常,在查看的时候暂且不考虑,需要先检查没有设置监测点的器件。通过对故障表现形式分析能够判断故障可能发生在没有设定监测点的回波通道上。对接收机的回波通道进行分析能够找出故障发生原因。接收机的前置放大器采取的IFD,但接收机前段模拟部分总增益只有43DB,所以测试接收机信号时,均无法像采取模拟接收机那样,直接检测接收机,需要在终端以及信号处理器观察以及检测。通过小功率计检测可知MSTC前能够接受到回波信号,在这之后则没有信号输出,由此可以判断MSTC微波组合有所损坏。因此,需要及时更换受损的MSTC微波组合,之后在终端上选择MSTC微波组合的控制状态。 5.伺服系统故障分析与维修 伺服系统经常会发生天线动态错误报警,导致雷达强制待机的故障问题。一般发生此类故障的原因比较多。因此,工作人员需要采取由难到易的方法展开检测。首先需要对雷达碳刷以及滑环进行清洗,若故障仍然没有得到有效排除,可采取 RDASOT 软件对不同方位以及仰角的连续转动情况进行检测;若有错误信息存在,但是方位准确,仰角发生抖动以及角码闪烁的时候则表明仰角有问题,需要继续对电

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT 数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩) 快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高 ; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT (时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT 乘上参考信号FFT 的共轭再逆FFT ; Sc=ifft(fft(Sb).*conj(fft(S))); FFT 输入信号 共轭相乘逆FFT 参考信号的FFT 匹配滤波器 输出 Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j*pi*f0*tau);%回波信号 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910 x 10 7 20 40 60 80 100 120

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910x 10 7 20 40 60 80 100 120 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on 01000200030004000500060007000 -400 -350-300-250-200-150-100-500

雷达故障检测与诊断技术探讨

雷达故障检测与诊断技术探讨 随着科技的不断发展,雷达在气象领域应用越来越广泛。本文主要根据雷达运行实际,首先介绍了常见的雷达故障检测方法,并重点探究了雷达故障检测与诊断技术,以供相关人士参考。 标签:雷达故障;故障检测;故障诊断 引言 近年来,随着科技的迅猛发展,雷达开始在气象学领域得到广泛的应用。气象雷达对强降雨、雷暴、冰雹、台风等天气系统进行探测的重要工具之一[1]。为了获得准确、完整、可靠的天气实况,就要确保雷达的稳定运行。一旦发生雷达故障,要及时进行排除。随着雷达设备的不断更新换代,其自动化以及智能化水平也得到快速提高,给雷达维护保障工作也带来了极大压力。虽说我国的故障诊断研究起步较晚,但近几年来取得了较大的突破,推动了雷达保障业务的发展。本文主要对常见的雷达故障检测与诊断技术进行分析,为今后更高效地排除雷达故障,提升雷达保障水平提供指导。 1雷达故障检测方法 雷达属于精密性仪器,大部分雷达装置主要由天线、馈线、电源、发射机、信号处理机、接收机等部分构成。雷达检测比较繁琐。通常情况下,雷达检测方法包含2类:同步检测与异步检测。同步检测主要指的是以雷达实际工况为重要参考开展的实时故障检测;异步检测指的是不以雷达的工况为参考,不分检测时间的故障检测。在雷达检测过程中,必须根据不同状况采取针对性的检测方式。下面结合雷达装置实际情况来阐述这同步检测与异步检测2类检测方式。 1.1同步检测 在雷达设备的特定功能结构中,检测设备将检测信号发送到雷达设备。设备接收到反馈信号后,将通过雷达设备的各个模块以检查其工作条件。性能检测是从实际应用的角度出发,通常通过同步检测来实现。在此过程中,能够发现每个模块的输入和输出之间具备了映射关系。但是,由于目标信号的随机性导致每个模块的输入强度的随机性,因此模块在输出端的反射也会呈无序状态。如果在输入过程中注重分析几组常规信号、数据亦或信息之间是否存在冲突,则可以找出故障出现区域。尤其需要注意的是,在雷达工作期间无法进行相应的测试。输入测试信号或测试数据有2种特定方法。一种是强制触发检测。这种检测方法为被动检测的类别。它的特点是依赖手动触发检测。检测数据是从要检查的模块的输入端中输入的,模块的输出端具有相应的监视特性。该方法可以检测雷达信号处理器的多个模块,但是仅限于较短的雷达检测时间要求。此类检测方法的缺点是在实践中,如果数据流比较长,在会对检测工作带来不利影响。所以,在具体实施过程中,应压缩相关数据流以使数据流变短,之后获得相应的特征码,经过分

