文档视界 最新最全的文档下载
当前位置:文档视界 › 倍数含量筛法与恒等式(a b b a 1×=)的妙用

倍数含量筛法与恒等式(a b b a 1×=)的妙用

倍数含量筛法与恒等式(a b b a 1×=)的妙用
倍数含量筛法与恒等式(a b b a 1×=)的妙用

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

证明组合恒等式的方法与技巧

证明组合恒等式的方法与技巧 摘要本文是以高中二项式定理和排列组合知识为理论基础,对几个常见重要的例题作分析,总结组合恒等式常见的证明方法与技巧。对组合恒等式的证明方法本文主要讲了组合公式法,组合数性质法,二项式定理法,比较系数法,数列求和法,数学归纳法,组合分析法。 关键字组合,组合数,组合恒等式,二项式定理 Proof Methods and Skills of Combinatorial Identity ABSTRACT This thesis primarily analyses some common but significant examples on the basis of binomial theorem and permutation and combination knowledge of senior middle school to summarize the common demonstrating methods and technique of combinatorial identity. For combinatorial identity, here it mainly introduces the methods of combination formula, unitized construction, mathematical induction ,and so on . KEY WORDS combination,combinatorial identity,binomial theorem 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排 列组合、二项式定理为基础。组合恒等式的证明有一定的难度和特殊的

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

(完整版)排列组合公式及恒等式推导、证明(word版)

排列组合公式及恒等式推导、证明(word 版) 说明:因公式编辑需特定的公式编辑插件,不管是word 还是pps 附带公式编辑经常是出错用不了。下载此word 版的,记得下载MathType 公式编辑器哦,否则乱码一堆。如果想偷懒可下截同名的截图版。另外,还有PPt 课件(包含了排列组合的精典解题方法和精典试题)供学友们下载。 一、排列数公式: !(1)(2)(1)()!m n n A n n n n m n m =---+= -L (1)(1)321n n A n n n =--创 L 推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数原理分步进行: 第一步,排第一位: 有 n 种选法; 第二步,排第二位: 有(n-1) 种选法; 第三步,排第三位: 有(n-2) 种选法; ┋ 第m 步,排第m 位: 有(n-m+1)种选法; ┋ 最后一步,排最后一位:有 1 种选法。 根据分步乘法原理,得出上述公式。 二、组合数公式: (1)(2)(1)! !!()!m m n n m m A n n n n m n C A m m n m ---+=== -L 1n n C =

推导:把n 个不同的元素任选m 个不排序,按计数原理分步进行: 第一步,取第一个: 有 n 种取法; 第二步,取第二个: 有(n-1) 种取法; 第三步,取第三个: 有(n-2) 种取法; ┋ 第m 步,取第m 个: 有(n-m+1)种取法; ┋ 最后一步,取最后一个:有 1 种取法。 上述各步的取法相乘是排序的方法数,由于选m 个,就有m!种排排法,选n 个就有n!种排法。故取m 个的取法应当除以m!,取n 个的取法应当除以n!。遂得出上述公式。 证明:利用排列和组合之间的关系以及排列的公式来推导证明。 将部分排列问题m n A 分解为两个步骤: 第一步,就是从n 个球中抽m 个出来,先不排序,此即定义的组合数问题m n C ; 第二步,则是把这m 个被抽出来的球全部排序,即全排列m m A 。 根据乘法原理,m m m n n m A C A = 即: (1)(2)(1)!!!()!m m n n m m A n n n n m n C A m m n m ---+=== -L

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

组合恒等式

第十讲组合恒等式 、知识概要 数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础, 并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。同时,此类问题的解决也有着自身特殊的解题技巧。因此,在各类数学竞赛中经常被采用。 1,基本的组合恒等式 简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。事实上, 许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。课本中的组合恒等式有: ①c n 丄 ② cn i=c F +cn ③ kC: = nC n;; zTx m m r __m ④ C n C r —C n C n_m ; ⑤ c;?+cn+c2+iii+C n n=2n; ⑥ C -cn +Cn2+|H+(-1)n Cn n =0. 2, 解题中常用方法 运用基本组合恒等式进行变换; 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; 运用数学归纳法; 变换求和指标; 运用赋值法进行证明; 建立递推公式,由初始条件及递推关系进行计算和证明; 构造合理的模型。

