文档视界 最新最全的文档下载
当前位置:文档视界 › 根轨迹法习题和答案

根轨迹法习题和答案

根轨迹法习题和答案
根轨迹法习题和答案

第四章 根轨迹法习题及答案

4-1 系统的开环传递函数为

)

4s )(2s )(1s (K )s (H )s (G *

+++=

试证明3j 1s 1+-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。

解 若点1s 在根轨迹上,则点1s 应满足相角条件

π)12()()(+±=∠k s H s G ,如图所示。

对于31j s +-=,由相角条件

=∠)s (H )s (G 11-++-∠-)13j 1(0

=++-∠-++-∠)43j 1()23j 1(

ππ

π

π

-=-

-

-

6

3

2

满足相角条件,因此311j s +-=在根轨迹上。 将1s 代入幅值条件:

14

3j 123j 113j 1K s H )s (G *

11=++-?++-?++-=

)(

解出 : 12K *

= , 2

3

8K K *==

4-2 已知单位反馈系统的开环传递函数如下,试求参数b 从零变化到无穷大时的根轨迹方程,并写出2b =时系统的闭环传递函数。 (1))b s )(4s (02)s (G ++=

(2))

b s )(2s (s )b 2s (01)s (G +++=

解 (1) )

4j 2s )(4j 2s ()

4s (b 20s 4s )4s (b )s (G 2-++++=+++=

'

28

s 6s 20

)s (G 1)s (G )s (2++=+=Φ

(2) )

10s 2s (s )20s 2s (b )s (G 2

2++++='=)3j 1s )(3j 1s (s )

19j 1s )(19j 1s (b -+++-+++ 40

s 14s 4s )

4s (10)s (G 1)s (G )s (23++++=+=

Φ

4-3 已知单位反馈系统的开环传递函数)

b s )(4s (s

2)s (G ++=

,试绘制参数b 从零变

化到无穷大时的根轨迹,并写出s=-2这一点对应的闭环传递函数。 解 )

6s (s )

4s (b )s (G ++=

'

根轨迹如图。 2s -=时4b =, )

8s )(2s (s

216s 10s s 2)s (2

++=++=Φ

4-4 已知单位反馈系统的开环传递函数,试概略绘出系统根轨迹。

⑴ )

1s 5.0)(1s 2.0(s k

)s (G ++=

(2) )1s 2(s )1s (k )s (G ++=

(3) )3s )(2s (s )

5s (k )s (G *+++= (4) )

1s (s )2s )(1s (*k )s (G -++=

解 ⑴ )

2s )(5s (s K

10)1s 5.0)(1s 2.0(s K )s (G ++=++=

三个开环极点:0p 1=,2p 2-=,5p 3-= ① 实轴上的根轨迹:(]

5,-∞-, []0,2-

② 渐近线: ???

????ππ±=π+=?-=--=σ,33)1k 2(3

73520a a

③ 分离点:

02

d 15d 1d 1=++++ 解之得:88.0d 1-=,7863.3d 2-(舍去)。 ④ 与虚轴的交点: 特征方程为

0k 10s 10s 7s )s (D 23=+++=

令 ?

??=ω+ω-=ω=+ω-=ω010)]j (D Im[0k 107)]j (D Re[3

2 解得??

?==ω7

k 10

与虚轴的交点(0,j 10±)。 根轨迹如图所示。

⑵ )

2

1s (s 2)

1s (K )

1s 2(s )1s (K )s (G ++=

++=

根轨迹绘制如下:

① 实轴上的根轨迹:(]1,-∞-, []0,5.0- ② 分离点:

1

d 1

5.0d 1d 1+=

++ 解之得:707.1d ,293.0d -=-=。 根轨迹如图所示。

⑶根轨迹绘制如下:

① 实轴上的根轨迹:[]3,5--, []0,2-

② 渐近线: ???

????±=+==----=22)12(02

)5(320ππ?σk a a

③ 分离点:

5

1

31211+=

++++d d d d 用试探法可得 886.0-=d 。

根轨迹如图所示。

(4) 根轨迹绘制如下:

① 实轴上的根轨迹:[0, 1],[-1,-2] ②分离点:

2

d 1

1d 11d 1d 1++

+=-+ 求解得:37.1d 37.0d 21-==, 根轨迹如图所示。

4-5 已知单位反馈系统的开环传递函数为 )

101s .0)(102s .0(s k

)s (G ++=

要求:(1) 绘制系统的根轨迹;(2) 确定系统临界稳定时开环增益k 的值; (3) 确定系统临界阻尼比时开环增益k 的值。 解 (1) )

100s )(50s (s k

5000)1s 01.0)(1s 02.0(s k )s (G ++=++=

① 实轴上的根轨迹:[0, -50],[-100,-∞] ② 分离点:

0100

d 150d 1d 1=++++ 求解得87.78d 13.21d 21-=-=,

③ 渐近线:o o

a a 1806050,

,±=?-=σ

根轨迹如图所示。

(2) 系统临界稳定时150k 750000k *

==, (3) 系统临界阻尼比时62.9k 5.48112k *==,

4-6 已知系统的开环传递函数为)

20s 8s (s k )s (H )s (G 2*

++=,要求绘制根轨迹并确

定系统阶跃响应无超调时开环增益k 的取值范围。

解 )

20s 8s (s K )s (H )s (G 2++=*

① 实轴上的根轨迹: (]0,∞-

② 渐近线:

???

???

