文档视界 最新最全的文档下载
当前位置:文档视界 › 映射,函数定义域,值域_解题办法归纳

映射,函数定义域,值域_解题办法归纳

映射,函数定义域,值域_解题办法归纳
映射,函数定义域,值域_解题办法归纳

一种特殊的对应:映射

(1) (2) (3) (4)

1.对于集合A 中的每一个元素,在集合B 中都有一个(或几个)元素与此相对应。

2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④)

3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。

4.注意映射是有方向性的。

5.符号:f : A B 集合A 到集合B 的映射。

6.讲解:象与原象定义。

再举例:1?A ={1,2,3,4} B ={3,4,5,6,7,8,9} 法则:乘2加1 是映射 2?A =N + B ={0,1} 法则:B 中的元素x 除以2得的余数 是映射 3?A =Z B =N * 法则:求绝对值 不是映射(A 中没有象)

4?

A ={0,1,2,4} B

={0,1,4,9,64} 法则:f :

a

b =(a -1)2 是映射

一一映射

观察上面的例图(2)得出两个特点:

1?对于集合A中的不同元素,在集合B中有不同的象(单射)

2?集合B中的每一个元素都是集合A中的每一个元素的象(满射)即集合B中的每一个元素都有原象。

从映射的观点定义函数(近代定义):

1?函数实际上就是集合A 到集合B 的一个映射 f :A B 这里 A , B 非空。 2?A :定义域,原象的集合

B :值域,象的集合(

C )其中C ? B f :对应法则 x ∈A y ∈B

3?函数符号:y =f (x ) —— y 是 x 的函数,简记 f (x )

函数的三要素: 对应法则、定义域、值域

只有当这三要素完全相同时,两个函数才能称为同一函数。

例:判断下列各组中的两个函数是否是同一函数?为什么? 1.3

)

5)(3(1+-+=

x x x y

52-=x y 解:不是同一函数,定义域不同

2。 111-+=x x y )1)(1(2-+=x x y 解:不是同一函数,定义域不同 3。 x x f =)( 2

)(x x g = 解:不是同一函数,值域不同

4.

x x f =)( 33

)(x x F = 解:是同一函数

5.21)52()(-=x x f 52)(2-=x x f 解:不是同一函数,定义域、值域都不同

关于复合函数

设 f (x )=2x -3 g (x )=x 2+2 则称 f [g (x )](或g [f (x )])为复合函数。 f [g (x )]=2(x 2+2)-3=2x 2+1 g [f (x )]=(2x -3)2+2=4x 2-12x +11

例:已知:f (x )=x 2

-x +3 求:f (

x

1

) f (x +1) 解:f (x 1)=(x 1)2-x

1

+3 f (x +1)=(x +1)2-(x +1)+3=x 2+x +3

1. 函数定义域的求法

● 分式中的分母不为零;

● 偶次方根下的数(或式)大于或等于零;

● 指数式的底数大于零且不等于一;

● 对数式的底数大于零且不等于一,真数大于零。

● 正切函数tan ...(,,)

2

y x x R x k k π

π=∈≠+

∈Z 且

● 余切函数cot y x =

(),,x R x k k π∈≠∈Z 且

● 反三角函数的定义域(有些地方不考反三角,可以不理)

函数y =arcsinx 的定义域是 [-1, 1] ,值域是

[,]22ππ

-

函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,

函数y =arctgx 的定义域是 R ,值域是

(,)22ππ

-

函数y =arcctgx 的定义域是 R ,值域是 (0, π) . 注意,

1. 复合函数的定义域。

如:已知函数()f x 的定义域为(1,3),则函数()(1)(2)F x f x f x =-+-的定义域。1(1,3)2(1,3)x x -∈??

-∈?

2.函数

()

f x的定义域为(,)

a b,函数()

g x的定义域为(,)

m n,

则函数

[()]

f g x的定义域为

()(,)

(,)

g x a b

x m n

?

?

?,解不等式,最后结果才是

3.这里最容易犯错的地方在这里:

已知函数

(1)

f x-的定义域为(1,3),求函数()

f x的定义域;或者说,已知函数(1)

f x-的定义域为(3,4),

则函数

(21)

f x-的定义域为______?

2. 函数值域的求法

函数值域的求法方法有好多,主要是题目不同,或者说稍微有一个数字出现问题,

对我们来说,解题的思路可能就会出现非常大的区别.这里我主要弄几个出来,大家一起看一下吧.