二、运用举例 例 1,求证:C : +2C 2 +3C 3+i|| + nc n = n 左边=nC ;丄+ nC :丄+ nC ;」中川中nC ;: " n 例2,求和式2 k 2 C n k 的值。 k 1 基本思路:将k 2 c nk 改写为k kCn ,先将kCn 用恒等式3提取公因式n ,然后再将kC ::变形 k 1 k 1 k 1 成为(k -1 )C n 4 +C n 4,而(k -1 )C n 4又可以继续运用上述恒等变形,这样就使得各项系数 中均不含有变动指标 k 了。 n n n k nC :;=迄 k c n ;; =n E (k -1 +1)C :; k 经 k 壬 k=t n =n S [(k -1)C :; +c n :;r n ^ [(n -1 心 km = n (n -1 严 + n2n4 = n (n +1)2:/ 2004 例 3,求艺(—1^2005 kz0 2004 解:s( -1) k C 2005 = 1 -c 爲5 + C 爲5 -川 + (-1 )2004 C 誥 kzQ R-(C 2004 +C 2004 +C 2004)-川+(T )(c 2003 +c 200: n -1 例 4,设 m, n 忘 N 十,求证:送(m +k )(m +k +1 ) = - (3m 2 + 3m n + n 2 T 卜 心 3 证明:根据前面提到的基本的组合恒等式第三条, 可得: n 解:S k 'c nk kA n -Z k kC n ; k i = (n —1)C L k =2 n T n 鳥+送H 卜-1正C 鳥+:送C k=1 」 k=2 n nJ k=i 的值。

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

组合公式及证明

第十讲 组合恒等式 、 知 识概要 数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础, 并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。解决这类问 题常常对学生良好的运算能力和思维的灵活性都有较高的要求。同时,此类问题的解决也有 着自身特殊的解题技巧。因此,在各类数学竞赛中经常被采用。 1,基本的组合恒等式 简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。事实上, 许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通 分解为若干个简单的组合恒等式而加以解决。课本中的组合恒等式有: n n n C n n 0. 2,解题中常用方法 ① 运用基本组合恒等式进行变换; ② 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; ③ 运用数学归纳法; ④ 变换求和指标; ⑤ 运用赋值法进行证明; ⑥ 建立递推公式,由初始条件及递推关系进行计算和证明; ⑦ 构造合理的模型。 ① C n r nr C n ; ②c ni C n r 1 C n r ; ③ kC n k k1 nC n 1 ; ④ C n r C r m C n m C n r m m ; ⑤ C n 0 C 1n C n 2 C n n 2n ; 过转化, ⑥ C n C n 1 C n 2

、运用举例 12 3 n 例1,求证:C n 2C n 3C n L nC n n 2n1 证明:根据前面提到的基本的组合恒等式第三条, 可得: 左边nC; 1 1 2 nC n 1 nC n 1 n 1 nC n 1 —n 1 , f n 2 右边 例2,求和式n k2C n k的值。k 1 基本思路:将k2C^改写为k kCn k 先将kC n用恒等式3提取公因式 k n,然后再将kC n 1变形 成为k 1 C: 1 V;,而 k 1 C n 1又可以继续运用上述恒等变形, 这样就使得各项系数 中均不含有变动指标k 了。 n 解:k2c n; k 1 2004 例3,求 2004 解: 例4,设 n2n k 2005 k 2005 的 值。 C;004 C;004 C; 004 C;004 m,n N,求证: n Cn k 2 n C k 1 C n 1 1 2n 2004 C 2004 2005 2004 2003 C2004 2004 C2004 3mn n2 1。

数学归纳法在离散数学中的应用

数学归纳法在离散数学中的应用 在由一系列有限的特殊事例得出一般性结论的推理方法称为归纳法。而 数学归纳法则是用于证明与自然数n 有关的结论的归纳法:如果我们能够证明当n=1时结论是成立的,而且我们能用相同的方法由n=1命题成立证得n=2命题也成立;由n=2命题成立证得n=3成立;由n=3命题成立证得n=4成立…而且这个过程显然可以无穷进行下去。则我们就断言对于所有自然数n 命题都是成立的。数学归纳法的一般形式为,关键是归纳: 初始步):先证n =1时,结论成立; 归纳步):再证若假设对自然数n =k 结论成立(或者对所有小于等于n 的 自然数k 结论都成立),则对下一个自然数n =k+1结论也成立; 结论): 根据初始步和归纳步的证明得出结论对所有自然数都成立。 当结论与多个自然数有关时这样一类题目的时候,要注意的一点就是对所要进行归纳的自然数的选择。 例1、对群的任意元素 a,b ,及任何正整数m ,n, a m *a n = a n m + 问题解析:这是自然数有关的结论。但这里涉及到两个自然数,但由元素 的幂的定义以及m 和n 的作用的对称性,故只要任意选择其中一个即可。 证明:用数学归纳法对n 进行归纳证明。 对任何正整数m ,当n=0时,有 a m *a n = a m *a 0= a m *e= a 0+m 。 故结论成立。 假设当 n=k 时, a m *a k = a k m +。则当n=k+1时,由*满足结合律、 元素的幂的定义及归纳假设a m *a 1+k = a m *(a k *a)= (a m *a k )*a= a k m +*a= a )1(++k m ,即结论对n=k+1也成立。 故对任何正整数m,n, e a m *a n = a n m + n m m n m n n m n m a a a a a a a a +-+--------==*=*=*1 ) (1 1 1 ) () () () ( 例2、设d 1,d 2,…,d n 为n 个正整数,n ≥2,并且∑=n i i d 1 =2n-2。证明:存在 n 个顶点的树T 使它的顶点度数分别是d 1,d 2,…,d n 。

