文档视界 最新最全的文档下载
当前位置:文档视界 › 《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类
《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告

---最小错误率贝叶斯决策分类

一、实验原理

对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为

11

22

11()exp ()()2(2)T d p π-??=--∑-????

∑x x μx μ 式中,12,,,d x x x ????=x 是d 维行向量,12,,,d μμμ????=μ 是d 维行向量,∑是d d ?维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。

本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数

()(|)(),

1,2,3i i i g p P i ωω==x x (3个类别)

其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。

由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。 我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为

112

2

()1()exp ()(),1,2,32(2)T i i d

P g i ωπ-??

=

-∑=????

x x -μx -μ

对上式右端取对数,可得

111()()()ln ()ln ln(2)222

T i i i i d

g P ωπ-=-∑+-∑-i i x x -μx -μ

上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。则判别函数()i g x 可简化为以下形式

111

()()()ln ()ln 22

T i i i i g P ω-=-∑+-∑i i x x -μx -μ

二、实验步骤

(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下

11,2,3i

i i

i

i N ωωω∈=

=∑

x μx

clear

% 原始数据导入

iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本

%求第一类样本均值 for i = 1:N for j = 1:4

w1(i,j) = iris(i,j+1); end end

sumx1 = sum(w1,1); for i=1:4

meanx1(1,i)=sumx1(1,i)/N; end

%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);

end end

sumx2 = sum(w2,1); for i=1:4

meanx2(1,i)=sumx2(1,i)/N; end

%求第三类样本均值 for i = 1:N for j = 1:4

w3(i,j) = iris(i+100,j+1); end end

sumx3 = sum(w3,1); for i=1:4

meanx3(1,i)=sumx3(1,i)/N; end

(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下

1

1()()

,1,2,3,41i i

i N i jk

lj j lk k l i x x j k N ωωσμμ==--=-∑

其中

lj x 代表i ω类的第l 个样本,第j 个特征值;

i

j ωμ代表i ω类的i N 个样品第j 个特征的平均值

lk x 代表i ω类的第l 个样品,第k 个特征值;

i

w k μ代表i ω类的i N 个样品第k 个特征的平均值。

%求第一类样本协方差矩阵 z1(4,4) = 0; var1(4,4) = 0; for i=1:4 for j=1:4 for k=1:N

z1(i,j)=z1(i,j)+(w1(k,i)-

meanx1(1,i))*(w1(k,j)-meanx1(1,j)); end

var1(i,j) = z1(i,j) / (N-1); end end

%求第二类样本协方差矩阵 z2(4,4) = 0 ; var2(4,4) = 0; for i=1:4 for j=1:4 for k=1:N

z2(i,j)=z2(i,j)+

(w2(k,i)-meanx2(1,i))*(w2(k,j)-meanx2(1,j)); end

ar2(i,j) = z2(i,j) / (N-1); end end

%求第三类样本协方差矩阵 z3(4,4) = 0 ; var3(4,4) = 0; for i=1:4 for j=1:4 for k=1:N

z3(i,j)=z3(i,j)+(w3(k,i)-

meanx3(1,i))*(w3(k,j)-meanx3(1,j)); end

var3(i,j) = z3(i,j) /( N-1); end end

%求各类的协方差矩阵逆矩阵及行列式 var1_inv = [];var1_det = []; var2_inv = [];var2_det = []; var3_inv = [];var3_det = []; var1_inv = inv(var1) var2_inv = inv(var2) var3_inv = inv(var3) var1_det = det(var1) var2_det = det(var2) var3_det = det(var3)

(3)对三个类别,分别取每组剩下的10个样本,每两组进行分类。由于每一类样本都相等,且每一类选取用作训练的样本也相等,在每两组进行分类时,待分类样本的类先验概率()0.5i P ω=。将各个样本代入判别函数

111

()()()ln ()ln 22

T i i i i g P ω-=-∑+-∑i i x x -μx -μ

根据判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。

若取第一类后10个数据和第二类进行分类,代码如下

M=10; for i = 1:M for j = 1:4

test(i,j) = iris(i+50,j+1); % 取测试数据 end end

t1=0;t2=0;t3=0; for i = 1:M

x=test(i,1);y=test(i,2);

z=test(i,3);h=test(i,4);

g1 = (-0.5)*([x,y,z,h]-meanx1)*var1_inv*([x,y,z,h]'-meanx1') - 0.5*log(abs(var1_det)) + log(p1);

g2 = (-0.5)*([x,y,z,h]-meanx2)*var2_inv*([x,y,z,h]'-meanx2') - 0.5*log(abs(var2_det)) + log(p2);

if g1>g2

t1=t1+1 %若g1>g2,则属于第一类,否则属于第二类,并统计属于每一类的个数 else

t2=t2+1 end end

同理第二类和第三类、第一类和第三类可进行分类。 三、实验结果及分析

(1)取第一类样本的后10个数据,按1ω、2ω分类,由t1=10可知,此10个数据属于1ω,分类正确;同理,按1ω、3ω分类,由t1=10可知,此10个数据属于1ω,分类正确。

