文档视界 最新最全的文档下载
当前位置:文档视界 › 浙江师范大学数学分析与高等代数2005真题

浙江师范大学数学分析与高等代数2005真题

浙江师范大学数学分析与高等代数2005真题

浙江师范大学全日制硕士研究生入学考试专业课试题版权所有违者必究

地址:浙江省金华市浙江师范大学研究生招生办邮编:321004电话:0579-2282645传真:0579-2280023

浙江师范大学研究生学院网站https://www.docsj.com/doc/6b1248798.html,浙江师范大学党委研工部网站https://www.docsj.com/doc/6b1248798.html, 浙江师范大学研究生学院学术论坛https://www.docsj.com/doc/6b1248798.html,/bbs/考研你我他交流圈:https://www.docsj.com/doc/6b1248798.html,

欢迎全国各地考生报考我校!

请关注以上网站获取本校最新考研信息

2006年浙江大学427数学分析考研真题【圣才出品】

1 / 3 2006年浙江大学427数学分析考研真题 浙江大学2006年攻读硕士学位研究生入学试题 考试科目:数学分析(427) 考生注意: 1.本试卷满分为150 分,全部考试时间总计180 分钟; 2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。 一、(20分) ()i 证明:数列 1111ln (1,2,3,)23n x n n n =++++-=收敛; ()ii 计算:1111lim()1232n n n n n →∞ +++++++. 二、(15分) 设()f x 是闭区间 [],a b 上的连续函数,对任一点(),x a b ∈,存在趋于零的数列,使得 2()()2()lim 0k k k k f x r f x r f x r →∞++--=. 证明:函数()f x 为一线性函数. 三、(15分) 设()h x 是 (),-∞+∞上的无处可导的连续函数,试以此构造连续函数()f x ,在 (),-∞+∞上仅在两点可导,并且说明理由.

2 / 3 四、(15分) 设22222221()sin ,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=?. ()i 求(,)f x y x ??以及(,)f x y y ??; ()ii 问(,),(,)f f x y x y x y ????在原点是否连续?(,)f x y 在原点是否可微?试说明理由. 五、(20分) 设()f x 在()0,+∞的任何闭子区间[],αβ上黎曼可积,且0()f x dx +∞ ?收敛, 证明:对于常数 1a >,成立 000lim ()()xy y a f x dx f x dx ++∞+∞-→=??. 六、(15分) 计算曲面积分 32222()S xdydz ydzdx zdxdy I ax by cz ++=++?? 其中 {}2222(,,)S x y z x y z r =++=,常数0,0,0,0a b c r >>>>. 七、(15分) 设V 为单位球: 2221x y z ++≤,又设,,a b c 为不全为零的常数,计算: cos()V I ax by cz dxdydz =++???. 八、(20分) 设函数21()12f x x x =--,证明级数 ()0!(0)n n n f ∞=∑收敛. 九、(15分) 设()f x 在)0,+∞??上可微,(0)0f =.若有常数0A >,使得对任意 ) 0,x ∈+∞??,有

2005年河南专升本高数真题及答案

2005年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试 高等数学 试卷 一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。不选、错选或多选者,该题无分. 1.函数x x y --=5) 1ln(的定义域为为 ( ) A. 1>x B.5->-510 501. 2.下列函数中,图形关于y 轴对称的是 ( ) A .x x y cos = B. 13++=x x y C. 222x x y --= D. 2 22x x y -+= 解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数2 22x x y -+=为 偶函数,应选D. 3. 当0→x 时,与12 -x e 等价的无穷小量是 ( ) A. x B.2x C. x 2 D. 22x 解: ?-x e x ~12~12 x e x -,应选B. 4.=?? ? ??++∞ →1 21lim n n n ( ) A. e B. 2e C. 3e D. 4e 解:2)1(2lim 2 )1(221 21lim 21lim 21lim e n n n n n n n n n n n n n n =? ?? ????? ??? ??+=?? ? ??+=?? ? ? ? + +∞→+?∞ →+∞ →∞ →,应选B. 5.设 ?? ? ??=≠--=0,0,11)(x a x x x x f 在0=x 处连续,则 常数=a ( )