?ππ±=π+=?-=--++-+=σ,33)1k 2(3

83)2j 4()2j 4(0a a ③分离点:

02

j 4d 1

2j 4d 1d 1=-+++++ 解之得:33.3d ,2d -=-=。 ④与虚轴交点:*+++=k

s 20s 8s )s (D 2

3

把ω=j s 代入上方程,整理,令其实、虚部分别为零得:

???=ω-ω=ω=ω-=ω*020))j (D Im(0

8k ))j (D Re(3

2 解得:???==ω*0k 0 ?????=±=ω*160

k 5

2

⑤起始角:

由相角条件ο

632p -=θ,ο

633p =θ。

根轨迹如图所示。

所有根为负实根时阶跃响应无超调,此时,16k 8.14*

≤≤ 所以8.0k 74.0≤≤

4-7 单位反馈系统的开环传递函数为)

1s 7

4

()1s ()

1s 2(k )s (G 2-++=

试绘制系统根轨迹,并确定使系统稳定的k 值范围。

解 :根轨迹绘制如下:

① 实轴上的根轨迹: []4/75.0,

- ② 渐近线:

???

????

π±=π+=?=--+--=σ22)1k 2(8

12)5.0(4/711a a

③ 与虚轴交点:闭环特征方程为

01k s )7

10

k 2(s 71s 74)s (D 23=-+-++=

把ω=j s 代入上方程,

令?????=ω-ω-=ω=ω--=ω0

74)710K 2())j (D Im(0711K ))j (D Re(3

2

解得: ???==ω1K 0 , ??

?

??=

±=ω79K 2

根轨迹如图所示。由图可知使系统稳定的K 值范围为 79K 1<<。

4-8 已知控制系统的开环传递函数如下,试绘制系统根轨迹(要求求出起始角)。

2

2)9s 4s (2s K )s (H )s (G +++=*)

解 根轨迹绘制如下:

① 实轴上的根轨迹: []2,-∞-

② 渐近线:

???

???

?ππ±=π+=?-=--+---=σ,33)1k 2(323)2(5j 25j 2a a ③ 分离点:

2

d 1

5

j 2d 25

j 2d 2+=

-++

++ 解之得:29.3d -= 71.0d = (舍去) ④ 与虚轴交点:闭环特征方程为

02s K )9s 4s ()s (D 22=++++=*

)(

把ωj s =代入上方程,

令?????=ω-ω+=ω=++ω-ω=ω**

8)K 72())j (D Im(0K 28134))j (D Re(3

24

解得: ??

?=±=ω*

96

K 21

⑤ 起始角: π+=?-θ-)()(1k 29022901p ο

ο

解出 ο

ο

135,4521p p -=θ=θ 根轨迹如图所示。

4-9 已知系统开环传递函数如下,试分别绘制以a 和T 为变化参数的根轨迹。 (1) )

1s (s )a s (4/1)s (G 2++=

,0

a >;(2) )1Ts )(11s .0(s 6

.2)s (G ++=,0T > 解 (1) 2

)

5.0s (s 4

/a )s (G +=

' ① 实轴上的根轨迹: )0(,

-∞

② 渐近线:o o

a a 180603/1,

,±=?-=σ ③ 分离点:6/1d -= 根轨迹如图所示。

(2) 26

s 10s )

10

s (Ts )s (G 22+++='

① 实轴上的根轨迹: )0(,-∞ ② 起始角终止角:

o o p 11o 180)90(5

1

tg )51tg 180(2=+θ-+---

解得起始角o

p 7.78±=θ o 11

o

z 180)5

1

tg 51tg

(02=+--+θ-- 解得终止角o

z 90±=θ 根轨迹如图所示。

4-10 已知系统的开环传递函数如下,试概略绘出相应的根轨迹, 并求出所有根为负实根时开环增益k 的取值范围及系统稳定时k 的值。

)

18s ()1s ()

1s (k )s (H )s (G 2+-+=

* 解

① 实轴上的根轨迹: ]118

[--, ② 分离点:22.4d 1-=,28.6d 2-=

③ 渐近线:5.7a -=σ,o

a 90±=?

④ 与虚轴交点:j 86.1s 2,1±=,7.37k *

=

根轨迹如图所示。

6.116k d *1=处,6.117k d *2=处,18/k k *=

结论:53.6k 48.6<<时所有根为负实根,095.2k >时系统稳定。

4-11 已知系统结构图如图所示,试绘制时间常数T 变化时系统的根轨迹,并分析参数T 的变化对系统动态性能的影响。

解:s

20s Ts

100

)s (G 2

3++=

作等效开环传递函数3

2*

s

)

100s 20s (T 1)s (G ++= 根轨迹绘制如下: (注意:)T /1k *

= ① 实轴上的根轨迹:]10,(--∞,[]0,10- ② 分离点:

10

d 2

d 3+=

解得30d -=。 根据幅值条件,对应的015.0T =。 ③ 虚轴交点:闭环特征方程为

0100s 20s Ts )s (D 23=+++=

把ω=j s 代入上方程,整理,令实虚部

分别为零

得:

?????=ω-ω=ω=ω-=ω0

T 20))j (D Im(0

100))j (D Re(3

2

解得: ?

??=±=ω2.0T 10

④ 起始角:?=θ601p

参数T 从零到无穷大变化时的根轨迹如图所示。(请注意根轨迹的方向!)