(2)取第二类样本的后10个数据,按1ω、2ω分类,由t2=10可知,此10个数据属于2ω,分类正确;同理,按2ω、3ω分类,由t2=10可知,此10个数据属于2ω,分类正确。

(3)取第三类样本的后10个数据,按1ω、3ω分类,由t3=10可知,此10个数据属于2ω,分类正确;同理,按2ω、3ω分类,由t3=10可知,此10个数据属于3ω,分类正确。

(4)表1为1ω、2ω、3ω的样本类的均值。

表1 三类样本均值

x 1 x 2 x 3 x 4 1ω类

5.0375 3.4525 1.46 0.235 2ω类

6.01 2.78 4.3175 1.35 3ω类

6.6225

2.96

5.6075

1.99

由上表可知,对于1ω、2ω、3ω三个类样本,它们的第二个特征均值x 2相

差不大,对于分类取得作用不如其他3个特征作用大,因此我们略去第二个特征,在三维坐标空间画出降为3维主特征的3类样本点的空间分布,如图1所示

图1 去掉第二维特征的三类样本空间位置

上图中,“*”为1ω类,“+”为2ω类,“□”为3ω类,显然1ω类和2ω类以及3ω类特征差异比较明显,而2ω类与3ω类差异较小,对于位于2ω、3ω类类间分解面附近的样本,使用最小错误率贝叶斯决策时,可能会出现错分情况。在实验中,我们对2ω类50个样本分类,结果为t2 =48 ,t3 =2,错分2个到3ω类;对3ω类50个样本分类,结果为t2 =0 ,t3 =50,分类正确。

附:iris数据

1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

3 4.7 3.2 1.3 0.2

4 4.6 3.1 1.

5 0.2

5 5.0 3.

6 1.4 0.2

6 5.4 3.9 1.

