文档视界 最新最全的文档下载
当前位置:文档视界 › 调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复

调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复

调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复
调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复

调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复为基带信号的反过程。

调制的目的是把要传输的模拟信号或数字信号变换成适合信道传输的信号,这就意味着把基带信号(信源)转变为一个相对基带频率而言频率非常高的带通信号。该信号称为已调信号,而基带信号称为调制信号。调制可以通过使高频载波随信号幅度的变化而改变载波的幅度、相位或者频率来实现。调制过程用于通信系统的发端。在接收端需将已调信号还原成要传输的原始信号,也就是将基带信号从载波中提取出来以便预定的接受者(信宿)处理和理解的过程。该过程称为解调。

根据所控制的信号参量的不同,调制可分为:

调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。

调频,使载波的频率随调制信号的大小变化而变化,而幅度保持不变的调制方式。

调相,利用原始信号控制载波信号的相位。

一、FM信号的频谱

1、消息信号是[-5,5]之间均匀分布的随机整数,产生的的时间间隔为1/10s,消息信号采用FM调制载波cos2*pi*fc*t。假设fc=250,t=[0,10],kf=50。画出消息信号和已调信号的频谱。

clear all

ts=0.001; %信号抽样时间间隔

t=0:ts:10-ts; %时间向量

fs=1/ts; %抽样频率

df=fs/length(t); %fft的频率分辨率

msg=randint(100,1,[-3,3],123); %生成消息序列,随机数种子为123

msg1=msg*ones(1,fs/10); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t));

Pm=fft(msg2)/fs; %求消息信号的频谱

f=-fs/2:df:fs/2-df;

subplot(2,1,1)

plot(t,fftshift(abs(Pm)))

title('消息信号频谱')

int_msg(1)=0; %消息信号积分

for ii=1:length(t)-1

int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;

end

kf=50;

fc=250; %载波频率

Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号

Pfm=fft(Sfm)/fs; % FM信号频谱subplot(2,1,2)

plot(f,fftshift(abs(Pfm))) % 画出已调信号频谱title('FM信号频谱')

Pc=sum(abs(Sfm).^2)/length(Sfm) %已调信号功率

Ps=sum(abs(msg2).^2)/length(msg2) %消息信号功率

fm=50;

betaf=kf*max(msg)/fm % 调制指数

W=2*(betaf+1)*fm % 调制信号带宽

2、正弦波信号的频谱

clear all

ts=0.001; %信号抽样时间间隔

t=0:ts:10-ts; %时间向量

fs=1/ts; %抽样频率

df=fs/length(t); %fft的频率分辨率

msg=sawtooth([0:1:99]*pi/8,0.5);

msg1=msg.'*ones(1,fs/10); %扩展成取样信号形式

msg2=reshape(msg1.',1,length(t));

Pm=fft(msg2)/fs; %求消息信号的频谱

f=-fs/2:df:fs/2-df;

subplot(2,1,1)

plot(f,fftshift(abs(Pm)))

title('消息信号频谱')

int_msg(1)=0; %消息信号积分

for ii=1:length(t)-1

int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;

end

kf=50;

fc=300; %载波频率

Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号

Pfm=fft(Sfm)/fs; % FM信号频谱

subplot(2,1,2)

plot(f,fftshift(abs(Pfm))) % 画出已调信号频谱

title('FM信号频谱')

Pc=sum(abs(Sfm).^2)/length(Sfm) %已调信号功率

Ps=sum(abs(msg2).^2)/length(msg2) %消息信号功率

fm=50;

betaf=kf*max(msg)/fm % 调制指数

W=2*(betaf+1)*fm % 调制信号带宽

由上可见,调频波的频谱包含无穷多个分量。由于调频波的频谱包含分量有无穷多个,因此,理论上调频波的频带宽度为无限宽。然而实际上边频幅度随着n的增大

而逐渐减小,因此,只要取适合的n值,使边频分量小到可以忽略,调频信号可近似认为具有有限频谱。所以,根据这个原则,调频波的带宽为B=2(β+1)W

二、FM信号的调制与解调

1、正弦信号的调制与解调

clear all

ts=0.001; %信号抽样时间间隔

t=0:ts:10-ts; %时间向量

fs=1/ts; %抽样频率

df=fs/length(t); %fft的频率分辨率

msg=sin(2*pi*[0.00:0.01:0.99]);

msg1=msg.'*ones(1,fs/10); %扩展成取样信号形式

msg2=reshape(msg1.',1,length(t));