从根轨迹图可以看出,当015.0T 0≤<时,系统阶跃响应为单调收敛过程;2.0T 015.0<<时,阶跃响应为振荡收敛过程;2.0T >时,有两支根轨迹在s 右半平面,此时系统不稳定。

若取另外一种等效开环传递函数则解题步骤如下:

100

s 20s Ts )s (G 23

++='

三条根轨迹中两条起于-10,一条起于∞-,均终止于原点

① 实轴上的根轨迹:]10,(--∞,[]0,10- ② 分离点:

10

d 2

d 3+=

解得30d -=。 其余步骤与上基本相同,根轨迹相同,只是-10处为两个开环极点,原点处为3个开环零点,根轨迹方向与图中一样。

4-12 控制系统的结构如图所示,试概略绘制其根轨迹(0k *

>)。

解 此系统为正反馈系统,应绘零度根轨迹。

① 实轴上的根轨迹:

[]2,-∞-,[]+∞-,1 ② 分离点:

1

d 1

2d 3+=+ 解得 5.0d -= ③ 起始角:根据相角条件,

∑∑==π=θ

-?n

1

j j

m 1

i i k 2

得 ο601p =θ,ο602p -=θ,ο1803p =θ。 根轨迹如图所示。

4-13 设单位反馈系统的开环传递函数为)

2s (s )

s 1(k )s (G +-=*,试绘制其根轨迹,并求出

使系统产生重实根和纯虚根的*

k 值。

解 由开环传递函数的表达式知需绘制ο

0根轨迹。 ① 实轴上的根轨迹: [],0,2- ),1[∞+; ② 分离点:

1

d 1

2d 1d 1-=

++ 解得:732.0d 1-= , 732.2d 2= 将732.0d s 1-==, 732.2d s 2==代入幅值条件得:

54.0K 1d =*, 46.7K

2

d =*

③ 与虚轴交点:闭环特征方程为

0)s 1(K )2s (s )s (D =-++=*

把ωj s =代入上方程,整理,令实虚部分别为零得:

?????=ω-=ω=+ω-=ω*

*

)K 2())j (D Im(0

K ))j (D Re(2 解得: ??

?==ω*

K 0 ??

?=±=ω*

2

K 41.1

根轨迹如图所示,复平面上的根轨迹为以开环零点为圆心,开环零点到分离点的距

离为半径的圆 。系统产生重实根的*K 为0.54,7.46,产生纯虚根的*K 为2。

Ok

控制系统校正的根轨迹方法

控制系统校正的根轨迹方法 用根轨迹法进行校正的基础,是通过在系统开环传递函数中增加零点和极点以改变根轨迹的形状,从而使系统根轨迹在S 平面上通过希望的闭环极点。根轨迹法校正的特征是基于闭环系统具有一对主导闭环极点,当然,零点和附加的极点会影响响应特性。 应用根轨迹进行校正,实质上是通过采用校正装置改变根轨迹的,从而将一对主导闭环极点配置到期望的位置上。 在开环传递函数中增加极点,可以使根轨迹向右方移动,从而降低系统的相对稳定性,增大系统调节时间。等同于积分控制,相当于给系统增加了位于原点的极点,因此降低了系统的稳定性。 在开环传递函数中增加零点,可以使根轨迹向左方移动,从而提高系统的相对稳定性,减小系统调节时间。等同于微分控制,相当于给系统前向通道中增加了零点,因此增加了系统的超调量,并且加快了瞬态响应。 根轨迹超前校正计算步骤如下。 (1)作原系统根轨迹图; (2)根据动态性能指标,确定主导极点i s 在S 平面上的正确位置; 如果主导极点位于原系统根轨迹的左边,可确定采用微分校正,使原系统根轨迹左移,过主导极点。 (3)在新的主导极点上,由幅角条件计算所需补偿的相角差φ; 计算公式为: i s s =?±=(s)][G arg -180o ? (1) 此相角差φ表明原根轨迹不过主导极点。为了使得根轨迹能够通过该点, 必须校正装置,使补偿后的系统满足幅角条件。 (4)根据相角差φ,确定微分校正装置的零极点位置; 微分校正装置的传递函数为: 1 1 ++=sTp sTz Kc Gc (2)

例题:已知系统开环传递函数: 试设计超前校正环节, 使其校正后系统的静态速度误差系数Kv ≤4.6,闭环主导极点满足阻尼比ζ=0.2,自然振荡角频率ωn=12.0rad/s ,并绘制校正前后系统的单位阶跃响应曲线、单位脉冲响应曲线和根轨迹。 解:由6.4)(*)(0*lim 0 ==→s Gc s G s Kv s 得kc=2 计算串联超前校正环节的matlab 程序如下: 主函数: close; num=2.3; den=conv([1,0],conv([0.2,1],[0.15,1])); G=tf(num,den) %校正前系统开环传函 zata=0.2;wn=12.0; %要求参数 [num,den]=ord2(wn,zata); %追加系统动态特性 s=roots(den); s1=s(1); kc=2; %增益kc Gc=cqjz_root(G,s1,kc) GGc=G*Gc*kc %校正后系统开环传函 Gy_close=feedback(G,1) %校正前系统闭环传函 Gx_close=feedback(GGc,1) %校正后系统闭环传函 figure(1); step(Gx_close,'b',3.5); %校正后单位阶跃响应 hold on step(Gy_close,'r',3.5); %校正前单位阶跃响应 grid; gtext('校正前的'); gtext('校正后的'); figure(2); impulse(Gx_close,'b',3.5); %校正后单位冲激响应 hold on impulse(Gy_close,'r',3.5); %校正前单位冲激响应 grid; gtext('校正前的'); gtext('校正后的'); figure(3); 0 2.3 s(1+0.2s)(1+0.15s) G =