7 0.4

7 4.6 3.4 1.4 0.3

8 5.0 3.4 1.5 0.2

9 4.4 2.9 1.4 0.2

10 4.9 3.1 1.5 0.1

11 5.4 3.7 1.5 0.2

12 4.8 3.4 1.6 0.2

13 4.8 3.0 1.4 0.1

14 4.3 3.0 1.1 0.1

15 5.8 4.0 1.2 0.2

16 5.7 4.4 1.5 0.4

17 5.4 3.9 1.3 0.4

18 5.1 3.5 1.4 0.3

19 5.7 3.8 1.7 0.3

20 5.1 3.8 1.5 0.3

21 5.4 3.4 1.7 0.2

22 5.1 3.7 1.5 0.4

23 4.6 3.6 1.0 0.2

24 5.1 3.3 1.7 0.5

25 4.8 3.4 1.9 0.2

26 5.0 3.0 1.6 0.2

27 5.0 3.4 1.6 0.4

28 5.2 3.5 1.5 0.2

29 5.2 3.4 1.4 0.2

30 4.7 3.2 1.6 0.2

31 4.8 3.1 1.6 0.2

32 5.4 3.4 1.5 0.4

33 5.2 4.1 1.5 0.1

34 5.5 4.2 1.4 0.2

35 4.9 3.1 1.5 0.2

36 5.0 3.2 1.2 0.2

37 5.5 3.5 1.3 0.2

38 4.9 3.6 1.4 0.1

39 4.4 3.0 1.3 0.2

40 5.1 3.4 1.5 0.2

41 5.0 3.5 1.3 0.3

42 4.5 2.3 1.3 0.3

43 4.4 3.2 1.3 0.2

44 5.0 3.5 1.6 0.6 45 5.1 3.8 1.9 0.4

46 4.8 3.0 1.4 0.3

47 5.1 3.8 1.6 0.2

48 4.6 3.2 1.4 0.2

49 5.3 3.7 1.5 0.2

50 5.0 3.3 1.4 0.2

51 7.0 3.2 4.7 1.4

52 6.4 3.2 4.5 1.5

53 6.9 3.1 4.9 1.5

54 5.5 2.3 4.0 1.3

55 6.5 2.8 4.6 1.5

56 5.7 2.8 4.5 1.3

57 6.3 3.3 4.7 1.6

58 4.9 2.4 3.3 1.0

59 6.6 2.9 4.6 1.3

60 5.2 2.7 3.9 1.4

61 5.0 2.0 3.5 1.0

62 5.9 3.0 4.2 1.5

63 6.0 2.2 4.0 1.0

64 6.1 2.9 4.7 1.4

65 5.6 2.9 3.6 1.3

66 6.7 3.1 4.4 1.4

67 5.6 3.0 4.5 1.5

68 5.8 2.7 4.1 1.0

69 6.2 2.2 4.5 1.5

70 5.6 2.5 3.9 1.1

71 5.9 3.2 4.8 1.8

72 6.1 2.8 4.0 1.3

73 6.3 2.5 4.9 1.5

74 6.1 2.8 4.7 1.2

75 6.4 2.9 4.3 1.3

76 6.6 3.0 4.4 1.4

77 6.8 2.8 4.8 1.4

78 6.7 3.0 5.0 1.7

79 6.0 2.9 4.5 1.5

80 5.7 2.6 3.5 1.0

81 5.5 2.4 3.8 1.1

82 5.5 2.4 3.7 1.0

83 5.8 2.7 3.9 1.2

84 6.0 2.7 5.1 1.6

85 5.4 3.0 4.5 1.5

86 6.0 3.4 4.5 1.6

87 6.7 3.1 4.7 1.5

88 6.3 2.3 4.4 1.3

89 5.6 3 4.1 1.3

90 5.5 2.5 4.0 1.3

91 5.5 2.6 4.4 1.2

92 6.1 3.0 4.6 1.4

93 5.8 2.6 4.0 1.2

94 5.0 2.3 3.3 1.0

95 5.6 2.7 4.2 1.3

96 5.7 3.0 4.2 1.2

97 5.7 2.9 4.2 1.3

98 6.2 2.9 4.3 1.3

99 5.1 2.5 3.0 1.1

100 5.7 2.8 4.1 1.3

101 6.3 3.3 6.0 2.5

102 5.8 2.7 5.1 1.9

103 7.1 3.0 5.9 2.1

104 6.3 2.9 5.6 1.8

105 6.5 3.0 5.8 2.2

106 7.6 3.0 6.6 2.1

107 4.9 2.5 4.5 1.7

108 7.3 2.9 6.3 1.8

109 6.7 2.5 5.8 1.8

110 7.2 3.6 6.1 2.5

111 6.5 3.2 5.1 2.0

112 6.4 2.7 5.3 1.9

113 6.8 3.0 5.5 2.1

114 5.7 2.5 5.0 2.0

115 5.8 2.8 5.1 2.4

116 6.4 3.2 5.3 2.3

117 6.5 3.0 5.5 1.8

118 7.7 3.8 6.7 2.2

119 7.7 2.6 6.9 2.3

120 6.0 2.2 5.0 1.5

121 6.9 3.2 5.7 2.3

122 5.6 2.8 4.9 2.0

123 7.7 2.8 6.7 2.0

124 6.3 2.7 4.9 1.8

125 6.7 3.3 5.7 2.1

126 7.2 3.2 6.0 1.8

127 6.2 2.8 4.8 1.8

128 6.1 3.0 4.9 1.8

129 6.4 2.8 5.6 2.1

130 7.2 3.0 5.8 1.6

131 7.4 2.8 6.1 1.9

132 7.9 3.8 6.4 2.0

133 6.4 2.8 5.6 2.2 134 6.3 2.8 5.1 1.5 135 6.1 2.6 5.6 1.4 136 7.7 3.0 6.1 2.3 137 6.3 3.4 5.6 2.4 138 6.4 3.1 5.5 1.8 139 6.0 3.0 4.8 1.8 140 6.9 3.1 5.4 2.1 141 6.7 3.1 5.6 2.4 142 6.9 3.1 5.1 2.3 143 5.8 2.7 5.1 1.9 144 6.8 3.2 5.9 2.3 145 6.7 3.3 5.7 2.5 146 6.7 3 5.2 2.3 147 6.3 2.5 5 1.9 148 6.5 3 5.2 2 149 6.2 3.4 5.4 2.3 150 5.9 3 5.1 1.8

大数据挖掘weka大数据分类实验报告材料

一、实验目的 使用数据挖掘中的分类算法,对数据集进行分类训练并测试。应用不同的分类算法,比较他们之间的不同。与此同时了解Weka平台的基本功能与使用方法。 二、实验环境 实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集iris.arff。 Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、数据预处理 Weka平台支持ARFF格式和CSV格式的数据。由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。实验所用的ARFF格式数据集如图1所示 图1 ARFF格式数据集(iris.arff)