Pm=fft(msg2)/fs; %求消息信号的频谱

f=-fs/2:df:fs/2-df; %求消息信号的频谱

subplot(3,1,1)

plot(t,msg2) %画出消息信号

title('消息信号')

int_msg(1)=0; %消息信号积分

for ii=1:length(t)-1

int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;

end

kf=50;

fc=300; %载波频率

Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号

phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位

phi=unwrap(phase);

dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号

dem(length(t))=0;

subplot(3,1,2)

plot(t,dem);

title('无噪声的解调信号')

y1=awgn(Sfm,20,'measured'); %调制信号通过AWGN信道

y1(find(y1>1))=1; %调制信号限幅

y1(find(y1<-1))=-1;

phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调

phi1=unwrap(phase1);

dem1=(1/(2*pi*kf)*diff(phi1)/ts);

dem1(length(t))=0;

subplot(3,1,3)

plot(t,dem1);

title('信噪比为20dB时的解调信号')

2、方波信号的调制与解调

clear all

ts=0.0025; %信号抽样时间间隔

t=0:ts:10-ts; %时间向量

fs=1/ts; %抽样频率

df=fs/length(t); %fft的频率分辨率

msg=square(15*pi*[0:0.01:0.99]);

msg1=msg.'*ones(1,fs/10); %扩展成取样信号形式

msg2=reshape(msg1.',1,length(t));

Pm=fft(msg2)/fs; %求消息信号的频谱

f=-fs/2:df:fs/2-df;

subplot(3,1,1)

plot(t,msg2) %画出消息信号

title('消息信号')

int_msg(1)=0; %消息信号积分

for ii=1:length(t)-1

int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;

end

kf=50;

fc=300; %载波频率

Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号

phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位

phi=unwrap(phase);

dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号

dem(length(t))=0;

subplot(3,1,2)

plot(t,dem);

title('无噪声的解调信号')

y1=awgn(Sfm,20,'measured'); %调制信号通过AWGN信道

y1(find(y1>1))=1; %调制信号限幅

y1(find(y1<-1))=-1;

phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调

phi1=unwrap(phase1);

dem1=(1/(2*pi*kf)*diff(phi1)/ts);

dem1(length(t))=0;

subplot(3,1,3)

plot(t,dem1);

title('信噪比为20dB时的解调信号')

三、不同信噪比下,同一信号解调输出的对比

消息信号是[-5,5]之间均匀分布的随机整数,产生的的时间间隔为1/2s,消息信号采用FM调制载波cos2*pi*fc*t。假设fc=300,t=[0,5],kf=50

(1)画出原始信号和解调信号。

(2)假设通过AWGN信道,信噪比为3,画出原始信号和解调信号。

clear all

ts=0.001; %信号抽样时间间隔

t=0:ts:5-ts; %时间向量

fs=1/ts; %抽样频率

df=fs/length(t); %fft的频率分辨率

msg=randint(10,1,[-5,5],456); %生成消息序列,随机数种子为123

msg1=msg*ones(1,fs/2); %扩展成取样信号形式

msg2=reshape(msg1.',1,length(t));

Pm=fft(msg2)/fs; %求消息信号的频谱

f=-fs/2:df:fs/2-df;

subplot(3,1,1)

plot(t,msg2) %画出消息信号

title('消息信号')

int_msg(1)=0; %消息信号积分

for ii=1:length(t)-1

int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;

end

kf=50;

fc=300; %载波频率

Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号

phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位

phi=unwrap(phase);

dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号

dem(length(t))=0;

subplot(3,1,2)

plot(t,dem);

title('无噪声的解调信号')

y1=awgn(Sfm,3,'measured'); %调制信号通过AWGN信道

y1(find(y1>1))=1; %调制信号限幅

y1(find(y1<-1))=-1;

phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调

phi1=unwrap(phase1);

dem1=(1/(2*pi*kf)*diff(phi1)/ts);

dem1(length(t))=0;

subplot(3,1,3)

plot(t,dem1);

title('信噪比为3dB时的解调信号')

消息信号是[-5,5]之间均匀分布的随机整数,产生的的时间间隔为1/2s,消息信号采用FM调制载波cos2*pi*fc*t。假设fc=300,t=[0,5],kf=50

(3)画出原始信号和解调信号。

(4)假设通过AWGN信道,信噪比为10,画出原始信号和解调信号。

clear all

ts=0.001; %信号抽样时间间隔

t=0:ts:5-ts; %时间向量

fs=1/ts; %抽样频率

df=fs/length(t); %fft的频率分辨率

msg=randint(10,1,[-5,5],456); %生成消息序列,随机数种子为123

msg1=msg*ones(1,fs/2); %扩展成取样信号形式

msg2=reshape(msg1.',1,length(t));