(完整word版)自控 根轨迹法习题及答案

1 第四章 根轨迹法习题及答案 1系统的开环传递函数为 ) 4)(2)(1()()(* +++=s s s K s H s G 试证明点311j s +-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 解 若点1s 在根轨迹上,则点1s 应满足相角条件π)12()()(+±=∠k s H s G ,如图解4-1所示。 对于31j s +-=,由相角条件 =∠)()(11s H s G =++-∠-++-∠-++-∠-)431()231()131(0j j j ππ π π -=- - - 6 3 2 满足相角条件,因此311j s +-=在根轨迹上。将1s 代入幅值条件: 14 31231131)(* 11=++-?++-?++-= j j j K s H s G )( 解出 : 12* =K , 2 3 8*==K K 2 已知开环零、极点如图4-22所示,试绘制相应的根轨迹。

2 解根轨如图解4-2所示: 3已知单位反馈系统的开环传递函数,要求: (1)确定 ) 20 )( 10 ( ) ( ) ( 2+ + + = * s s s z s K s G产生纯虚根为1j ±的z值和* K值; (2)概略绘出 )2 3 )( 2 3 )( 5.3 )(1 ( ) ( j s j s s s s K s G - + + + + + = * 的闭环根轨迹图(要求

3 确定根轨迹的渐近线、分离点、与虚轴交点和起始角)。 解(1)闭环特征方程 020030)()20)(10()(2342=++++=++++=***z K s K s s s z s K s s s s D 有 0)30()200()(3 2 4 =-++-=* * ωωωωωK j z K j D 令实虚部分别等于零即: ?????=-=+-**0 300 200324ωωωωK z K 把1=ω代入得: 30=* K , 199=z 。 (2)系统有五个开环极点: 23,23,5.3,1,054321j p j p p p p --=+-=-=-== ① 实轴上的根轨迹:[],5.3,-∞- []0,1- ② 渐近线: 1 3.5(32)(32) 2.15 (21)3,,555a a j j k σπππ?π--+-++--?==-???+?==±±?? ③ 分离点: 02 312315.31111=+++-++++++j d j d d d d 解得: 45.01-=d , 4.22-d (舍去) , 90.125.343j d ±-=、 (舍去) ④ 与虚轴交点:闭环特征方程为 0)23)(23)(5.3)(1()(=+-+++++=*K j s j s s s s s D 把ωj s =代入上方程,整理,令实虚部分别为零得: ?????=+-==-+=*0 5.455.43 )Im(05.795.10)Re(3 52 4ωωωωωωωj K j 解得: ???==*00K ω ,???=±=*90.7102.1K ω,???-=±=*3 .1554652.6K ω(舍去) ⑤ 起始角:根据法则七(相角条件),根轨迹的起始角为 74..923..1461359096..751804=----=p θ 由对称性得,另一起始角为 74.92,根轨迹如图解4-6所示。

根轨迹方法控制系统校正

根轨迹方法控制系统校正 1.根轨迹方法控制系统 调节时间:t s ≤5S (2%) 最大超调量:M p ≤10% 开环比例系数:K 0≥20 2. ζ=0.6 cos β=53°,取β=45° 4.4/ζWn ≤5s , 取ζW n =1 经计算,C (s )=1.079s/s+2 3.流程图

4.程序 clear; K=2; h=0.05; A=0; B=30; f=@(m,y)(K*m-2*y)/1; fc=@(s,m)(1*s-0.002*m)/1; n=floor(B/h); s(1)=0; m(1)=0; d(1)=0; y(1)=0; t=0:h:B; for i=1:n e(i)=1-s(i); k1=f(e(i),y(i)); k2=f(e(i),y(i)+h*k1/2); k3=f(e(i),y(i)+h*k2/2); k4=f(e(i),y(i)+h*k3); y(i+1)=y(i)+h*(k1+2*k2+2*k3+k4)/6; m(i+1)=(y(i+1)-y(i))/h+0.01*y(i+1); k1=fc(m(i),d(i)); k2=fc(m(i),d(i)+h*k1/2); k3=fc(m(i),d(i)+h*k2/2); k4=fc(m(i),d(i)+h*k3); d(i+1)=d(i)+h*(k1+2*k2+2*k3+k4)/6; s(i+1)=s(i)+h*(d(i+1)+d(i))*0.5; end plot(t,s,'-m') title(sprintf('2(s+0.01)/s(s+0.002)(s+2)')) set(legend,'Location','NorthWest') hold on 5.结果 调节时间4.6S 超调量7.6% K0=50