对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、sepal width、petal length、petal width和class五种属性。期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。 实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。 实验所需的训练集和测试集均为iris.arff。 四、实验过程及结果 应用iris数据集,分别采用LibSVM、C4.5决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 1、LibSVM分类 Weka 平台内部没有集成libSVM分类器,要使用该分类器,需要下载libsvm.jar并导入到Weka中。 用“Explorer”打开数据集“iris.arff”,并在Explorer中将功能面板切换到“Classify”。点“Choose”按钮选择“functions(weka.classifiers.functions.LibSVM)”,选择LibSVM分类算法。 在Test Options 面板中选择Cross-Validatioin folds=10,即十折交叉验证。然后点击“start”按钮:

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.docsj.com/doc/6c11925893.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

贝叶斯实验报告

HUNAN UNIVERSITY 人工智能实验报告 题目实验三:分类算法实验 学生姓名匿名 学生学号2013080702xx 专业班级智能科学与技术1302班 指导老师袁进 一.实验目的 1.了解朴素贝叶斯算法的基本原理; 2.能够使用朴素贝叶斯算法对数据进行分类 3.了解最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器 4.学会对于分类器的性能评估方法 二、实验的硬件、软件平台 硬件:计算机 软件:操作系统:WINDOWS 10 应用软件:C,Java或者Matlab 相关知识点: 贝叶斯定理: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率,其基本求解公式为:

贝叶斯定理打通了从P(A|B)获得P(B|A)的道路。 直接给出贝叶斯定理: 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。 朴素贝叶斯分类的正式定义如下: 1、设为一个待分类项,而每个a为x的一个特征属性。 2、有类别集合。 3、计算。 4、如果,则。 那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做: 1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。 2、统计得到在各类别下各个特征属性的条件概率估计。即 3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导: 因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:

朴素贝叶斯在文本分类上的应用

2019年1月 取此事件作为第一事件,其时空坐标为P1(0,0,0,0),P1′(0,0,0,0),在Σ′系经过时间t′=n/ν′后,Σ′系中会看到第n个波峰通过Σ′系的原点,由于波峰和波谷是绝对的,因此Σ系中也会看到第n个波峰通过Σ′系的原点,我们把此事件记为第二事件,P2(x,0,0,t),P2′(0,0,0,t′).则根据洛伦兹变换,我们有x=γut′,t=γt′。在Σ系中看到t时刻第n个波峰通过(x, 0,0)点,则此时该电磁波通过Σ系原点的周期数为n+νxcosθ/c,也就是: n+νxcosθc=νt→ν=ν′ γ(1-u c cosθ)(5)这就是光的多普勒效应[2],如果ν′是该电磁波的固有频率的话,从式(5)可以看出,两参考系相向运动时,Σ系中看到的光的频率会变大,也就是发生了蓝移;反之,Σ系中看到的光的频率会变小,也就是发生了红移;θ=90°时,只要两惯性系有相对运动,也可看到光的红移现象,这就是光的横向多普勒效应,这是声学多普勒效应中没有的现象,其本质为狭义相对论中的时间变缓。3结语 在本文中,通过对狭义相对论的研究,最终得到了光的多普勒效应的表达式,并通过与声学多普勒效应的对比研究,理解了声学多普勒效应和光学多普勒效应的异同。当限定条件为低速运动时,我们可以在经典物理学的框架下研究问题,比如声学多普勒效应,但如果要研究高速运动的光波,我们就需要在狭义相对论的框架下研究问题,比如光的多普勒效应。相对论乃是当代物理学研究的基石,通过本次研究,使我深刻的意识到了科学家为此做出的巨大贡献,为他们献上最诚挚的敬意。 参考文献 [1]肖志俊.对麦克斯韦方程组的探讨[J].通信技术,2008,41(9):81~83. [2]金永君.光多普勒效应及应用[J].现代物理知识,2003(4):14~15.收稿日期:2018-12-17 朴素贝叶斯在文本分类上的应用 孟天乐(天津市海河中学,天津市300202) 【摘要】文本分类任务是自然语言处理领域中的一个重要分支任务,在现实中有着重要的应用,例如网络舆情分析、商品评论情感分析、新闻领域类别分析等等。朴素贝叶斯方法是一种常见的分类模型,它是一种基于贝叶斯定理和特征条件独立性假设的分类方法。本文主要探究文本分类的流程方法和朴素贝叶斯这一方法的原理并将这种方法应用到文本分类的一个任务—— —垃圾邮件过滤。 【关键词】文本分类;监督学习;朴素贝叶斯;数学模型;垃圾邮件过滤 【中图分类号】TP391.1【文献标识码】A【文章编号】1006-4222(2019)01-0244-02 1前言 随着互联网时代的发展,文本数据的产生变得越来越容易和普遍,处理这些文本数据也变得越来越必要。文本分类任务是自然语言处理领域中的一个重要分支任务,也是机器学习技术中一个重要的应用,应用场景涉及生活的方方面面,如网络舆情分析,商品评论情感分析,新闻领域类别分析等等。 朴素贝叶斯方法是机器学习中一个重要的方法,这是一种基于贝叶斯定理和特征条件独立性假设的分类方法。相关研究和实验显示,这种方法在文本分类任务上的效果较好。2文本分类的流程 文本分类任务不同于其他的分类任务,文本是一种非结构化的数据,需要在使用机器学习模型之前进行一些适当的预处理和文本表示的工作,然后再将处理后的数据输入到模型中得出分类的结论。 2.1分词 中文语言词与词之间没有天然的间隔,这一点不同于很多西方语言(如英语等)。所以中文自然语言处理首要步骤就是要对文本进行分词预处理,即判断出词与词之间的间隔。常用的中文分词工具有jieba,复旦大学的fudannlp,斯坦福大学的stanford分词器等等。 2.2停用词的过滤 中文语言中存在一些没有意义的词,准确的说是对分类没有意义的词,例如语气词、助词、量词等等,去除这些词有利于去掉一些分类时的噪音信息,同时对降低文本向量的维度,提高文本分类的速度也有一定的帮助。 2.3文本向量的表示 文本向量的表示是将非结构化数据转换成结构化数据的一个重要步骤,在这一步骤中,我们使用一个个向量来表示文本的内容,常见的文本表示方法主要有以下几种方法: 2.3.1TF模型 文本特征向量的每一个维度对应词典中的一个词,其取值为该词在文档中的出现频次。 给定词典W={w1,w2,…,w V},文档d可以表示为特征向量d={d1,d2,…,d V},其中V为词典大小,w i表示词典中的第i个 词,t i表示词w i在文档d中出现的次数。即tf(t,d)表示词t在文档d中出现的频次,其代表了词t在文档d中的重要程度。TF模型的特点是模型假设文档中出现频次越高的词对刻画文档信息所起的作用越大,但是TF有一个缺点,就是不考虑不同词对区分不同文档的不同贡献。有一些词尽管在文档中出现的次数较少,但是有可能是分类过程中十分重要的特征,有一些词尽管会经常出现在众多的文档中,但是可能对分类任务没有太大的帮助。于是基于TF模型,存在一个改进的TF-IDF模型。 2.3.2TF-IDF模型 在计算每一个词的权重时,不仅考虑词频,还考虑包含词 论述244