Pm=fft(msg2)/fs; %求消息信号的频谱

f=-fs/2:df:fs/2-df;

subplot(3,1,1)

plot(t,msg2) %画出消息信号

title('消息信号')

int_msg(1)=0; %消息信号积分

for ii=1:length(t)-1

int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;

end

kf=50;

fc=300; %载波频率

Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号

phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位

phi=unwrap(phase);

dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号

dem(length(t))=0;

subplot(3,1,2)

plot(t,dem);

title('无噪声的解调信号')

y1=awgn(Sfm,10,'measured'); %调制信号通过AWGN信道

y1(find(y1>1))=1; %调制信号限幅

y1(find(y1<-1))=-1;

phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调

phi1=unwrap(phase1);

dem1=(1/(2*pi*kf)*diff(phi1)/ts);

dem1(length(t))=0;

subplot(3,1,3)

plot(t,dem1);

title('信噪比为10dB时的解调信号')

消息信号是[-5,5]之间均匀分布的随机整数,产生的的时间间隔为1/2s,消息信号采用FM调制载波cos2*pi*fc*t。假设fc=300,t=[0,5],kf=50

(5)画出原始信号和解调信号。

(6)假设通过AWGN信道,信噪比为40,画出原始信号和解调信号。

clear all

ts=0.001; %信号抽样时间间隔

t=0:ts:5-ts; %时间向量

fs=1/ts; %抽样频率

df=fs/length(t); %fft的频率分辨率

msg=randint(10,1,[-5,5],456); %生成消息序列,随机数种子为123

msg1=msg*ones(1,fs/2); %扩展成取样信号形式

msg2=reshape(msg1.',1,length(t));

Pm=fft(msg2)/fs; %求消息信号的频谱

f=-fs/2:df:fs/2-df;

subplot(3,1,1)

plot(t,msg2) %画出消息信号

title('消息信号')

int_msg(1)=0; %消息信号积分

for ii=1:length(t)-1

int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts;

end

kf=50;

fc=300; %载波频率

Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号

phase=angle(hilbert(Sfm).*exp(-j*2*pi*fc*t)); %FM调制信号相位

phi=unwrap(phase);

dem=(1/(2*pi*kf)*diff(phi)/ts); %求相位微分,得到消息信号

dem(length(t))=0;

subplot(3,1,2)

plot(t,dem);

title('无噪声的解调信号')

y1=awgn(Sfm,40,'measured'); %调制信号通过AWGN信道

y1(find(y1>1))=1; %调制信号限幅

y1(find(y1<-1))=-1;

phase1=angle(hilbert(y1).*exp(-j*2*pi*fc*t)); %信号解调

phi1=unwrap(phase1);

dem1=(1/(2*pi*kf)*diff(phi1)/ts);

dem1(length(t))=0;

subplot(3,1,3)

plot(t,dem1);

title('信噪比为40dB时的解调信号')

由上可见,当信噪比为3时,消息信号的解调输出模糊不清,几乎不能分辨出原消息的内容,无法达到信息传递的目的。当信噪比为10时,解调输出仍然模糊,但可以看出与原信号幅度变化基本一致。当信噪比为40时,解调输出基本清晰可见,与无噪声输出基本一致。不难看出,调制信号在经过AWGN信道时,随着信噪比的不断增加,解调输出就会越接近原始信号,并准确还原出原始信号所包含的各种信息。

因此,在通信系统传输过程中,信噪比也是保证传输质量的重要因素,提高传输信噪比,能有效的提高通信传输的准确性。

实验总结

通过本次试验,我们掌握了使用MATLAB工具对FM信号进行调制与解调,通过软件的仿真,我们更直观的了解了FM信号在通信传输中的特性,以及传输信噪比对信号传输的影响,对理论知识形成更深刻的认识。

基带信号处理芯片

基带信号处理芯片 一种基带信号处理芯片,其包括多个信号输入输出端、模拟信号理模块、基带信号产生模块、基带信号处理模块、控制模块、及钟模块,其中,模拟信号处理模块主要用于对待发射的信号或待理的基带信号进行包括模数转换的预处理,然后待发射的信号由带信号产生模块进行处理以产生相应的基带信号,而待处理的基信号由基带信号处理模块进行处理后以推动后续的部件,所述控模块通过对基带信号产生模块和基带信号处理模块的控制以实现两者处理的信号的加解密及静音等的控制,同时由时钟模块向所控制模块提供其工作所需的时钟,如此可在单一芯片上集成模拟数字基带信号处理和控制功能。