根轨迹法校正设计

1 根轨迹法校正设计 如果设计指标是时域特征量,应采用时域校正方法,即将设计指标转换为对闭环主导极点位置的设计,常称为根轨迹法。设计过程中,不必绘制根轨迹图。根轨迹法同频率分析法一样也可以有串联超前校正、串联滞后校正和串联滞后-超前校正,因“超前”和“滞后”是频域中的概念,在根轨迹法中不使用。 基本概念: ⑴ 动态性能校正 使开环增益满足设计要求。 例:)2)(5()(0++=s s s k s G ;111)(p s z s s G c ++=;222)(p s z s s G c ++=; ⑴ 动态性能校正 配置。配置)(1s G c 的零极点应 使需要的闭环极点在校正后的系统根轨迹上,同时还要满足“闭 环主导极点”条件。 ⑵ 增益校正 配置)(2s G c 零极点,使校正后的开环增益满足要求v c c s K s G s G s sG =→)()()(lim 0120 。 说明:以根轨迹的相角条件,图解1z 和1p 的选取;图解2z 和2p 选取原系统的闭环极点位置基本不 变,并使开环可以取较大的数值。 典型设计指标:开环增益K ,超调量σ,和调节时间s t 。无论是典型设计指标还是其它形式的设计指标,都需要转换成满足指标要求的闭环主导极点位置。 设计步骤: 1.1 根据动态性能指标,计算闭环主导极点1s 和2s ; 1.2 按闭环主导极点条件,选取动态特性校正环节结构)(1s G c ;依据校正后系统特征多项式与期 望特征多项式相等,计算出校正环节的参数; 1.3 根据开环增益K ,计算增益校正环节)(2s G c 参数; 为使根轨迹(起始段除外)形状基本不变,即闭环主导极点基本不变,又要有较高的开环增益,校正环节的零点和极点必须相互接近,且接近原点。 p s z s s G c --=)(2,需满足0)()()(2≈-∠--∠=∠p s z s s G i i i c 和α==∞→p z s G c s )(lim 2; 零点和极点选取方法,1.0)Re(/1=ζ;1)/(4==n s t ζω(留余地),33.13=n ω; 闭环主导极点72.1242,1j s ±-=,相应的多项式为 17882++s s ; (2) 为使校正后系统的阶次不升高,选取a s s s G c ++=)3333.8()(1,闭环特征多项式满足: ))(1788()50)((2b s s s K s a s s +++=+++;解得238.12=a ,238.54=b ,381.9654=K ; (3) 7777.15=v K ,必须进行开环增益校正。 437.4/==v v K K α。222.0-=z ,05.0-=p ;05 .0222.0)(2++=s s s G c (4) 检验:校正后开环和闭环传递函数为 )50)(238.12)(05.0()222.0(381.9654)(++++=s s s s s s G ,) 102.0)(10817.0)(120()1505.4(05.70)(++++=s s s s s s G ; )176837.7)(227.54)(244.0()222.0(381.9654)(2+++++=Φs s s s s s ;244 .0227.546791.129185.3432,1-=-=±-=s s j s ;141222.0z s z ≈-=;

根轨迹法习题和答案

第四章 根轨迹法习题及答案 4-1 系统的开环传递函数为 ) 4s )(2s )(1s (K )s (H )s (G * +++= 试证明3j 1s 1+-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 解 若点1s 在根轨迹上,则点1s 应满足相角条件 π)12()()(+±=∠k s H s G ,如图所示。 对于31j s +-=,由相角条件 =∠)s (H )s (G 11-++-∠-)13j 1(0 =++-∠-++-∠)43j 1()23j 1( ππ π π -=- - - 6 3 2 满足相角条件,因此311j s +-=在根轨迹上。 将1s 代入幅值条件: 14 3j 123j 113j 1K s H )s (G * 11=++-?++-?++-= )( 解出 : 12K * = , 2 3 8K K *== 4-2 已知单位反馈系统的开环传递函数如下,试求参数b 从零变化到无穷大时的根轨迹方程,并写出2b =时系统的闭环传递函数。 (1))b s )(4s (02)s (G ++= (2)) b s )(2s (s )b 2s (01)s (G +++= 解 (1) ) 4j 2s )(4j 2s () 4s (b 20s 4s )4s (b )s (G 2-++++=+++= '

28 s 6s 20 )s (G 1)s (G )s (2++=+=Φ (2) ) 10s 2s (s )20s 2s (b )s (G 2 2++++='=)3j 1s )(3j 1s (s ) 19j 1s )(19j 1s (b -+++-+++ 40 s 14s 4s ) 4s (10)s (G 1)s (G )s (23++++=+= Φ 4-3 已知单位反馈系统的开环传递函数) b s )(4s (s 2)s (G ++= ,试绘制参数b 从零变 化到无穷大时的根轨迹,并写出s=-2这一点对应的闭环传递函数。 解 ) 6s (s ) 4s (b )s (G ++= ' 根轨迹如图。 2s -=时4b =, ) 8s )(2s (s 216s 10s s 2)s (2 ++=++=Φ 4-4 已知单位反馈系统的开环传递函数,试概略绘出系统根轨迹。 ⑴ ) 1s 5.0)(1s 2.0(s k )s (G ++= (2) )1s 2(s )1s (k )s (G ++= (3) )3s )(2s (s ) 5s (k )s (G *+++= (4) ) 1s (s )2s )(1s (*k )s (G -++= 解 ⑴ ) 2s )(5s (s K 10)1s 5.0)(1s 2.0(s K )s (G ++=++= 三个开环极点:0p 1=,2p 2-=,5p 3-= ① 实轴上的根轨迹:(] 5,-∞-, []0,2-

系统根轨迹校正

自动控制系统的设计--基于根轨迹的串联校正设计 与频域法相似,利用根轨迹法进行系统的设计也有两种方法:1)常规方法;2)Matlab方法。Matlab的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。目前常用的Matlab设计方法有:1)直接编程法;2)Matlab 控制工具箱提供的强大的Rltool工具;3)第三方提供的应用程序,如CTRLLAB等。本节在给出根轨迹的设计思路的基础上,将重点介绍第一、二种方法。 6.4.1 超前校正 关于超前校正装置的用途,在频率校正法中已进行了较详细的叙述,在此不再重复。 利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。

是否采用超前校正可以按如下方法进行简单判断:若希望的闭环主导极点位于校正前系统根轨迹的左方时,宜用超前校正,即利用超前校正网络产生的相位超前角,使校正前系统的根轨迹向左倾斜,并通过希望的闭环主导极点。(一)根轨迹超前校正原理设一个单位反馈系统,G0(s)为系统的不变部分,Gc(s)为待设计的超前校正装置, Kc为附加放大器的增益。绘制G0(s)的根轨迹于图6—19上,设点Sd 为系统希望的闭环极点,则若为校正后系统根轨迹上的一点,必须满足根轨迹的相角条件,即 ∠Gc(Sd)G0(Sd)=∠Gc(Sd)+G0(Sd)=-π 图6-18 于是得超前校正装置提供的超前角为: (6-21) 显然在Sd已知的情况下,这样的Gc(s)是存在的,但它的零点和极点的组合并不唯一,这相当于张开一定角度的剪刀,以Sd为中心在摆动。若确定了Zc和Pc的位置,即确定了校正装置的参数。下面介绍三种用于确定超前校正网络零点和极点的方法。 (二)三种确定超前校正装置参数的方法