大数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

基于朴素贝叶斯的文本分类算法

基于朴素贝叶斯的文本分类算法 摘要:常用的文本分类方法有支持向量机、K-近邻算法和朴素贝叶斯。其中朴素贝叶斯具有容易实现,运行速度快的特点,被广泛使用。本文详细介绍了朴素贝叶斯的基本原理,讨论了两种常见模型:多项式模型(MM)和伯努利模型(BM),实现了可运行的代码,并进行了一些数据测试。 关键字:朴素贝叶斯;文本分类 Text Classification Algorithm Based on Naive Bayes Author: soulmachine Email:soulmachine@https://www.docsj.com/doc/6c11925893.html, Blog:https://www.docsj.com/doc/6c11925893.html, Abstract:Usually there are three methods for text classification: SVM、KNN and Na?ve Bayes. Na?ve Bayes is easy to implement and fast, so it is widely used. This article introduced the theory of Na?ve Bayes and discussed two popular models: multinomial model(MM) and Bernoulli model(BM) in details, implemented runnable code and performed some data tests. Keywords: na?ve bayes; text classification 第1章贝叶斯原理 1.1 贝叶斯公式 设A、B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。 乘法公式P(XYZ)=P(Z|XY)P(Y|X)P(X) 全概率公式P(X)=P(X|Y 1)+ P(X|Y 2 )+…+ P(X|Y n ) 贝叶斯公式 在此处,贝叶斯公式,我们要用到的是

贝叶斯分类实验报告doc

贝叶斯分类实验报告 篇一:贝叶斯分类实验报告 实验报告 实验课程名称数据挖掘 实验项目名称贝叶斯分类 年级 XX级 专业信息与计算科学 学生姓名 学号 1207010220 理学院 实验时间: XX 年 12 月 2 日 学生实验室守则 一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。 二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。 三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用

或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。 五、实验中要节约水、电、气及其它消耗材料。 六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。 七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。 八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。 九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。 十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。 十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。 学生所在学院:理学院专业:信息与计算科学班级:信计121

机器学习实验报告-朴素贝叶斯学习和分类文本

机器学习实验报告 朴素贝叶斯学习和分类文本 (2015年度秋季学期) 一、实验内容 问题:通过朴素贝叶斯学习和分类文本 目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计