(1)、直接观察法 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。

例 求函数

1

,[1,2]y x x =

∈的值域

(2)、配方法

配方法是求二次函数值域最基本的方法之一。

例、求函数

2

25,y x x x R =-+∈的值域。

(3)、根判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简 如:

.1

12..2

22

22222

b

a y 型:直接用不等式性质k+x bx

b. y 型,先化简,再用均值不等式

x mx n

x 1 例:y 1+x x+x

x m x n c y 型 通常用判别式

x mx n x mx n

d. y 型

x n

法一:用判别式 法二:用换元法,把分母替换掉

x x 1(x+1)(x+1)+1 1

例:y (x+1)1211

x 1x 1x 1=

=++==≤

''

++=++++=+++-===+-≥-=+++

4、反函数法(原函数的值域是它的反函数的定义域)

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例 求函数

34

56x y x +=

+值域。

346456345635x y y xy y x x x y +-=

?+=+?=+-,分母不等于0,即35y ≠

5、函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。 我们所说的单调性,最常用的就是三角函数的单调性。

例 求函数

11x x e y e -=+,2sin 11sin y θθ-=+,2sin 11cos y θθ-=

+的值域。

110

11

2sin 11|sin |||1,

1sin 22sin 12sin 1(1cos )

1cos 2sin cos 1)1,sin()sin()11

即又由解不等式,求出,就是要求的答案

x x x e y y e y e y y y y y y y

x y x x y θθθθθθθ

θθθθθ-+=?=>-+-+=?=≤+--=?-=++-=++=++=

+≤≤

10.倒数法

有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况

求函数

y =

的值域

2011

202

2012

时,时,=00y x y y x y y =

+≠==+

≥?<≤

+=∴≤≤

多种方法综合运用

总之,在具体求某个函数的值域时,

首先要仔细、认真观察其题型特征,然后再选择恰当的方法,

一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

函数定义域值域求法十一种

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。 解:要使函数有意义,则必须满足 x 2 2x 15 0 ① 11 或 x>5。 3且x 11} {x |x 5}。 1 例2求函数y ' 定义域。 *16 x 2 解:要使函数有意义,则必须满足 sinx 0 ① 16 x 2 0 ② 由①解得2k x 2k ,k Z ③ 由②解得 4x4 ④ 由③和④求公共部分,得 4 x 或 0 x 故函数的定义域为(4, ] (0,] 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知f(x)的定义域,求f [g(x)]的定义域。 (2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。 例3已知f(x)的定义域为[—2, 2],求f (x 2 3 x 3,故函数的定义域是{x | x (2)已知f [g(x)]的定义域,求f(x)的定义域。 其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求 g(x)的值域,即所求f(x)的定义域。 例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。 解:因为 1 x 2,2 2x 4,3 2x 1 5。 即函数f(x)的定义域是{x 13 x 5}。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求 参数的范围问题通常是转化为恒成立问题来解决。 例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。 分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项 例1求函数y ,x 2 2x 15 |x 3| 8 的定义域。 |x 3| 8 0 ② 由①解得 x 3或x 5。 由②解得 x 5或x 11 解:令 2 x 2 1 2 ,得 1 x 2 3,即 0 x 2 3,因此0 | x | 3,从而 1)的定义域。 3}。 ③和④求交集得x 3且x 故所求函数的定义域为 {x |x

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

函数的定义域和值域

函数的定义域、值域 一、知识回顾 第一部分:函数的定义域 1.函数的概念: 设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域. 如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或 a x y =,所有的函数值所构成的集合{} A x x f y y ∈=),(叫做这个函数的值域. 2.定义域的理解: 使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <. 满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,. 满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作 (][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括 时用空心点表示. 4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集. 5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零. (4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R; (2)二次函数2 y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a﹤0时,值域244ac b B y y a ??-??=≤?????? 。(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。(二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+,(1)求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。(四)课堂练习: 1.用区间表示下列集合: {}{}{}{} 4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或2.已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3.课本P 19练习2。

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

函数的定义域、值域及解析式

函数的定义域、值域及解析式 【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 常见函数的定义域与值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)例. 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (√x)2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x2-2x+2, g ( x )=t2-2t+2 3.区间的概念

函数定义域值域求法总结

、函数定义域、值域求法总结

————————————————————————————————作者:————————————————————————————————日期:

函数定义域、值域求法总结 1、函数的定义域是指自变量“x ”的取值集合。 2、在同一对应法则作用下,括号内整体的取值范围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。 定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。 ()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 ():f (x),f[g(x)]题型一已知的定义域求的定义域 ()():f g x ,f (x)????题型二已知的定义域求的定义域 ()[]():f g x ,f h(x)????题型三已知的定义域求的定义域()[]()[] )x (h f x f x g f →→