自动控制原理课程设计题目(1)

自动控制原理课程设计题目及要求 一、单位负反馈随动系统的开环传递函数为 ) 101.0)(11.0()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标 (1)静态速度误差系数K v ≥100s -1 ; (2)相位裕量γ≥30° (3)幅频特性曲线中穿越频率ωc ≥45rad/s 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设单位负反馈随动系统固有部分的传递函数为 ) 2)(1()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定。 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标: (1)静态速度误差系数K v ≥5s -1 ; (2)相位裕量γ≥40° (3)幅值裕量K g ≥10dB 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 三、设单位负反馈系统的开环传递函数为 ) 2(4 )(+= s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: 闭环系统主导极点满足ωn =4rad/s 和ξ=。 3、给出校正装置的传递函数。 4、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量Kg 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

自动课程设计

课程设计任务书 院部名称机电工程学院 专业自动化 班级 M11自动化 指导教师陈丽换 金陵科技学院教务处制

摘要 MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。 此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。通过运用MATLAB的相关功能,绘制系统校正前后的伯德图、根轨迹和阶跃响应曲线,,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试。 关键字:超前-滞后校正 MATLAB 仿真

1.课程设计应达到的目的 1. 掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。 2. 学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。 2.课程设计题目及要求 题目: 已知单位负反馈系统的开环传递函数, 试用频率法设计串 联滞后——超前校正装置,使之满足在单位斜坡作用下,系统的速度误差系数1v K 10s -=,系统的相角裕量045γ≥,校正后的剪切频率 1.5C rad s ω≥。 设计要求: 1. 首先, 根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 2.. 利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否 稳 定 , 为 什 么 ? 3. 利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系。求出系统校正前与校正后的动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化。 4. 绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴 交点的坐标和相应点的增益K *值,得出系统稳定时增益K * 的变化范围。绘制系 统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由。 5. 绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由。 ()(1)(2) K G S S S S = ++

自动控制原理课程设计

课程设计报告 (2014--2015年度第一学期) 名称:《自动控制理论》课程设计 题目:基于自动控制理论的性能分析与校正院系:自动化 班级:自动化 学号: 学生姓名: 指导教师: 设计周数:1周 成绩: 日期:2015年1月9日

目录 第一部分、总体步骤 (3) 一、课程设计的目的与要求 (3) 二、主要内容 (3) 三、进度计划 (4) 四、设计成果要求 (4) 五、考核方式 (4) 第二部分、设计正文 (5) 一控制系统的数学模型 (5) 二控制系统的时域分析 (9) 三控制系统的根轨迹分析 (15) 四控制系统的频域分析 (19) 五控制系统的校正 (22) 六非线性系统分析 (38) 第三部分、课程设计总结 (40)

第一部分、总体步骤 一、课程设计的目的与要求 本课程为《自动控制理论A》的课程设计,是课堂的深化。设置《自动控制理论A》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。作为自动化专业的学生很有必要学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 通过此次计算机辅助设计,学生应达到以下的基本要求: 1.能用MATLAB软件分析复杂和实际的控制系统。 2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。 3.能灵活应用MATLAB的CONTROL SYSTEM工具箱和SIMULINK仿真软件,分析系统的性能。 二、主要内容 1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。 2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。 3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。 4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。 5.控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。 6.控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。 三、进度计划

(整理)MATLAB的根轨迹分析法及重点习题.

4.1某系统的结构如题4-1图所示,试求单位阶跃响应的调节时间t s ,若要求t s =0.1秒,系统的反馈系数应调整为多少? 解:(1)由系统结构图可知系统闭环传递函数为: 100 ()100()1001()()1001*G s s s G s H s s a a s Φ=== +++ 在单位阶跃函数作用下系统输出为: 12100 ()()()(100)100k k C s R s s s s a s s a =Φ= =+++ 为求系统单位阶跃响应,对C(s)进行拉斯反变换: 10 21001001001001 lim ()lim 1001001 lim (100)()lim 11 ()(100)1 ()(1) s s s a s a at k sC s s a a k s a C s s a C s as a s a c t e a →→→-→--=== +=+==- =- +=- 根据定义调节时间等于响应曲线进入5%误差带,并保持在此误差带内所需要的最短时间,且根据响应系统单位阶跃响应的函数表达式可以看出系统单位阶跃响应的稳态值为 1 a ,因此: 10010011()(1)0.950.051 ln 20 1001 =0.1ln 20=0.3s 10 s s at s at s s c t e a a e t a a t --= -=?=?== 因为题中,所以 (2)若要求t s =0.1秒,则有: 1 ln 20=0.1 100=0.3s t a a = ? 即:若要求调节时间缩小为0.1秒,则需将反馈环节的反馈系数调整为0.3。

4.2已知二阶系统的阶跃响应曲线如题4.2图所示,该系统为单位负反馈系统,试确定其开环传递函数。 解:根据系统阶跃响应曲线可以看出: 峰值时间=0.1s p t ,超调量 1.3-1 %= 100%30%1 σ?=; 根据课本中对典型二阶系统222 ()2n n n s s s ωζωωΦ=++暂态性能指标的推导计算可知: %p t e σ-= =结合本题已知阶跃响应曲线可知: 0.1(1)%30% (2) p t e σ-= === 由式(2)可知: 0.3ln 0.30.3832 cot =0.3832 =arccot 0.3832=69.0332=cos =0.3578 e ζ?ζ?ζ?-=?-=?= =即: 将ζ带入式(1)中可得: 0.1 p n t ω= = 回顾题意对于典型二阶系统其闭环传递函数为222 ()2n n n s s s ωζωωΦ=++,且系统为单位负反馈系统,所以系统开环传递函数和闭环传递函数之间满足如下关系: 2222 2 22 2 2211 ()()121211211131.8851 ===224.0753n n n n n n n n n G s s s s G s s G s s G G s s s s ωζωζωωωζωωωζωΦ==Φ==+++++++++,因为:所以:,