实验原理与设计: 在分类(classification)问题中,常常需要把一个事物分到某个类别。一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。 这就是所谓的分类(Classification)。x的集合记为X,称为属性集。一般X和Y 的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。根据贝叶斯公式,后验概率为 在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。 在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china标 签。 我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。朴素贝叶斯分类器是一种有监督学习。 实验主要代码: 1、 由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词。这里采用极易中文分词组件

Bayes分类器原理

贝叶斯分类器 一、朴素贝叶斯分类器原理 目标: 计算(|)j P C t 。注:t 是一个多维的文本向量 分析: 由于数据t 是一个新的数据,(|)j P C t 无法在训练数据集中统计出来。因此需要转换。根据概率论中的贝叶斯定理 (|)()(|)() P B A P A P A B P B = 将(|)j P C t 的计算转换为: (|)() (|)()j j j P t C P C P C t P t = (1) 其中,()j P C 表示类C j 在整个数据空间中的出现概率,可以在训练集中统计出来(即用C j 在训练数据集中出现的频率()j F C 来作为概率()j P C 。但(|)j P t C 和()P t 仍然不能统计出来。 首先,对于(|)j P t C ,它表示在类j C 中出现数据t 的概率。根据“属性独立性假设”,即对于属于类j C 的所有数据,它们个各属性出现某个值的概率是相互独立的。如,判断一个干部是否是“好干部”(分类)时,其属性“生活作风=好”的概率(P(生活作风=好|好干部))与“工作态度=好”的概率(P(工作态度=好|好干部))是独立的,没有潜在的相互关联。换句话说,一个好干部,其生活作风的好坏与其工作态度的好坏完全无关。我们知道这并不能反映真实的情况,因而说是一种“假设”。使用该假设来分类的方法称为“朴素贝叶斯分类”。 根据上述假设,类j C 中出现数据t 的概率等于其中出现t 中各属性值的概率的乘积。即: (|)(|)j k j k P t C P t C =∏ (2) 其中,k t 是数据t 的第k 个属性值。

其次,对于公式(1)中的 ()P t ,即数据t 在整个数据空间中出现的概率,等于它在各分类中出现概率的总和,即: ()(|)j j P t P t C =∑ (3) 其中,各(|)j P t C 的计算就采用公式(2)。 这样,将(2)代入(1),并综合公式(3)后,我们得到: (|)()(|),(|)(|)(|) j j j j j j k j k P t C P C P C t P t C P t C P t C ?=????=??∑∏其中: (4) 公式(4)就是我们最终用于判断数据t 分类的方法。其依赖的条件是:从训练数据中统计出(|)k j P t C 和()j P C 。 当我们用这种方法判断一个数据的分类时,用公式(4)计算它属于各分类的概率,再取其中概率最大的作为分类的结果。 改进的P(t | C j )的计算方法: 摒弃t(t 1, t 2 , t 3,)中分量相互独立的假设, P(t 1, t 2 , t 3,| C j ) = P(t 1 | C j ) * P(t 2 | t 1, C j ) * P(t 3| t 1, t 2 ,C j ) 注意: P(t 3| t 1, t 2 ,C j )

主观贝叶斯实验报告

主观贝叶斯实验报告 学生姓名 程战战 专业/班级 计算机91 学 号 09055006 所在学院 电信学院 指导教师 鲍军鹏 提交日期 2012/4/26

根据初始证据E 的概率P (E )及LS 、LN 的值,把H 的先验概率P (H )更新为后验概率P (H/E )或者P(H/!E)。在证据不确定的情况下,用户观察到的证据具有不确定性,即0

统计学习_朴素贝叶斯分类器实验报告

作业6 编程题实验报告 (一)实验内容: 编程实现朴素贝叶斯分类器,假设输入输出都是离散变量。用讲义提供的训练数据进行试验,观察分类器在 121.x x m ==时,输出如何。如果在分类器中加入Laplace 平滑(取?=1) ,结果是否改变。 (二)实验原理: 1)朴素贝叶斯分类器: 对于实验要求的朴素贝叶斯分类器问题,假设数据条件独立,于是可以通过下式计算出联合似然函数: 12(,,)()D i i p x x x y p x y =∏ 其中,()i p x y 可以有给出的样本数据计算出的经验分布估计。 在实验中,朴素贝叶斯分类器问题可以表示为下面的式子: ~1*arg max ()()D i y i y p y p x y ==∏ 其中,~ ()p y 是从给出的样本数据计算出的经验分布估计出的先验分布。 2)Laplace 平滑: 在分类器中加入Laplace 平滑目的在于,对于给定的训练数据中,有可能会出现不能完全覆盖到所有变量取值的数据,这对分类器的分类结果造成一定误差。 解决办法,就是在分类器工作前,再引入一部分先验知识,让每一种变量去只对应分类情况与统计的次数均加上Laplace 平滑参数?。依然采用最大后验概率准则。 (三)实验数据及程序: 1)实验数据处理: 在实验中,所用数据中变量2x 的取值,对应1,2,3s m I === 讲义中所用的两套数据,分别为cover all possible instances 和not cover all possible instances 两种情况,在实验中,分别作为训练样本,在给出测试样本时,输出不同的分类结果。 2)实验程序: 比较朴素贝叶斯分类器,在分类器中加入Laplace 平滑(取?=1)两种情况,在编写matlab 函数时,只需编写分类器中加入Laplace 平滑的函数,朴素贝叶斯分类器是?=0时,特定的Laplace 平滑情况。 实现函数:[kind] =N_Bayes_Lap(X1,X2,y,x1,x2,a) 输入参数:X1,X2,y 为已知的训练数据; x1,x2为测试样本值; a 为调整项,当a=0时,就是朴素贝叶斯分类器,a=1时,为分类器中加入Laplace 平滑。 输出结果:kind ,输出的分类结果。