基带信号处理芯片 一种基带信号处理芯片,包括多个信号输输出端,其特征在于包括:模拟号处理模块,其具有在信号输入端输入的发射的信号和待处理的基带信号之间进选择的选择器、用于对所述选择器所选择信号进行滤波的抗混叠滤波器、及用于将述抗混叠滤波器输出的信号进行模数转的模数转换器;基带信号产生块,具有用于将所述模数转换器输出的待射信号进行低通滤波的第一低通滤波器、所述第一低通滤波器输出的信号能量进检测的能量检测器、用于对所述第一低通波器输出的信号进行压缩的压缩器、用于除所述压缩器输出的信号中的噪声的第高通滤波器、对所述高通滤波器输出的信进行加密的加密单元、对所述加密单元输的信号进行预加重的预加重滤波器、用于所述预加重滤波器输出的信号进行增益调的发射增益粗调单元、用于限制所述发增益控制单元输出的信号的幅度的限幅器

用于滤除所述限幅器产生的高频信号的二低通滤波器、用于对所述第二低通滤波输出的信号进行增益细调的发射增益细单元、用于将所述发射增益细调单元输出信号及静音控制信号相叠加的叠加器、用将所述叠加器输出的信号进行数模转换供信号输出端输出的第一数模转换器、及别用于在所述压缩器之前和预加重滤波之后插入信号的两信号插入单元基带信号处理模块,具有用于将所述模数换器输出的待处理的基带信号进行低通波的第三低通滤波器、用于将所述第三低滤波器输出的信号进行高通滤波的第二通滤波器、用于将所述高通滤波器输出的号进行去加重的去加重滤波器、用于将所去加重滤波器输出的信号进行解密的解单元、用于将所述解密单元输出的信号进扩展的扩展器、用于将所述扩展器输出的号进行增益控制的增益控制单元、用于将述增益控制单元输出的信号进行数模转以供信号输出端输出的第二数模转换单元用于将所述第三低通滤波器输出的信号

实验一数字基带信号

20090401310074 实验一数字基带信号 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB3码的编码规则。 3、掌握从HDB3码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB3(AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。 2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB3、AMI 译码输出波形。 三、基本原理 本实验使用数字信源模块和HDB3 编译码模块。 1、数字信源 本模块是整个实验系统的发终端,模块内部只使用+5V 电压,其原理方框图如图1-1 所示,电原理图见附录一。本单元产生NRZ 信号,信号码速率约为170.5KB,帧结构如图1-2 所示。帧长为24 位,其中首位无定义,第2 位到第8 位是帧同步码(7 位巴克码1110010),另外16 位为2 路数据信号,每路8位。此NRZ 信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1 码,熄状态表示0 码。 图 1-1 数字信源方框图 图 2-2 帧结构

本模块有以下测试点及输入输出点: ?CLK 晶振信号测试点 ?BS-OUT 信源位同步信号输出点/测试点(2个) ?FS 信源帧同步信号输出点/测试点 ?NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图1-1中各单元与电路板上元器件对应关系如下: ?晶振 CRY 晶体;U1:反相器7404 ?分频器 U2 计数器74161;U3:计数器74193;U4:计数器40160 并行码产生器 K1、K2、K3:8位手动开关,从左到右依次 与帧同步码、数据1、数据2相对应;发光二极管:左起分 别与一帧中的24位代码相对应 ?八选一 U5、U6、U7:8位数据选择器4512 ?三选一 U8:8位数据选择器4512 ?倒相器 U20:非门74HC04 ?抽样 U9:D触发器74HC74 下面对分频器,八选一及三选一等单元作进一步说明。 (1)分频器 4161进行13分频,输出信号频率为341kHz。74161是一个4位二进制加计数器,预置在3状态。 74193完成÷2、÷4、÷8、÷16运算,输出BS、S1、S2、S3等4个信号。BS 为位同步信号,频率为170.5kHz。S1、S2、S3为3个选通信号,频率分别为BS信号频率的1/2、1/4和1/8。74193是一个4位二进制加/减计数器,当CPD= PL =1、MR=0时,可在Q0、Q1、Q2及Q3端分别输出上述4个信号。 40160是一个二一十进制加计数器,预置在7状态,完成÷3运算,在Q0和Q1端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的1/3。 分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a)和1-4(b)所示。 图 1-4 分频器输出信号波形 (2)八选一 采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。U5、U6和U7的地址信号输入端A、B、C并连在一起并分别接S1、S2、S3信号,它们的8个数据信号输入端x0 ~ x7分别K1、K2、K3输出的8个并行信号连接。由表1-1可以分析出U5、U6、U7输出信号都是码速率为

(精选)眼图观察测量实验

实验12 眼图观察测量实验 一、实验目的 1.学会观察眼图及其分析方法,调整传输滤波器特性。 二、实验仪器 1. 眼图观察电路(底板右下侧) 2. 时钟与基带数据发生模块,位号:G 3. 噪声模块,位号E 4. 100M双踪示波器1台 三、实验原理 在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。 我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。为了便于评价实际系统的性能,常用观察眼图进行分析。 眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。 什么是眼图? 所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。因为对于二进制信号波形,它很像人的眼睛故称眼图。 在图12-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。 图12-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。眼图中央的垂直线表示取样时刻。当波形没有失真时,眼图是一只“完全张开”的眼睛。在取样时刻,所有可能的取样值仅有两个:+1或-1。当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。这样,保证