20种液位计工作原理及常见故障分析

2017-12-03给排水处理技术与应用 本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,让仪表人系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。 常见液位计种类 1、磁翻板液位计 2、浮球液位计 3、钢带液位计 4、雷达物位计 5、磁致伸缩液位计 6、射频导纳液位计 7、音叉物位计 8、玻璃板/玻璃管液位计 9、静压式液位计 10、压力液位变送器 11、电容式液位计 12、智能电浮筒液位计 13、浮标液位计 14、浮筒液位变送器 15、电接点液位计 16、磁敏双色电子液位计 17、外测液位计 18、静压式液位计 19、超声波液位计 20、差压式液位计(双法兰液位计) 常用液位计的工作原理 1、磁翻板液位计

磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。 原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。 2、浮球液位计 浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。 3、钢带液位计 它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。 4、雷达液位计 雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。 5、磁致伸缩液位计 磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。在浮子内部有一组永久磁环。当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。

雷达信号处理

雷达信号处理技术与系统设计 第一章绪论 1.1 论文的背景及其意义 近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。 雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。固定杂波的中心频率位于零频,很容易设计滤波器将其消除。但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术 2.1 引言 雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。 脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。这种情况在实际工作中是不允许的。采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。但用模拟技术实现时实际结果与理论值相差很大,而用数字技术实现时实际输出的距离旁瓣与理论值非常接近。数字脉压以其许多独特的优点正在或已经替代模拟器件进行脉冲压缩处理。 2.2 数字脉压实现方法 用数字技术实现脉冲压缩可采用时域方法或频域方法。至于采用哪种方法。 要根据具体情况而定,一般而言,对于大时宽带宽积信号,用频域脉压较好;对 于小时宽带宽积信号,用时域脉压较好。 2.2.1 时域卷积法实现数字脉压 时域脉冲压缩的过程是通过对接收信号)(t s 与匹配滤波器脉冲响应)(t h 求卷积的方法实现的。根据匹配滤波理论,)()(0*t t s t h -=,即匹配滤波器是输入信号的共轭镜像,并有响应的时移0t 。 用数字方法实现时,输入信号为)(n s ,起匹配滤波器为)(n h ,即匹配滤波器的输出为输入离散信号)(n s 与其匹配滤波器)(n h 的卷积

雷达故障检修方法分析

雷达故障检修方法分析 [摘要]本文介绍了气象台站检修雷达所需的工具、测量仪器、配件、相关技术资料及维修人员水平等必要条件,重点分析了检修雷达故障的基本原则、观察故障现象及检修的常用方法,为基层台站机务员维修雷达提供一些参考。 【关键词】雷达故障;检修;方法分析;基本原则 检修雷达是一项综合性很强的技术工作,它不仅仅是一门雷达技术,还涉及到数字电子、微机软件、机械力学、自动控制技术、计算机及网络等领域。要想顺利完成维护保障任务,台站需具备一些基本良好性能的测量仪器、易损性器材、各种维修工具。具备雷达的图纸、技术说明书、使用说明书及相关资料(包括电路原理图,机械结构图,元件位置图,线缆连接图等),以便随时查用。维修人员一定要必须熟练掌握维修技术,掌握电子基础理论、雷达的基础知识。了解该雷达各个部分的功用、组成、结构、主要性能。掌握雷达的原理框图、基本工作过程和信号流程。熟悉雷达的性能参数和电路中一些主要工作点参数,熟悉测试仪表的性能、使用方法和测试方法。掌握元器件的好坏的鉴别方法、代用原则和替换方法; 1.检修故障的基本原则 检修工作通常由观察故障现象开始,通过询问值班员了解故障发生的经过、现象,再仔细观察和作外部检查,通过对雷达各分机的显示、指示和测量等装置全面观察,查看报警信息,结合工作原理,对照信号流程和各部分电路的作用,经认真分析和逻辑判断,就能得知哪部分电路工作正常,哪部分电路工作不正常,从而确定故障产生的原因和可能的故障部位。 要全面弄清故障现象,必须做好研究工作,通常除了向值班人员了解故障发生前后的情况外,还应运用直觉法,扳动相关开关,调节有关旋钮来观察故障现象的变化,以便更充分、更准确地了解故障的全面情况。在检修过程中,要注意以下几条原则: 1.1 由大部位到小部位 确定故障部位时,应首先根据已掌握的故障现象,按照雷达组成框图,先把故障的可能范围由整个雷达缩小到某个系统(或分机),再由系统(或分机)缩小到某一支路(或某块电路插板),再由某一支路缩小到某一级,最后由某一级缩小到具体的故障点(元件或导线等)。即按“系统→支路→级→点”的次序逐步孤立、缩小范围来进行。 1.2 由简到繁、由易到难、由外到内部