Python实现贝叶斯分类器

关于朴素贝叶斯 朴素贝叶斯算法是一个直观的方法,使用每个属性归属于某个类的概率来做预测。你可以使用这种监督性学习方法,对一个预测性建模问题进行概率建模。 给定一个类,朴素贝叶斯假设每个属性归属于此类的概率独立于其余所有属性,从而简化了概率的计算。这种强假定产生了一个快速、有效的方法。 给定一个属性值,其属于某个类的概率叫做条件概率。对于一个给定的类值,将每个属性的条件概率相乘,便得到一个数据样本属于某个类的概率。 我们可以通过计算样本归属于每个类的概率,然后选择具有最高概率的类来做预测。 通常,我们使用分类数据来描述朴素贝叶斯,因为这样容易通过比率来描述、计算。一个符合我们目的、比较有用的算法需要支持数值属性,同时假设每一个数值属性服从正态分布(分布在一个钟形曲线上),这又是一个强假设,但是依然能够给出一个健壮的结果。 预测糖尿病的发生 本文使用的测试问题是“皮马印第安人糖尿病问题”。 这个问题包括768个对于皮马印第安患者的医疗观测细节,记录所描述的瞬时测量取自诸如患者的年纪,怀孕和血液检查的次数。所有患者都是21岁以上(含21岁)的女性,所有属性都是数值型,而且属性的单位各不相同。 每一个记录归属于一个类,这个类指明以测量时间为止,患者是否是在5年之内感染的糖尿病。如果是,则为1,否则为0。 机器学习文献中已经多次研究了这个标准数据集,好的预测精度为70%-76%。 下面是pima-indians.data.csv文件中的一个样本,了解一下我们将要使用的数据。 注意:下载文件,然后以.csv扩展名保存(如:pima-indians-diabetes.data.csv)。查看文件中所有属性的描述。 Python 1 2 3 4 5 6,148,72,35,0,33.6,0.627,50,1 1,85,66,29,0,26.6,0.351,31,0 8,183,64,0,0,23.3,0.672,32,1 1,89,66,23,94,28.1,0.167,21,0 0,137,40,35,168,43.1,2.288,33,1 朴素贝叶斯算法教程 教程分为如下几步: 1.处理数据:从CSV文件中载入数据,然后划分为训练集和测试集。 2.提取数据特征:提取训练数据集的属性特征,以便我们计算概率并做出预测。 3.单一预测:使用数据集的特征生成单个预测。 4.多重预测:基于给定测试数据集和一个已提取特征的训练数据集生成预测。 5.评估精度:评估对于测试数据集的预测精度作为预测正确率。 6.合并代码:使用所有代码呈现一个完整的、独立的朴素贝叶斯算法的实现。 1.处理数据

模式识别实验报告-实验一-Bayes分类器设计汇总

实验一 Bayes 分类器设计 【实验目的】 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻 地认识,理解二类分类器的设计原理。 【实验原理】 最小风险贝叶斯决策可按下列步骤进行: (1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==c j i i i i i P X P P X P X P 1)()() ()()(ωωωωω j=1,…,x (2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑==c j j j i i X P a X a R 1)(),()(ωωλ,i=1,2,…,a (3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最 小的决策k a ,即 ()()1,min k i i a R a x R a x ==L 则k a 就是最小风险贝叶斯决策。 【实验内容】 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9; 异常状态:P (2ω)=0.1。 现有一系列待观察的细胞,其观察值为x :

-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 已知类条件概率是的曲线如下图: )|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为N (-2,0.25)、N (2,4) 试对观察的结果进行分类。 【实验要求】 1) 用matlab 完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明 文字,要求有子程序的调用过程。 2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。 3) 如果是最小风险贝叶斯决策,决策表如下: 最小风险贝叶斯决策表:

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告 ---最小错误率贝叶斯决策分类 一、实验原理 对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为 11 22 11()exp ()()2(2)T d p π-??=--∑-???? ∑x x μx μ 式中,12,,,d x x x ????=x 是d 维行向量,12,,,d μμμ????=μ 是d 维行向量,∑是d d ?维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。 本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数 ()(|)(), 1,2,3i i i g p P i ωω==x x (3个类别) 其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。 由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。 我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为 112 2 ()1()exp ()(),1,2,32(2)T i i d P g i ωπ-?? = -∑=???? ∑ x x -μx -μ 对上式右端取对数,可得 111()()()ln ()ln ln(2)222 T i i i i d g P ωπ-=-∑+-∑-i i x x -μx -μ 上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。则判别函数()i g x 可简化为以下形式 111 ()()()ln ()ln 22 T i i i i g P ω-=-∑+-∑i i x x -μx -μ

朴素贝叶斯分类的改进

朴素贝叶斯分类器的改进 摘要:朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,以及它的被动学习策略,影响了它的分类性能。本文从不同的角度出发,讨论并分析了三种改进朴素贝叶斯分类性能的方法。为进一步的研究打下坚实的基础。 关键词:朴素贝叶斯;主动学习;贝叶斯网络分类器;训练样本;树增广朴素贝叶斯 1 问题描述 随着计算机与信息技术的发展,人类获取的知识和能够及时处理的数据之间的差距在加大,从而导致了一个尴尬的境地,即“丰富的数据”和“贫乏的知识”并存。在数据挖掘技术中,分类技术能对大量的数据进行分析、学习,并建立相应问题领域中的分类模型。分类技术解决问题的关键是构造分类器。分类器是一个能自动将未知文档标定为某类的函数。通过训练集训练以后,能将待分类的文档分到预先定义的目录中。常用的分类器的构造方法有决策树、朴素贝叶斯、支持向量机、k近邻、神经网络等多种分类法,在各种分类法中基于概率的贝叶斯分类法比较简单,在分类技术中得到了广泛的应用。在众多的分类器的构造方法与理论中,朴素贝叶斯分类器(Naive Bayesian Classifiers)[1]由于计算高效、精确度高。并具有坚实的理论基础而得到了广泛的应用。文献朴素贝叶斯的原理、研究成果进行了具体的阐述。文章首先介绍了朴素贝叶斯分类器,在此基础上分析所存在的问题。并从三个不同的角度对朴素贝叶斯加以改进。 2 研究现状 朴素贝叶斯分类器(Na?ve Bayesian Classifier)是一种基于Bayes理论的简单分类方法,它在很多领域都表现出优秀的性能[1][2]。朴素贝叶斯分类器的“朴素”指的是它的条件独立性假设,虽然在某些不满足独立性假设的情况下其仍然可能获得较好的结果[3],但是大量研究表明此时可以通过各种方法来提高朴素贝叶斯分类器的性能。改进朴素贝叶斯分类器的方式主要有两种:一种是放弃条件独立性假设,在NBC的基础上增加属性间可能存在的依赖关系;另一种是重新构建样本属性集,以新的属性组(不包括类别属性)代替原来的属性组,期望在新的属性间存在较好的条件独立关系。 目前对于第一种改进方法研究得较多[2][4][5]。这些算法一般都是在分类精度和算法复杂度之间进行折衷考虑,限制在一定的范围内而不是在所有属性构成的完全网中搜索条件依赖关系。虽然如

贝叶斯算法(文本分类算法)java源码

package com.vista; import java.io.IOException; import jeasy.analysis.MMAnalyzer; /** * 中文分词器 */ public class ChineseSpliter { /** * 对给定的文本进行中文分词 * @param text 给定的文本 * @param splitToken 用于分割的标记,如"|" * @return 分词完毕的文本 */ public static String split(String text,String splitToken) { String result = null; MMAnalyzer analyzer = new MMAnalyzer(); try { result = analyzer.segment(text, splitToken); } catch (IOException e) { e.printStackTrace(); } return result; } } 停用词处理 去掉文档中无意思的词语也是必须的一项工作,这里简单的定义了一些常见的停用词,并根据这些常用停用词在分词时进行判断。 package com.vista;

/** * 停用词处理器 * @author phinecos * */ public class StopWordsHandler { private static String stopWordsList[] ={"的", "我们","要","自己","之","将","“","”",",","(",")","后","应","到","某","后","个","是","位","新","一","两","在","中","或","有","更","好",""};//常用停用词public static boolean IsStopWord(String word) { for(int i=0;i

相关文档
相关文档 最新文档