正确判决所容许的噪声电平就减小了。换言之,在随机噪声的功率给定时,将使误码率增加。“眼睛”张开的大小就表明失真的严重程度。 为便于说明眼图和系统性能的关系,我们将它简化成图12-2的形状。 由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量; (4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。实验室理想状态下的眼图如图12-3 所示。 衡量眼图质量的几个重要参数有: 1.眼图开启度(U-2Δ U)/U 指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图的开启度应为100%。

常用数字基带调制的Simulink仿真与波形

介绍PSK 1. PAM 仿真Mod 但P 由于 示波常绍多种常用K 、FSK 、DP PAM 调制 M ,Pulse Am 真其4PAM dulator 模块PAM 调制后于是离散信 波器波形如常用数字的数字基带PSK 多种调mplitude M 发射机模型块调制后的后的虚部其号,需要加下: 字基带调制带调制的Si 制方式。 odulation ,型如下图所信号一般为实为0,因加 unbuffer 制的Sim mulink 模块即脉冲幅度示: 为complex 信因此只需要用 才能通过示mulink 仿块仿真和波度调制,或信号,一般需用Complex 示波器观察仿真与波形波形,包括P 或叫做幅度键需要sin 和c x to Real ‐ima 察。 形 PAM 、QAM 键控。Simu cos 两路载波ag 取其实部M 、ulink 波,部。

子图4PA 载波2. PSK 下图仿真可以实部 接用图1是原始AM 映射后的波后的待发PSK 信号 K ,phase sh 图所示: 真波形图如以看出,00部和虚部分 用复载波信始比特信号,的信号,即发送信号。 ift keying ,下: 0,01,10,11分分别用cos 信号载波后取由于M=4即00,01,10,1即相移键控分别被映射和sin 信号载 取实部(一4,因此211分别对应控调制。QP 射为1+i ,‐1载波后相加一般基于 ma 个bit 为1应着幅度为PSK 调制的+i ,1‐i ,‐1加,这相当于atlab 脚本的个symbol 。‐3,‐1,3,1。simulink 发‐i ,相邻相于QPSK 调制 的仿真会采子图2是经子图3即经发射机模型图相位差为π/制后的信号 采用这种形式经过经过图如 /2 。号直式)。

实验6.数字基带信号的眼图实验

实验六 数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过 基带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ +∞ -∞ = ? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 (3-2) 频域应满足: ()0,s s T T H πωωω? ≤ ?=? ?? ,其他 (3-3)

图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ??????? ∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1)1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤??? ??? ?-? =≤≤?? ?+>? ?? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos()()14s s s s t T t T h t t t T T παππα= - (3-6) 此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最 高频率利用率。换言之,若输入码元速率' 1/s s R T >,则该基带传输系统输出码元会产生码

数字基带信号实验

数字基带信号实验 一、实验目的: 学会利用MATLAB软件对数字基带信号的仿真。通过实验提高学生实际动手 能力和编程能力,为日后从事通信工作奠定良好的基础。 二、实验内容:利用MATLAB软件编写数字基带信号程序,进一步加强对数字基 带信号的理解。 (1)单极性不归零数字基带信号 (2)双极性不归零数字基带信号 (3)单极性归零数字基带信号 (4)双极性归零数字基带信号 三、程序 (1) 单极性不归零数字基带信号程序 function y=zhou(x) t0=200; t=0:1/t0:length(x); for i=1:length(x) if(x(i)==1) for j=1:t0 y((i-1)*t0+j)=1; end else for j=1:t0 y((i-1)*t0+j)=0; end end end y=[y,x(i)]; M=max(y); m=min(y); subplot(1,1,1) plot(t,y);grid on; axis([0,i,m-0.1,M+0.1]); title('1 0 0 1 1 0 0 0 0 1 0 1'); (2) 双极性不归零数字基带信号 function y=zhou(x) t0=200; t=0:1/t0:length(x); for i=1:length(x) if(x(i)==1) for j=1:t0

y((i-1)*t0+j)=1; end else for j=1:t0 y((i-1)*t0+j)=-1; end end end y=[y,x(i)]; M=max(y); m=min(y); subplot(1,1,1) plot(t,y);grid on; axis([0,i,m-0.1,M+0.1]); title('1 0 0 1 1 0 0 0 0 1 0 1'); (3)单极性归零数字基带信号 function y=zhou(x) t0=200; t=0:1/t0:length(x); for i=1:length(x) if(x(i)==1) for j=1:t0/2 y((2*i-2)*t0/2+j)=1; y((2*i-1)*t0/2+j)=0; end else for j=1:t0 y((i-1)*t0+j)=0; end end end y=[y,x(i)]; M=max(y); m=min(y); subplot(1,1,1) plot(t,y);grid on; axis([0,i,m-0.1,M+0.1]); title('1 0 0 1 1 0 0 0 0 1 0 1') (4)双极性归零数字基带信号 function y=zhou(x) t0=200; t=0:1/t0:length(x);