A. 1 B. -1 C. 21 D. 2 1 - 解:2 1 )11(1lim )11(lim 11lim )(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 6.设函数)(x f 在点1=x 处可导,且2 1 )1()21(lim 0=--→h f h f h ,则=')1(f ( ) A. 1 B. 21- C. 41 D. 4 1 - 解:4 1 )1(21)1(22)1()21(lim 2)1()21(lim 020-='?='-=----=--→-→f f h f h f h f h f h h , 应选D. 7.由方程y x e xy +=确定的隐函数)(y x 的导数dy dx 为 ( ) A.)1()1(x y y x -- B.)1()1(y x x y -- C.)1()1(-+y x x y D.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++, 即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-, 所以 dy dx ) 1() 1(x y y x --= ,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f n C. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n 解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f ! ='?='''?='='', ?ΛΛ=)()(x f n 1)]([!+n x f n ,应选B. 9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x f C.]1,1[,11 )(2 --=x x f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A. 10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,2 1 (内,)(x f 单调 ( ) A.增加,曲线)(x f y =为凹的 B.减少,曲线)(x f y =为凹的 C.增加,曲线)(x f y =为凸的 D.减少,曲线)(x f y =为凸的 解: 在)1,21 (内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函 数)(x f 在)1,2 1 (内单调减少,且曲线)(x f y =为凹的,应选B.

含数学分析和高等代数两门课

含数学分析和高等代数两门课 数 学 分 析(I ) (1)集合与函数 实数概述,绝对值不等式,区间与邻域,有界集,确界原理,函数概念。 (2)数列极限 数列。数列极限的N -∑定义。收敛数列的性质:唯一性、有界性、保号性、不等式性质、迫敛性、有理运算。子列。数列极限存在的条件;单调有限定理、柯西收敛原理。????????????? ??+n n 11、STOLZ 定理。 (3)函数极限 函数极限概念(x x x →∞→与。瞬时函数的极限。δ-∑定义、M -∑定义)函数极限的性质:唯一性、局部有界性、局部保号性、不等式性质、迫敛性、有理运算。 函数极限存在的条件:归结原则、柯西准则。 两个重要极限:1sin lim ,)11(lim 0==+→∞→x x e x x x x 无穷小量与无穷大量及其阶的比较。 (4)函数的连续性 函数在一点的连续性。单侧连续性。间断点及其分类。在区间上连续的函数。连续函数的局部性质:有界性、保号性、连续函数的有理运算、复合函数的连续性。闭区间上连续函数的性质:有界性、取得最大最小值性、介值性、一致连续性。初等函数的连续性。 (5)极限与连续性(续) 实数完备性的基本定理:区间套定理、数列的柯西收敛准则、聚点原理、致密性定理、有限覆盖定理、实数完备性基本定理的等价性。闭区间上连续函数性质的说明。实数系。压缩映射原理。 (6)导数与微分 引入问题(切线问题与瞬时速度问题)。导数的定义。单侧导数。导函数。导数的几何意义。和、积、商的导数。反函数的导数。复合函数的导数。初等函数的导数。 微分概念。微分的几何意义。微分的运算法则。一阶微分形式的不变性。微分在近似

2005年考研数学一真题(解析)

2005年考研数学一真题 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)曲线1 22 +=x x y の斜渐近线方程为 _____________. (2)微分方程x x y y x ln 2=+'满足9 1)1(-=y の解为. ____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{3 1= n ρ,则) 3,2,1(n u ??=.________. (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界 の外侧,则 ??∑ =++zdxdy ydzdx xdydz ____________. (5)设321,,ααα均为3维列向量,记矩阵 ),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .. (6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y , 则 }2{=Y P =____________. 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求, 把所选项前の字母填在题后の括号内) (7)设函数n n n x x f 31lim )(+=∞ →,则f(x)在),(+∞-∞内 (A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)の一个原函数,""N M ?表示“M の充分必要条件是N ”,则必有 (A) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C) F(x)是周期函数?f(x)是周期函数. (D) F(x)是单调函数?f(x)是单调函数. [ ] (9)设函数? +-+-++=y x y x dt t y x y x y x u )()()(),(ψ??, 其中函数?具有二阶导数,ψ 具有一阶导 数,则必有 (A) 2222y u x u ??-=??. (B ) 2222y u x u ??=??. (C) 222y u y x u ??=???. (D) 222x u y x u ??=???. [ ]