系统校正设计:根轨迹法超前校正

系统校正设计:根轨迹法超前校正 一.校正原理 如果原系统的动态性能不好,可以采用微分校正,来改善系统的超调量p M 和调节时间s t ,满足系统动态响应的快速性与平稳性的定量值。 微分校正的计算步骤如下。 (1)作原系统根轨迹图; (2)根据动态性能指标,确定主导极点i s 在S 平面上的正确位置; 如果主导极点位于原系统根轨迹的左边,可确定采用微分校正,使原系统根轨迹左移,过主导极点。 (3)在新的主导极点上,由幅角条件计算所需补偿的相角差φ; 计算公式为: i s s =?±=(s)][G arg -180o ? (1-1) 此相角差φ表明原根轨迹不过主导极点。为了使得根轨迹能够通过该点,必须校正装置,使补偿后的系统满足幅角条件 (4)根据相角差φ,确定微分校正装置的零极点位置; 注意满足相角差φ的零极点位置的解有许多组,可任意选定。在这里给出一种用几何作图法来确定零极点位置的方法如下 ○1过主导极点i s 与原点作直线OA , ○2过主导极点i s 作水平线, ○3平分两线夹角作直线AB 交负实轴于B 点, ○4由直线AB 两边各分 ?2 1 识作射线交负实轴,左边交点为D P -,右边交点为 为D Z -,如图1-1所示。微分校正装置的传递函数为 D D c P s Z s (s)++= G (1-2)

图1-1 零极点位置的确定 (5)由幅值条件计算根轨迹过主导极点时相应的根轨迹增益gc K 的值,计算公式为 1(s)(s)G G o c ==i s s (1-3) (6)确定网络参数。(有源网络或者无源网络); (7)校核幅值条件(s)(s)o c G G 、幅角条件(s)](s)G [G arg o c 、动态性能指标 p M 和s t 等。 二.校正实例 已知系统的开环传递函数为)2s(s 4 (s)o += G ,要求s t s 2%,20M p <<,试用 根轨迹法作微分校正。 解:(1)作原系统的根轨迹图如图1-3所示 ○1 原系统的结构图如图1-2所示

自动控制根轨迹课程设计(精髓版)

西安石油大学 课程设计 电子工程学院自动化专业 1203班题目根轨迹法校正的设计 学生郭新兴 指导老师陈延军 二○一四年十二月

目录 1. 任务书.........................................1 2.设计思想及内容.................................2 3.编制的程序.....................................2 3.1运用MATLAB编程............................ 2 3.2由期望极点位置确定校正器传递函数...........4 3.3 校正后的系统传递函数.......................5 4.结论...........................................7 5.设计总结.......................................8 6.参考文献.......................................8

《自动控制理论》课程设计任务书

2.设计内容及思想 : 1) 内容:已知单位负反馈系统被控对象传递函数为: ) 25(2500 )(0 0+=s s K s G ,试用根轨迹几何设计法对系统进行滞后串联校正 设计,使之满足: (1)阶跃响应的超调量:σ%≤15%; (2)阶跃响应的调节时间:t s ≤0.3s ; (3)单位斜坡响应稳态误差:e ss ≤0.01。 2)思想: 首先绘出未校正系统得bode 图与频域性能,然后利用MATLAB 的SISOTOOL 软件包得到系统的根轨迹图,对系统进行校正,分析系统未校正前的参数,再按题目要求对系统进行校正,计算出相关参数。最后观察曲线跟题目相关要求对比看是否满足要求,并判断系统校正前后的差异。 3 编制的程序: 3.1运用MATLAB 编程: 根据自动控制理论,对 I 型系统的公式可以求出静态误差系数 K 0=1。再根据要求编写未校正以前的程序 %MATLAB PROGRAM L1.m K=1; %由稳态误差求得; n1=2500;d1=conv([1 0],[1 25]); %分母用conv 表示卷积;

时域分析法与根轨迹练习题

1. 自动控制系统对输入信号的响应,一般都包含两个分量,即一个是____________,另一个是__________分量。 2. 函数f(t)=t e 63-的拉氏变换式是________________________________。 3. 积分环节的传递函数表达式为G (s )=_________________________。 4. 在斜坡函数的输入作用下,___________型系统的稳态误差为零。 四、控制系统结构图如图2所示。 (1)希望系统所有特征根位于s 平面上s =-2的左侧区域,且ξ不小于0.5。试画出特征根在s 平面上的分布范围(用阴影线表示)。 (2)当特征根处在阴影线范围内时,试求,K T 的取值范围。 (20分) 五、已知系统的结构图如图3所示。若()21()r t t =?时,试求 (1)当0f K =时,求系统的响应()c t ,超调量%σ及调节时间s t 。 (2)当0f K ≠时,若要使超调量%σ=20%,试求f K 应为多大?并求出此时的调节时间s t 的值。 (3)比较上述两种情况,说明内反馈f K s 的作用是什么? (20分) 图3 六、系统结构图如图4所示。当输入信号()1()r t t =,干扰信号()1()n t t =时,求系统总 的稳态误差e ss 。 (15分) 图4 1、 根轨迹是指_____________系统特征方程式的根在s 平面上变化的轨迹。 2、 线性系统稳定的充分必要条件是闭环传递函数的极点均严格位于s______________半平面