通信原理 数字基带传输实验报告

基带传输系统实验报告 一、 实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、 实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带脉冲输入 噪声 基带传输系统模型如下: 信道信号 形成器 信道 接收 滤波器 抽样 判决器 同步 提取 基带脉冲

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率错误!未找到引用源。o为4 /Ts,滚降系数分别取为0.1、0.5、1, (1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (2)如果采用匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (1)非匹配滤波器 窗函数法: 子函数程序: function[Hf,hn,Hw,w]=umfw(N,Ts,a)

GPS接收机基带信号处理算法的研究与实现

GPS接收机基带信号处理算法的研究及实现

摘要: 全球定位系统(Global Positioning System—GPS)作为全球最重要的定位系统经过二十多年的发展已经日臻成熟和完善。因其所具备的高可靠性、高精度、低成本的、具有便携可移动能力的特点,逐渐被越来越多的用户所采用。目前在航空航天、交通、通信、气象等许多领域它作为一项重要的技术而被广泛的使用。随着人们应用领域的不断广泛和深入,人们希望在许多恶劣环境下GPS接收机也能提供良好的定位导航服务,这就对GPS技术带来了新的挑战,因为在许多恶劣环境下比如信号遮蔽、多径干扰、卫星信号间的互相关串扰等,传统接收机的性能将严重下降,甚至不能工作。为了克服这些应用上的限制,就必须在设计GPS接收机技术上有所创新,而GPS接收机的核心是基带信号处理算法。本文的研究容是GPS 接收机的基带数字处理算法及相应的芯片实现方案。根据GPS信号结构特点,从基带解扩解调的角度建立相应的数学模型,针对GPS信号处理的两大关键技术捕获和跟踪,推导出每一部分性能与相应参数的关系,尤其分析了在噪声环境下的各个部分的性能特性,同时还介绍了GPS基带芯片的电路结构和实现方案。本文首先介绍GPS基本原理和信号结构,给出了GPS接收机基带的信号处理流程,并详细介绍了GPS基带需要完成的任务和功能。接着重点介绍GPS信号捕获算法,详细分析了传统的穿行搜索算法和改进的FFT快补算法的各自性能。根据估计检测理论分析误警概率和检测概率,提出了最优的搜索检测器。然后又详细分析了GPS跟踪环路的性能,介绍了锁相环理论的一些基本理论,并根据实际的应用重点分析了三阶环路的性能,同时给出了伪距测量误差和环路跟踪误差的关系。最后给出了详细的测试结果。 三段式,背景(10%)、工作(50%)、结果(40%) 关键字: GPS,基带算法,GPS捕获,GPS跟踪

基带信眼图实验m精编b仿真

基带信眼图实验m精编 b仿真 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

数字基带信号的眼图实验——m a t l a b 仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章节——奈奎斯特第一准则内容; 2、复习《数字通信原理》第七章节——数字基带信号码型内容; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期, 则经过基带传输系统后的输出码元为()n s n a h t nT -∑。其中 1 ()()2j t h t H e d ωωωπ +∞ -∞ = ? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 (3-2) 频域应满足:

()0,s s T T H πωωω? ≤?=? ?? ,其他 (3-3) 图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此 在得不到严格定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ???? ?? ? ∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜 的。 (1)(1)1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤??? ??? ?-? =≤≤?? ?+>? ?? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos() ()14s s s s t T t T h t t t T T παππα= - (3-6)

智能手机基带处理器电路原理

智能手机基带处理器电路原理 在普通手机中,通常将MCU(Micro Control Unit,微控制电路)、DSP( (Digital Signal Processing,数字信号处理)、ASIC(Application Specific Integrated Circuit,专用集成电路)电路集成在一起,得到数字基带信号处理器;将射频接口电路、音频编译码电路及一些ADC(模拟至数字转换器)、DAC(数字至模拟转换器)电路集成在一起,得到模拟基带信号处理器。 在智能手机中,一般是将数字基带信号处理器和模拟基带信号处理器集成在一起,称为基带处理器。不论移动电话的基带电路如何变化,它都包MCU 电路(也称CPU 电路)、DSP电路、ASIC 电路、音频编译码电路、射频逻辑接口电路等最基本的电路。 我们可以这样理解智能手机的无线部分,我们将智能手机无线部分电路再分为两部分,一部分是射频电路,完成了信号从天线到基带信号的接收和发射处理;一部分是基带电路,完成了信号从基带信号到音频终端(听筒或送话器)的处理。这样看来,基带处理器的主要工作内容和认为就比较容易理解了。 以基带处理器电路PMB8875 为例,框图如图1所示。 图1 基带处理器电路PMB8875 框图 1、模拟基带电路