2001年浙江大学436数学分析考研真题【圣才出品】

2001年浙江大学436数学分析考研真题 浙江大学2001年攻读硕士学位研究生入学试题 考试科目:数学分析(436) 一、(30分) ()i 用“εδ-语言”证明2211lim 3233n n n n n →∞-+=+-; ()ii 求极限tan 21lim(2)x x x π→-; ()iii 设101(ln )1x f x x x <≤?'=?>?,且(0)0f =,求()f x . 二、(10分) 设()y y x =是可微函数,求(0)y ',其中 2sin 7x y y ye e x x =-+-. 三、(10分) 在极坐标变换cos ,sin x r y r θθ==之下,变换方程2222(,)z z f x y x y ??+=??. 四、(20分) ()i 求由半径为a 的球面与顶点在球心,顶角为2α的圆锥面所围成区域的体积; ()ii 求曲面积分222()()()s I y x dydz z y dzdx x z dxdy =-+-+-??,其中S 是曲面 222(12)z x y z =--≤≤的上侧.

五、(15分) 设二元函数(,)f x y 在正方形区域 [][]0,10,1?上连续,记[]0,1J =. ()i 试比较inf sup (,)y J y J f x y ∈∈与supinf (,)y J y J f x y ∈∈的大小并证明之; ()ii 给出一个使等式inf sup (,)supinf (,)y J y J y J y J f x y f x y ∈∈∈∈=成立的充分条件并证明之. 六、(15分) 设()f x 是在 []1,1-上可积且在0x =处连续的函数,记 (1)01()10n n nx x x x e x ??-≤≤?=?-≤≤?? . 证明:11lim ()()(0)2n n n f x x dx f ?-→∞=?.

初试科目考试大纲-904数学分析与高等代数

浙江师范大学硕士研究生入学考试初试科目 考试大纲 科目代码、名称: 904数学分析与高等代数 适用专业: 420104学科教学(数学) 一、考试形式与试卷结构 (一)试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。 (二)答题方式 答题方式为闭卷、笔试。 试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。 (三)试卷内容结构 各部分内容所占分值为: 数学分析约100分 高等代数约50分 (四)试卷题型结构 计算题:7大题,约100分。 分析论述题:3大题,约50分。 二、考查目标(复习要求) 全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题。 三、考查范围或考试内容概要 第一部分:数学分析 考查内容 1、数列极限 数列极限概念、收敛数列的定理、数列极限存在的条件 2、函数极限 函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量

3、函数的连续性 连续性概念、连续函数的性质 4、导数与微分 导数的概念、求导法则、微分、高阶导数与高阶微分 5、中值定理与导数应用 微分学基本定理、函数的单调性与极值 6、不定积分 不定积分概念与基本积分公式、换元法积分法与分部积分法 7、定积分 定积分概念、可积条件、定积分的性质、定积分的计算 8、定积分的应用 平面图形的面积、旋转体的侧面积 9、级数 正项级数、函数项级数、幂级数、傅里叶级数 10、多元函数微分学 偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题 第二部分:高等代数 考查内容 多项式、行列式、线性方向组、矩阵、线性空间、线性变换 参考教材或主要参考书: 华东师范大学编:《数学分析》(上、下),高等教育出版社,2001年,第三版。 北京大学编:《高等代数》,高等教育出版社,2003年,第三版。 四、样卷 见往年试卷。