最新 连续波雷达及信号处理技术初探-精品

连续波雷达及信号处理技术初探 摘要:连续波雷达,主要就是连续发生电磁波的雷达,可以根据不同发射信号的形式,将其划分成为非调制单频与调频两种类型。在连续波雷达系统实际应用的过程中,应当科学使用信号处理技术开展相关处理工作,在实际观测的过程中,解决收发开关中存在的问题,保证雷达信号接收与发射工作效果。关键词:连续波雷达;信号处理技术;应用措施在使用信号处理技术对连续波雷达进行控制的过程中,应当建立多元化的管理机制,明确各方面工作要求,创新信号处理工作形式,保证能够提升信号处理技术的应用水平,创建专门的管理机制。一、连续波雷达定义与特征分析对于连续波雷达而言,主要是针对电磁波进行连续的发射,根据发射信号形式将其划分成为非调制单频与调频两种类型。在1924年的时候,英国就开始通过连续波课调频测距相关分析,对电离层开展观测工作。且在第二次世界大战的过程中,已经使用连续波雷达开展飞机观测与地面观测工作。然而,在实际使用的过程中,经常会出现收发隔离的现象,难以保证工作效果,因此,使用收发开关对此类问题进行了解决。当前,在使用连续波雷达的过程中,已经能够通过同一天线开展信号接收与发射工作,产生良好的工作效果。在使用连续波雷达发射机设备的过程中,不需要高压的支持,也不会出现打火的现象,能够利用多元化的方式开展信号调制工作,有利于提升信号的发射效率,增强雷达处理效果,因此,在相同体积、重量的雷达设备中,连续波雷达受到广泛关注与重视,应用于世界的各个国家。同时,连续波雷达的体积很小,重量很轻,馈线的损耗最低,使用流程简单,与其他雷达相较可以得知,连续波雷达在接收机方面,所使用的宽带脉冲较窄,有利于抵抗杂波问题,提升电磁干扰的抵抗能力。在应用连续波雷达对距离与速度进行测量的过程中,其测量准确性较高,不会受到其他因素的干扰。对于连续波雷达而言,其特点主要表现为以下几点: (一)发射机的运行功率较低连续波雷达的发射机运行功率很低,有利于应用在侦查工作中。一般情况下,在使用侦查接收机的过程中,可以利用连续波雷达对其进行处理,提升工作效率,加快侦查速度,保证瞬时频率符合相关规定。同时,在使用连续波雷达的过程中,还要使用伪随机码调相方式对其进行处理,减少外界带来的干扰,做好反侦察工作,保证可以符合实际发展需求。(二)接收机的宽带很窄连续波雷达在实际运行的过程中,接收机的宽带很窄,在杂波环境中,能够实行检测工作,提升自身抗干扰能力。且在电磁干扰的环境中,可以提升自身的抗干扰性能,满足实际处理需求[1]。(三)对小目标进行检测连续波雷达设备的使用,可以提升发射机的功率,增加收发天线的收益,且可以减少噪音问题,在一定程度上,能够减少微波损耗问题,更好的对隐身目标进行检测,合理开展雷达探测等工作,提升相关信号的处理效果,满足实际发展需求。二、连续波雷达的相关工作园林分析连续波雷达的运行,需要明确实际工作原理,通常情况下,雷达发射线性三角调频的相关连续性信号,那么,雷达设备的载频就在f0的数值之上,在此过程中,可以将调频宽带设置成为A,将调频间隔设置成为C。在对信号频率与时间进行计算的过程中,应当明确相关原理,创新管理工作形式,对具有代表性的内容进行合理分析,保证可以提升自身分析工作效果。在信号处理工作中,应当重点关注发射信号与目标回波信号,通过合理的计算方式,创建多

相关文档
相关文档 最新文档