模拟基带信号处理器(ABB)又被称为话音基带信号转换器,包含手机中所有的ADC与DAC 变换器电路。 模拟基带信号处理器包含基带信号处理电路、话音基带信号处理电路(也称音频处理电路)、辅助变换器单元(也被称为辅助控制电路)。 (1)基带信号处理电路 基带信号处理电路将接收射频电路输出的接收机基带信号RXIQ 转换成数字接收基带信号,送到数字基带信号处理器DBB。 在发射方面,该电路将DBB 电路输出的数字发射基带信号转换成模拟的发射基带信号TXIQ,送到发射射频部分的IQ 调制器电路。 基带信号处理电路是用来处理接收、发射基带信号的,连接数字基带与射频电路——射频逻辑接口电路,在基带方面,通过基带串行接口连接到数字基带信号处理器;在射频方面,它通过分离或复合的IQ 信号接口连接到接收I/Q 解调与发射I/Q 调制电路。 接收基带信号处理框图如图2所示。 图2接收基带信号处理框图 发射基带信号处理框图如图3所示。 图3发射基带信号处理框图

基带信号眼图实验——matlab仿真

数字基带信号的眼图实验——matlab 仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则容; 2、复习《数字通信原理》第七章7.2节——数字基带信型容; 3、认真阅读本实验容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为 ()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ+∞-∞=? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=?? ,为其他整数 (3-2) 频域应满足:

()0,s s T T H πωωω?≤?=??? ,其他 (3-3) 图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππππ ωωωωω??????+=-+++=≤ ? ? ???????∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤???????-?=≤≤???+>??? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos()()14s s s s t T t T h t t t T T παππα=- (3-6)

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

实验四 眼图

实验四 数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MA TLAB 语言编程。 二、实验器材 计算机,MATLAB 软件 三、实验原理 1、基带传输特性 基带系统的分析模型如图1所示,要获得良好的基带传输系统,就应该 图1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过 基带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ +∞ -∞ = ? (1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=?? , 为其他整数 (2) 频域应满足: ()0,s s T T H πωωω?≤?=? ?? ,其他 (3)

图2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ??????? ∑ (4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1)1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤??? ??? ?-? =≤≤ ?? ?+>? ?? (5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos() ()14s s s s t T t T h t t t T T παππα= - (6) 此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。换言之,若输入码元速率' 1/s s R T >,则该基带传输系统输出码元会产生

基带信号眼图实验

实验三 数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容; 2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过 基带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ +∞-∞ = ? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 (3-2) 频域应满足:

()0,s s T T H πωωω? ≤?=? ?? ,其他 (3-3) 图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ??????? ∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1)1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤??? ??? ?-? =≤≤ ?? ?+>? ?? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos() ()14s s s s t T t T h t t t T T παππα= - (3-6)