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ???≠-≥+0201x x ? ???≠-≥2 1 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②214 3)(2-+--=x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-= x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3- ]

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

函数的定义域和值域

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1) 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

函数的定义域值域和解析式

函数的定义域、值域和解析式 1.函数的定义域 函数的定义域是指使函数有意义的自变量的取值范围. 2.求函数定义域的主要依据: ①分式函数:分母不为0; ②偶次方根:被开方数为非负数; ③对数函数:真数大于0,底数大于0且不为1; ④零次幂的底数不等于0 注意:①当通过解不等式或不等式组求定义域时,常常借助数轴求交集,同时考虑端点是否可取;②在解决函数问题时首先考虑定义域,“定义域优先原则”;③定义域的最终结果一定要写成集合或者区间的形式;④实际问题的自变量范围应根据实际情况确定。 指数函数 x a y =(a >0且a ≠1) R (0,+∞) 对数函数 x y a log =(a >0且a ≠ 1) (0,+∞) R 正、余弦函数 y =sin x ,y =cos x R [-1,1] 正切函数 y =tan x {x |x ≠k π +2 π,k ∈Z} R 解析式 定义域 值域 一次函数 y =kx +b (k ≠0) R R 二次函数 c bx ax y ++=2 (a ≠0) R 当a >0时,),44( 2 +∞-a b a c 当a <0时,)44, (2 a b a c --∞ 反比例函数 x k y = (k ≠0) {x |x ≠0} {y |y ≠0} 均值函数 x b ax y + =(a >0,b >0) {x |x ≠0} (-∞,-2ab ]∪[2ab ,+∞) 常见函数的定义域与值域

,0 ||0 1?? ?>-≠+x x x ,||1 ? ??>-≠x x x 例1求下列函数的定义域 (1)1 log 1 )(2-=x x f (2))1(log 1 |2|)(2---=x x x f (3)y=x x x -+||)1(0 ; 解:(1)由题意可得???>->01log 0 2 x x 解得x >2. ∴所求定义域为(2,+∞) ?? ? ??≠->-≥--110 10 1|2|x x x 解得x ≥3 (2)由题意得 ∴所求定义域为(3,+∞) (3)由题意 化简 故函数的定义域为{x|x <0且x ≠-1}. 练习:求函数的定义域 (1) y=2 3 2 531 x x -+-; (2))34lg(1 3)(22-+-+-=x x x x x f 3.抽象函数的定义域 求复合函数y =f(t),t =q(x)的定义域的方法: ①若y =f(t)的定义域为(a ,b),则解不等式得a <q(x)<b 即可求出y =f(q(x))的定义域; ②若y =f(g(x))的定义域为(a ,b),则求出g(x)的值域即为f(t)的定义域. 例2. 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f(x 1);(3)y=f( )31 ()31-++x f x ; 解:(1)0≤3x ≤1,故0≤x ≤3 1 , y=f(3x)的定义域为[0, 3 1] . (2)仿(1)解得定义域为[1,+∞ ). (3)由条件,y 的定义域是f )31(+x 与)3 1 (-x 定义域的交集 .

求复合函数定义域值域解析式(集锦)

求复合的定义域、值域、解析式(集锦) 一、 基本类型: 1、 求下列函数的定义域。 (1)12)(-+=x x x f (2)x x x x f -+=0 )1()( (3) 1 11--= x y (4)()28 x f x = - 二、复合函数的定义域 1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域 2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2) ()1 f x g x x =-的定义域 2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域 3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是 求函数的值域 一、二次函数法 (1)求二次函数232y x x =-+的值域 (2)求函数225,[1,2]y x x x =-+∈-的值域. 二、换元法: (1) 求函数 y x =+

分分式法 求2 1 +-= x x y 的值域。 解:(反解x 法) 四、判别式法 (1)求函数22221 x x y x x -+=++;的值域 2)已知函数21 ax b y x += +的值域为[-1,4],求常数b a ,的值。 五:有界性法: (1)求函数1e 1e y x x +-=的值域 六、数形结合法---扩展到n 个相加 (1)|1||4|y x x =-++(中间为减号的情况?) 求解析式 换元法 已知 23,f x =- 求 f (x ). 解方程组法 设函数f (x )满足f (x )+2 f (x 1 )= x (x ≠0),求f (x )函数解析式. 一变:若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数 ,x y ,总有2()()(21),f x f x y x y y +=+++求()f x 。 令x=0,y=2x 待定系数法 设 f (2x )+f (3x +1)=13x 2+6x -1, 求 f (x ).