2005全国高考数学3试卷与答案

2005年普通高等学校招生全国统一考试 数学(全国3理)试题精析详解 一、选择题(每小题5分,共60分) 1.已知α为第三象限角,则2 α所在的象限是 ( ) A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 【思路点拨】本题考查任意角的表示方法及讨论整数的奇偶性. 【正确解答】解法(1)因为α为第三象限角,所以(2,2)()2 k k k Z π απππ∈--∈, 所以 (,)()2 24k k k Z α π πππ∈- -∈,即2 α 所在的象限是第二或第四象限.选D 解法(2)用图象法类似角分线,由图象可以轻易得到答案.选D 解法(3)用特值法令 0135α=-和0225α=,也可以得到答案D 【解后反思】熟悉角的终边在坐标系内的画法,可以求任意角简单分割后的终边所在象限.如何求任意角经复杂分割后的终边所在象限如 n α (1)先写出α范围(2)再求出除以n 的范围(3)再分成n 类情况讨论可完成. 2.已知过点A(-2,m)和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为 ( ) A .0 B .-8 C .2 D .10 【思路点拨】本题考查直线方程中系数与直线几何性质的关系. 【正确解答】解法(1)两直线平行,则斜率相等,因此有422 m m -=-+,得8m =-. 选B. 解法(2)可用特值法逐个代入,与条件相匹配.也能得到答案B. 【解后反思】掌握直线方程五种形式的相互转化及其参数对几何性质的影响.即把相应条件变成等式,从平行等重要条件入手. 3.在8)1)(1(+-x x 的展开式中5x 的系数是 ( ) A .-14 B .14 C .-28 D .28 【思路点拨】本题考查二项式定理通项公式的应用. 【正确解答】8 8 8 (1)(1)(1)(1)x x x x x -+=+-+,5x 的系数为45 8814C C -=.

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

关于高等代数与数学分析的学习体会

高等代数与数学分析的学习体会 摘要:作为数学系的学生,高等代数和数学分析,是我们一进大学就开始学习的两门最重要的课程。同时它们也是数学中最基础的两门课程,几乎所有的后学课程都要用到它们。在本文中,我就自己对这两门课程的基本内容,学习体会,以及这两门课程与后学课程的联系三个方面谈了一些自己的看法。 高等代数部分 基本内容: 在谈自己对高等代数的学习体会之前,我想先回顾一下高等代数的基本内容。我们大一所学习的高等代数,主要包括两部分:多项式代数和线性代数。 其中线性代数部分又可以分成:行列式,线性方程组,矩阵,二次型,线性空间,线性变换, —矩阵,欧几里得空间,双线性函数与辛空间等一些章节。而在这些章节中,又是以向量理论,线性方程理论和线性变换的相关理论为核心的。 如果和以前学过的初等代数相比,我觉得,高等代数在初等代数的基础上把研究对象作了进一步的扩充。它引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 简单体会: 记得大一刚学习高等代数的时候,那时感觉自己真的学得云里雾里,因为那时感觉它实在是太抽象了而无法理解。但是通过不断地对它的学习,慢慢地开始有好转,开始感觉它不再那么陌生,并对它有了初步的认识。而当我学完抽象代数之后,我发现自己对高等代数的有了更好的理解。其实高等代数中的每个不同的章节,都是由一个集合再加上一套运算规则,进而构成的一个代数结构。 例如,第一章多项式,我们所有的讨论都是在某个数域P上的一元多项式环中进行。其中的某个数域P中的一元多项式全体,就相当于某个集合,在这个集合的基础上再加上关于多项式的运算规则,就构成了一个代数结构。 因为高等代数具有这种结构,所以在学习每种代数结构时,我们总会先学这个代数结构是建立在那个集合上以及它的运算规则是怎样定义的。因此,在高等代数学习中对每种代数

2005考研数学三真题及答案解析

2005年考研数学(三)真题 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)极限1 2sin lim 2 +∞ →x x x x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=) 0,1(dz ________. (4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y , 则 }2{=Y P =______. (6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1 已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= . 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(2 3 恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D ??+= 221cos ,σd y x I D ??+=)cos(222,σd y x I D ??+=2223)cos(,其中 }1),{(22≤+=y x y x D ,则 (A) 123I I I >>. (B )321I I I >>. (C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0Λ=>n a n 若 ∑∞ =1 n n a 发散, ∑∞ =--1 1 ) 1(n n n a 收敛,则下列结论正确的是 (A) ∑∞ =-11 2n n a 收敛, ∑∞ =1 2n n a 发散 . (B ) ∑∞ =1 2n n a 收敛, ∑∞ =-1 1 2n n a 发散. (C) )(1 21 2∑∞ =-+n n n a a 收敛. (D) )(1 21 2∑∞ =--n n n a a 收敛. [ ] (10)设x x x x f cos sin )(+=,下列命题中正确的是