RFID读写器接收机基带数字信号处理研究

RFID读写器接收机基带数字信号处理研究 1 引言 超高频RFID系统空中接口标准包括ISO/IEC系列,F2C系列,以及中国正在研究制定的国家标准,数字接收机可实现软件升级和多协议支持,相比模拟接收机具备易于调试、应用灵活的优势,因而在超高频姗读写器中得到了广泛应用.提高超高频RFID读写器的读取效果一直是近年来的研究重点.在经过详尽分析和实验验证后,本文给出相关问题的解决办法。 超高频RFID读写器是与标签之间采用反向散射原理完成通信,根据当前主要的UHF频段空中接口标准ISO/IEC 18000-6C,标签在无源状态下以同频半双工方式通讯.基本的通信过程是,读写器采用幅移键控(ASK)等方式来调制载波,在特定频率的信道上将信息发送给一个或多个标签.之后读写器仍然需要发射CW载波,在指定的时间内来等待标签的应答。 零中频架构具有不需要中频环节,能够减小功耗,降低电路复杂度,易于调试等优点.零中频RFID数字接收机电路框图.天线接收进来的射频信号通过环行器后直接进入下变频器,转换完成的基带信号通过LNA放大、低通滤波,输出两路I、Q基带信号交由基带进行数字信号处理。 图1 零中频RFID数字接收机电路框图 读写器的通信效果受到发射机输出功率、接收机灵敏度、收发天线增益、收发隔离度、标签功耗、标签天线增益,以及环境状况等参数的影响.其中,发射端最大有效全向发射功率(EIRP)受到国家无线电发射设备管制,收发隔离度受到环行器等器件隔离度限制(一般只能达到25dB),在标签、天线和环境等参数一定的条件下,接收机的性能对读写器整机性能起决定性作用。 2 接收机性能影响因素分析 超高频RFID读写器接收机工作时也需要发射机发出无调制的载波.接收机接收到的包括标签反射信号、天线噪声、环境反射、发射机直接耦合,以及接收机自身的噪声等。在标签能获得足够工作能量的前提下,读写器的工作距离主要取决于标签反向散射信号在读写器的解调输出能否满足最低信噪比要求.根据文献[3],可用下面的公式来标示读写器决定的最大工作距离: 其中,C是电磁波在自由空间的传播速度,ω是电磁波信号的角频率,Г是标签功率反射系数,ξ是收发隔离系数,GR是读写器天线增益,Gt是标签天线增益,分母中的Ppn表示本振的单边带通带内相位噪声功率,可以计算本振已知的相位噪声数据或者使用频谱分析仪(SPA)直接测量获得.分子中的PDATA表示标签二进制数据序列的单边带通带内信号功率,可以数值计算的方式得到.根据公式,在标签参数、天线增益和收发隔离等参数一定的情况下,读写器的工作距离取决于接收机的信噪比性能(SNR),尤其是相位噪声以及降噪处理效果。 环境折反射干扰及相位噪声主要在载波频率附近,下变频之后表现为低频噪声;基带信号上混有常见的高频噪声,在密集读写器模式下,需要控制接收机带宽在一定范围以避免读写器之间相互干扰,因此需要对基带信号作带通滤波处理,以提高其信噪比。 直流偏移是零中频结构特有的一种干扰,是由于接收机中本振、发射机泄漏、环境反射等信号耦合到混频器输入端形成的。读写器收发同频造成了直流偏移远大于常规的接收机,加上常见工作距离只有3—5米,载波泄漏情况还受天馈及环境影响,直流偏移具有时变性.直流偏移不仅破坏了后级电路的直流工作点,还影响放大滤波电路的线性度性能,使信噪比变差.使用环行器的单天线设计中,环行器隔离度有限导致发射泄漏到接收端的强度大,直流偏移问题会更加严重,直流偏移、环境折反射引起的幅度相位干扰、本振相位噪声、ADC量化噪声等都可降低接收机的信噪比,提高其性能除了要在模拟射频电路上进行改进,

1实验一 数字基带信号实验

实验一数字基带信号实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB 3 的编码规则。 3、掌握从HDB 3 码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB 3 (AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极 性码(HDB 3)、整流后的AMI码及整流后的HDB 3 码。 2、用示波器观察从HDB 3 码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB 3 、AMI译码输出波形。 三、基本原理 本实验使用数字信源模块、HDB 3 编译码模块和可编程逻辑器件模块。 1、数字信源 本模块是整个实验系统的发终端,其原理方框图如图1-1所示。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。发光二极管亮状态表示1码,熄状态表示0码。 本模块有以下测试点及输入输出点: ? CLK 晶振信号测试点 ? BS-OUT 信源位同步信号输出点/测试点 ? FS 信源帧同步信号输出点/测试点 ? NRZ-OUT NRZ信号输出点/测试点 图1-3为数字信源模块的电原理图。图1-1中各单元与图1-3中的元器件对应关系如下: ?晶振CRY:晶体;U1:反相器74LS04 ?分频器U2:计数器74LS161;U3:计数器74LS193; U4:计数器74LS160

基带信号眼图实验——matlab仿真

基带信号眼图实验——matlab 仿真

————————————————————————————————作者:————————————————————————————————日期: ?

数字基带信号的眼图实验——matla b仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATL AB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容; 2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 () n s n a t nT δ-∑() H ω() n s n a h t nT -∑基带传输抽样判决 图3-1?基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过基 带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1 ()()2j t h t H e d ωωωπ +∞ -∞ = ? ?(3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 ?? ?(3-2) 频域应满足:

数字基带信号实验报告文档

2020 数字基带信号实验报告文档Contract Template

数字基带信号实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 专业班级: 指导老师:李敏 姓名: 学号: 实验一数字基带信号 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB3码的编码规则。 3、掌握从HDB3码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB3(AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码

(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。 2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB3、AMI译码输出波形。 三、实验步骤 本实验使用数字信源单元和HDB3编译码单元。 1、熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。 2、用示波器观察数字信源单元上的各种信号波形。 用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄); (2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。 3、用示波器观察HDB3编译单元的各种波形。 仍用信源单元的FS信号作为示波器的外同步信号。(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开

相关文档
相关文档 最新文档