高中数学函数定义域值域求法总结

函数定义域、值域求法总结 一。求函数得定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式得被开方数非负。 (3)对数中得真数部分大于0。 (4)指数、对数得底数大于0,且不等于1 (5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。 ( 6 )中x 二、值域就是函数y=f(x)中y得取值范围。 常用得求值域得方法: (1)直接法(2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学得始终。 定义域得求法 1、直接定义域问题 例1 求下列函数得定义域: ①;②;③ 解:①∵x—2=0,即x=2时,分式无意义, 而时,分式有意义,∴这个函数得定义域就是、 ②∵3x+2〈0,即x<-时,根式无意义, 而,即时,根式才有意义, ∴这个函数得定义域就是{|}. ③∵当,即且时,根式与分式同时有意义, ∴这个函数得定义域就是{|且} 另解:要使函数有意义,必须: 例2 求下列函数得定义域: ①② ③④ ⑤ 解:①要使函数有意义,必须: 即: ∴函数得定义域为: []

②要使函数有意义,必须: ∴定义域为:{ x|} ③要使函数有意义,必须: ? ∴函数得定义域为: ④要使函数有意义,必须: ∴定义域为: ⑤要使函数有意义,必须: 即 x< 或 x〉∴定义域为: 2定义域得逆向问题 例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题) 解:∵定义域就是R,∴ ∴ 练习: 定义域就是一切实数,则m得取值范围; 3复合函数定义域得求法 例4 若函数得定义域为[-1,1],求函数得定义域 解:要使函数有意义,必须: ∴函数得定义域为: 例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。 分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。 (注意:f(x)中得x与f(2x-1)中得x不就是同一个x,即它们意义不同。) 解:∵f(x)得定义域为[—1,1], ∴—1≤2x-1≤1,解之0≤x≤1, ∴f(2x-1)得定义域为[0,1]。 例6已知已知f(x)得定义域为[-1,1],求f(x2)得定义域。 答案:—1≤x2≤1 x2≤1-1≤x≤1 练习:设得定义域就是[-3,],求函数得定义域 解:要使函数有意义,必须: 得: ∵≥0 ∴ ∴函数得定域义为: 例7 已知f(2x-1)得定义域为[0,1],求f(x)得定义域 因为2x-1就是R上得单调递增函数,因此由2x-1, x∈[0,1]求得得值域[-1,1]就是f(x)得定义域、 练习: 1已知f(3x-1)得定义域为[—1,2),求f(2x+1)得定义域。) (提示:定义域就是自变量x得取值范围) 2已知f(x2)得定义域为[-1,1],求f(x)得定义域

函数的定义域及值域

函数的定义域及值域 题型一 求函数的定义域 1. 已函数f(x)=x x x -+0 )1(的定义域 2.函数 )3(log 1 3x y -= 的定义域为 3.函数x x y cos lg 252+-=的定义域为 __ 2.抽象函数定义域 1. 函数f(x 2)的定义域为[-1,1],则函数f(x)的定义域 2.设函数 的定义域是[0,1],求的定义域. 3.已知f(x 2)的定义域为[1,2],则y=f()(log 2 1x 的定义域为_______. 3.定义域逆用 1. 已知函数y = 的定义域为R.求实数m 的取值范围; 2. 设f (x )=lg(x 2 -2x +a )的定义域为R ,求a 的取值范围; 3.设函数y = 的定义域为R ,求实数a 的取值范围.

题型二 求函数的值域 1.求下列函数的值域: (1)y = 2x -1 x ∈[1,3] (2) y = -3x +1 x ∈[-1,2] (3)函数f(x)= ax + b x ∈[-1,1] 最大值为2,最小值为-4,求a,b 的值 2. 求下列函数的值域: ⑴y =x 2-5x +6 x ∈[-2,1] ⑵y =x 2-5x +6,x ∈[1,3] ⑶y =x 2-5x +6,x ∈[2,4] (4)y =x 2-5x +6,x ∈[3,5] (5) f(x)= x 2-2ax -2 x ∈[-2,4] 3. x>0 4.函数y =x +x 21-的值域 5.若 求函数的取值范围. 6. 对于任意实数,设函数 是与中较小者,求的最大值 7.已知函数 的值域是,求的值.

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

相关文档
相关文档 最新文档