含数学分析和高等代数两门课

含数学分析和高等代数两门课 数 学 分 析(I ) (1)集合与函数 实数概述,绝对值不等式,区间与邻域,有界集,确界原理,函数概念。 (2)数列极限 数列。数列极限的N -∑定义。收敛数列的性质:唯一性、有界性、保号性、不等式性质、迫敛性、有理运算。子列。数列极限存在的条件;单调有限定理、柯西收敛原理。????????????? ??+n n 11、STOLZ 定理。 (3)函数极限 函数极限概念(x x x →∞→与。瞬时函数的极限。δ-∑定义、M -∑定义)函数极限的性质:唯一性、局部有界性、局部保号性、不等式性质、迫敛性、有理运算。 函数极限存在的条件:归结原则、柯西准则。 两个重要极限:1sin lim ,)11(lim 0==+→∞→x x e x x x x 无穷小量与无穷大量及其阶的比较。 (4)函数的连续性 函数在一点的连续性。单侧连续性。间断点及其分类。在区间上连续的函数。连续函数的局部性质:有界性、保号性、连续函数的有理运算、复合函数的连续性。闭区间上连续函数的性质:有界性、取得最大最小值性、介值性、一致连续性。初等函数的连续性。 (5)极限与连续性(续) 实数完备性的基本定理:区间套定理、数列的柯西收敛准则、聚点原理、致密性定理、有限覆盖定理、实数完备性基本定理的等价性。闭区间上连续函数性质的说明。实数系。压缩映射原理。 (6)导数与微分 引入问题(切线问题与瞬时速度问题)。导数的定义。单侧导数。导函数。导数的几何意义。和、积、商的导数。反函数的导数。复合函数的导数。初等函数的导数。

微分概念。微分的几何意义。微分的运算法则。一阶微分形式的不变性。微分在近似 计算中的应用。高阶导数与高阶微分。由参量方程所表示的曲线的斜率。 (7)中值定理与导数的应用 费马(Fermat)定理。罗尔(Rolle)中值定理。拉格朗日(Lagrange)中值定理。柯西中 值定理。泰勒(Taylor)定理(Taylor公式及其拉格朗日型余项、皮亚诺余项)、泰勒公式 的某些应用。 函数的单调性的判别法。极值。最大值与最小值。函数的凸性。拐点。渐近点。函数 图象的讨论。 数学分析(II) (8)不定积分 原函数与不定积分概念。基本积分表。线性运算法则。换元积分法。分部积分法。有理 函数的积分。三角函数有理式的积分。若干初等可积函数。 (9)定积分 引入问题(曲边梯形面积与变力作功)。定积分定义。定积分的几何意义。可积的必要 条件。上下和及其性质。可积主要条件。几乎处处连续函数。可积函数类:在闭区间上连续 函数、在闭区间上只有有限个间断点的有界函数、单调有界函数。 定积分性质:线性运算法则、区间可加性、不等式性质、绝对可积性、积分中值定理、第二积分中值定理。微积分基本定理。牛顿—莱布尼兹公式。换元积分法。分部积分法。近 似求积。用活动上限定积分定义对数函数,并导出对数函数和指数函数的基本性质。 (10)定积分的应用 简单平面图形面积。曲线的弧长与弧微分。曲率。已知截面面积函数的立体体积。旋转体体积

2005年全国硕士研究生入学统一考试数学三真题及答案

全国硕士研究生入学统一考试数学三试题答案 一、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1)极限1 2sin lim 2 +∞ →x x x x = . 【答案】2 【考点】等价无穷小 【难易度】★ 【详解】 解析:1 2sin lim 2+∞ →x x x x 22lim 2.1x x x x →∞=+等 (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 . 【答案】2xy = 【考点】变量可分离的微分方程;一阶线性微分方程 【难易度】★★ 【详解】 解析:方法一:原方程可化为0)(='xy ,积分得 C xy =, 代入初始条件2)1(=y 得C =2,故所求特解为 2xy =. 方法二:按变量分离法解之. 由0=+'y y x ,分离变量为 dy dx dx dx =- 积分ln ln ln y x C =-+.改写为C y x = . 去掉绝对值号,认为C 可取负值,得通解C y x =. 以2)1(=y 代入得C =2,得特解2xy =. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=) 0,1(dz . 【答案】2ed (e 2)d x y ++ 【考点】全微分形式不变性 【难易度】★★ 【详解】 解析: [] e y xe e x z y x y x 2)0,1()1ln() 0,1(=+++=??++, 2) 0,1(11)0,1(+=??? ???+++=??+e y x xe y z y x ,