3、在二阶系统中引入比例-微分控制会使系统的阻尼系数________________。 9、已知单位反馈系统的开环传递函数 50 ( ) (0.11)(5) G s s s s = ++ ,则在斜坡信号作用下的稳态误差为_________。 3、某控制系统的方框图如图所示,试求(16分) (1)该系统的开环传递函数) (s G k 、闭环传递函数 ) ( ) ( s R s C 和误差传递函数 ) ( ) ( s R s E 。 (2)若保证阻尼比0.7 ξ=和单位斜坡函数的稳态误差为0.25 ss e=,求系统参数K和τ。(3) 计算超调量和调节时间。 1、已知单位反馈系统的开环传递函数为 * ()() (2)(3) K G s H s s s s ,试绘制闭环系统的根轨迹,并判断使系统稳定的* K范围。 R(s)C(s) - 2 K s N(s) 1 K 5.图4 6.在二阶系统中引入测速反馈控制会使系统的开环增益________________。 7.已知单位反馈系统的开环传递函数 100 () (0.11)(5) G s s s = ++ ,则在斜坡信号作用下的稳态误差为________________。 8.闭环系统的稳定性只决定于闭环系统的________________。

自动控制原理课程设计--根轨迹法

自动控制原理综合实验 一.实验目的 1.掌握连续系统的根轨迹法校正设计过程 2.掌握用根轨迹法设计校正装置的方法,并用实验验证校正装置的正确性 3.了解MATLAB 中根轨迹设计器的应用 4.了解零点和极点对一个系统的影响 二.实验内容 设控制系统为单位负反馈系统,开环传递函数为: ()(20)(5) K G s s s s =++ 试用根轨迹法设计串联超前校正装置,使校正后系统满足:期望开环放大系数K ≥18,0.4s t s ≤ ,%25%σ≤。 三.实验步骤 (1)用鼠标双击MATLAB 图标,进入MATLAB 命令窗口:“Command Window ”. (2)在“Command Window ”中键入以下程序: clear; num1=[1 ]; den1=conv([1 0],conv([1 20],[1 5])); Gk=tf(num1,den1); rltool(Gk) 得到如图1所示的开环的根轨迹图形,图1中红色正方形是k =1时闭环系统的极点。

图1 (3)选择Analysis—other loop repsonses点击后如图2所示 图2 图2的设置,表示要观察闭环系统的单位阶跃输入的时域响应曲线。 选择STEP后在右边的Closed-loop下面的r to y打钩,按OK.观察系统的阶跃响应,如图3所示

图3 (4)引入设计规则:添加设计条件,在根轨迹上建立期望极点区域。在图4的菜单项中,点击Edit>>Root Locus>>Design Constrains>>New,得图5。 图4 在图4所示的界面上设置调节时间。设置完毕,点击OK,得图5。

第四章 根轨迹法 习题

第四章 根轨迹法 4-1试粗略画出对应反馈控制系统具有以下前向和反馈传递函数的根轨迹图: ()()() ()s s H s s s K s G 6.01,01.01.02 +=++= 4-2 试粗略地画出反馈系统函数 ()()()() 2 411+-+= s s s K s G 的根轨迹。 4-3 对应负反馈控制系统,其前向和反馈传递函数为 ()()() ()1,42) 1(2 =+++= s H s s s s K s G 试粗略地画出系统的根轨迹。 4-4 对应正反馈重做习题4-3,试问从你的结果中得出什么结论? 4-5 试画出具有以下前向和反馈传递函数的,正反馈系统根轨迹的粗略图。 ()()()()1,412 2=++= s H s s K s G 4-6 试确定反馈系统开环传递函数为 ()()()()() 5 284) 2(2 +++++= s s s s s s K s H s G 对应-∞

1 根轨迹法超前校正

实验8 系统校正设计:根轨迹法超前校正 一.实验目的 对于给定的控制系统,采用根轨迹法设计满足时域性能指标的超前校正装置,并通过仿真结果验证设计的正确性。 二.实验步骤 1. 在Windows界面上用鼠标双击matlab图标,即可打开MATLAB命令平台。 2. 键入命令simulink,打开结构图设计界面。 3. 建立时域仿真的结构图文件“mysimu.m”。 给定结构图如图20所示 图20 SIMULINK仿真结构图 4.结构图单元参数设置。 用鼠标器双击任何一个结构图单元即激活结构图单元的参数设置窗口,完成结构图单元的参数设置。 5.仿真参数设置。 用鼠标选择主菜单的“Simulation”选项,选择“Simulation Parameter”选项,打开仿真参数设置窗口,完成仿真参数设置。 6.仿真操作。 选中“simulation”菜单项中的选项“start”即启动系统的仿真。

(或者使用工具栏上的启动按钮。) 三.实验要求 1. 作原系统的根轨迹图。 numo=[10];deno=[0.5 1 0]; rlocus(numo,deno); 2. 求出闭环极点的位置,计算时域性能M p0和t s0。 numo=[10];deno=[0.5 1 0]; [numc,denc]=cloop(numo,deno,-1); printsys(numc,denc); pzmap(numc,denc); 用于在s 平面上作图,作出零点.极点的位置如图21所示。 [p,z]=pzmap(numc,denc); 图21开环极点用于求得零点.极点的值。 p p = -1.0000 + 4.3589i -1.0000 - 4.3589i z z = [] 3. 作时域仿真。 sysc=tf(numc,denc);step(sysc)

相关文档
相关文档 最新文档