于是 =) 0,1(dz dy e edx )2(2++. (4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则 a = . 【答案】1 2 【考点】向量组线性相关的充分必要条件 【难易度】★★ 【详解】 解析:方法一:由题设,有 21110100011010210 111 -1 -1-2-1 -1-13211212-2 -1 -2 -2 -1 -1 4321 23 1 2 a a a a a a a a a a a -----= =-=------- (1)(21)0a a =--= 得2 1,1==a a , 但题设1≠a ,故.21=a 方法二: 令12342234112311231 12300120012[,,,]112011101111 101220011a a a a a a a a αααα????????????----? ?????=→→?????? ------?????? -----?????? 1 123011100120 0021a a ????---??=??-?? -+?? 向量组线性相关?1234[,,,]4r αααα<1a ?=或12a = ,1a =不合题意,故 1 2 a =. (5)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1Λ中任取一个数,记为Y , 则 }2{=Y P = . 【答案】 13 48 【考点】全概率公式;条件概率 【难易度】★★★

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

2005年考研数学一真题解析

2005年考研数学一真题解析 一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线122+=x x y 的斜渐近线方程为.4 1 21-=x y 【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】因为a=21 2lim )(lim 22=+=∞→∞→x x x x x f x x , []4 1 )12(2lim )(lim -=+-=-=∞→∞ →x x ax x f b x x , 于是所求斜渐近线方程为.4 1 21-= x y (2)微分方程x x y y x ln 2=+'满足9 1 )1(-=y 的解为.9 1ln 31x x x y -= . 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式: ?+??=-])([)()(C dx e x Q e y dx x P dx x P , 再由初始条件确定任意常数即可. 【详解】原方程等价为 x y x y ln 2 =+ ', 于是通解为??+?= +???=- ]ln [1]ln [2 22 2 C xdx x x C dx e x e y dx x dx x = 21 91ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.9 1 ln 31x x x y -= (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{3 1 =n ,则) 3,2,1(n u ??= 3 3. 【分析】函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n }的方向导数为:

2005数学三真题及答案解析

2005年全国硕士研究生入学统一考试 数学三试题 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)极限1 2sin lim 2+∞ →x x x x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=) 0,1(dz ________. (4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则 }2{=Y P =______. (6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1 已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= . 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(2 3恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D ??+= 221cos ,σd y x I D ??+=)cos(222,σd y x I D ??+=2 223)cos(,其中 }1),{(22≤+=y x y x D ,则 (A) 123I I I >>. (B )321I I I >>. (C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若 ∑∞ =1 n n a 发散, ∑∞ =--1 1 ) 1(n n n a 收敛,则下列结论正确的是 (A) ∑∞ =-1 1 2n n a 收敛, ∑∞ =1 2n n a 发散 . (B ) ∑∞ =1 2n n a 收敛, ∑∞ =-1 1 2n n a 发散.

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学20 10 -20 11 学年 春夏 学期 《 数学分析(Ⅱ)》课程期末考试试卷(A ) 课程号: 061Z0010 ,开课学院:___理学部___ 考试形式:闭卷,允许带___笔____入场 考试日期: 2011 年 6 月 24 日,考试时间: 120 分钟 诚信考试,沉着应考,杜绝违纪。 请注意:所有题目必须做在答题本上! 做在试卷纸上的一律无效! 请勿将答题本拆开或撕页!如发生此情况责任自负! 考生姓名: 学号: 所属院系: _ 一、 计算下列各题: ( 前4题每题5分,最后一题6分,共26分 ) 1. 2 ()(03)sin lim .x y xy x →,,求: 222 2 ()(03)()(03)sin sin lim lim 9.x y x y xy xy y x xy →→=?=,,,, 2. (122) ().f x y z gradf = ,,设,, 23(122) (122) (122) (122) 11 ..27 22 .2727 1 {122}.27 f x x f r x r r r x f f y z gradf ??==-?=-=- ????=- =- ??=- ,,,,,,,,令,则:则: 同样, ,因此,,, 3. 2222320(321)S x y z ++=求曲面:在点,,处的法线方程. 222()2320246. 321(321){686}. 343 x y z F x y z x y z F x F y F z x y z n =++-===---=== 令:,,,则:,,因此,在点,,的法向量,,,故法线为:

2005年考研数学二真题与解析

2005年考研数学二真题与解析 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设x x y )sin 1(+=,则|x dy π==______ . (2) 曲线x x y 2 3) 1(+= 的斜渐近线方程为______ . (3) =--?1 2 2 1)2(x x xdx ______ . (4) 微分方程x x y y x ln 2=+'满足9 1 )1(- =y 的解为______ . (5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ . (6)设321,,ααα均为3维列向量,记矩阵 ),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B . 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n n n x x f 31lim )(+=∞ →,则f(x)在),(+∞-∞内 (A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C) F(x)是周期函数?f(x)是周期函数. (D) F(x)是单调函数?f(x)是单调函数. [ ] (9)设函数y=y(x)由参数方程???+=+=) 1ln(, 22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 8 1 +-. (C) 32ln 8+-. (D) 32ln 8+. [ ] (10)设区域}0,0,4),{(2 2≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则 =+ +?? σd y f x f y f b x f a D ) ()()()(

最新浙江大学数学分析试题答案-考研试卷汇总

2004年浙江大学数学分析试题答案-考研试 卷

2004年浙江大学数学分析试题答案. 1.)(x f 必要性:在X 上一致收敛:,0,0>?>?δε当δ<-'''x x 时, ε<-)''()'(x f x f , 由0)(lim ' '=-∞ →m n n x x ,对上述,,0N ?>δ当N n >时,δ<-''m n x x ,有ε<-)'()'(m n x f x f , 所以0)'()'(lim =-∞ →m n n x f x f , 充分性:反证:假设)(x f 在X 上不一致收敛;'',',0,00x x ?>?>?δε尽管 δ<-'''x x ,但0)''()'(ε≥-x f x f ,不妨取,',',1m n x x n ?=δ尽管n x x m n 1 ''<-,但 0)'()'(ε≥-m n x f x f 上述},'{},'{m n x x 满足0)(lim ' '=-∞ →m n n x x ,但是0)'()'(ε≥-m n x f x f ,与 0)'()'(lim =-∞ →m n n x f x f 矛盾。 2. 由0) ('lim 0=→x x f x ,得0)0('',0)0('==f f , )()0('''61)0(''21)0(')0()(332x x f x f x f f x f ο++++=,)1 (161)1(2 2n n n nf ο+=, 级数∑ ∞ =12 1 n n 绝对收敛,所以原级数绝对收敛。 3.由0)('<+a f ,存在c a f x f a x =<>)()(,11,由0)('<-b f ,存在 c b f x f b x =><)()(,22,由连续函数的介值定理:存在201x x x <<,c x f =)(0,在 由罗尔定理,知)('x f 在),(b a 至少存在两个零点。 4.反证:假设对任意的区间],[],[b a ?βα,有0)(≥x f ,把这些区间叠加覆盖区间[a,b]则 ? ≥b a dx x f 0)(,与题设矛盾。 5.由有限覆盖定理:存在N ,,2,1 ,有N I I I ,,21覆盖[0,1],记这N 个区间的长度的最小者为δ=0 j I ,当δ<-'''x x 时,}{'','αβI I x x ∈∈

2005—数二真题、标准答案及解析

2005年考研数学二真题 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设x x y )sin 1(+=,则|x dy π==______ . (2) 曲线x x y 2 3) 1(+= 的斜渐近线方程为______ . (3) =--?1 2 2 1)2(x x xdx ______ . (4) 微分方程x x y y x ln 2=+'满足9 1 )1(- =y 的解为______ . (5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ . (6)设321,,ααα均为3维列向量,记矩阵 ),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B . 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n n n x x f 31lim )(+=∞ →,则f(x)在),(+∞-∞内 (A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C) F(x)是周期函数?f(x)是周期函数. (D) F(x)是单调函数?f(x)是单调函数. [ ] (9)设函数y=y(x)由参数方程? ??+=+=)1ln(, 22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 8 1 +-. (C) 32ln 8+-. (D) 32ln 8+. [ ] (10)设区域}0,0,4),{(2 2≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则 =+ +?? σd y f x f y f b x f a D ) ()()()( (A) πab . (B) π2ab . (C) π)(b a +. (D) π2 b a + . [ ]

相关文档
相关文档 最新文档