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来. 1. 利用组合公式证明 组合公式:m n C = n ! !n m m (-)! 例1. 求证:m m n C =n 11 m n C -- 分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可. 证:∵ m m n C = m n ! !n m m ?(-)! 11 m n C --= n n ! 1!n m m ?(-1)(-)(-)!= n n !m 1!n m m m ???(-1)(-)(-)!= m n ! !n m m ?(-)! ∴ m m n C =n --11 m n C . 技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取. 2. 利用组合数性质证明 组合数的基本性质:(1)m n C =n m n C - (2)1 m n C +=m n C +1 m n C - (3)k ?k n C =n ?k 1 1n C -- (4)++...+=0 1 2 n 2n n n n n C C C C -+-+...+(-1)=00 1 2 3 n n n n n n n C C C C C (5)

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4是证明一个命题对于所有的自然数都是成立的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为:

排列组合公式及恒等式推导、证明(word版)

排列组合公式及恒等式推导、证明(WOrd 版) 说明:因公式编辑需特定的公式编辑插件,不管是 word 还是PPS 附带公式编辑经常是 出错用不了。下载此 word 版的,记得下载 MathTyPe 公式编辑器哦,否则乱码一堆。如果 想偷懒可下截同名的截图版。另外,还有 PPt 课件(包含了排列组合的精典解题方法和精 典试题)供学友们下载。 一、排列数公式: An l =n (n -1)(n-1) 3创2 1 推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数 原理分步进行: 第步,排第位: 有 n 种选法; 第二步,排第二位: 有(n-1)种选法; 第三步,排第三位: 有(n-2)种选法; 第m 步,排第m 位: 有(n-m+1)种选法; I I I I 最后一步,排最后一位:有 1 种选法。 根据分步乘法原理,得出上述公式。 二、组合数公式: C m =A m = n(n- 1)(n- 2)…(n - m+1)= n! n A r m m! m!( n-m)! n JI C n = 1 A m =n(n -1)(n - 2) (n - m +1) = n! (n - m)!

推导:把n个不同的元素任选m个不排序,按计数原理分步进行:第步,取第个:有n种取法; 第二步,取第二个:有(n-1)种取法; 第三步,取第三个: I I 有(n-2) 种取法; I I 第m步,取第m个:I I 有(n-m+1) 种取法; I I 最后一步,取最后一个:有1 种取法。 上述各步的取法相乘是排序的方法数,由于选m个,就有m!种排排法,选n个就有n!种排法。故取m个的取法应当除以m!,取n 个的取法应当除以n!。遂得出上述公式。 证明:利用排列和组合之间的关系以及排列的公式来推导证明 将部分排列问题A n n分解为两个步骤: 第一步,就是从n个球中抽m个出来,先不排序,此即定义的组合数问题C n n; 第二步,则是把这m个被抽出来的球全部排序,即全排列A m。 根据乘法原理,A n n=C n n A m 即: C m A Tl n(n -1)0-2厂(n-m+1) n! A Tl m!m!(n- m)! 组合公式也适用于全组合的情况,即求C(n, n)的问题。根据 m!

数学归纳法的应用

数学归纳法的应用 姓名甘国优指导教师赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛。本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力。 关键词:数学归纳法;步骤;证明方法. Abstract:Mathematical induction is a common evidencemet hod in mathematics, it is have very broad application。 In this paper,author research into the step ofthe Mathematica l induction , it includes summariz,evidence andguess embod y the idea ofthe evidence ofmathematicalinduction. Also at here ,we summariz themethodof the mathemat ical inductionapplication insolvealgebra identities , g eometric ,order and portfolio ,and so on .also analyze the c ommonerrors on application and into duct skill of the proof ,proof ofskills introduced. It is help to incr eased the level of the Mathematical induction’s application.Key words:Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法。我们在学习

组合恒等式证明的几种方法

1 引言 组合恒等式是组合数学的一个重要部分.它在数学的各个分支中都有广泛应用,而且它的证明方法多种多样,具有很强的灵活性.下面通过几个实例具体讲述一下,几种证法在组合恒等式中的运用. 2 代数法 通常利用组合恒等式的一些性质进行计算或化简,使得等式两边相等, 或者利用二项式定理∑ 0==+n r r n r r n n y x C )y x (在展开式中令x 和y 为某个特定的 值,也可以先对二项式定理利用幂级数的微商或积分后再代值,得出所需要的 恒等式. 例1 111 22m m m m n n n n C C C C n m +-++++=>, . 分析:这个等式两边都很简单,我们可以利用一些常用的组合恒等式去求证. 证明:1 +2+11+=2++m n m n m n m n C C C C m n m n m n m n C m n m C ,C m m n C 1+=1+= 11 + )m n m m m n (C m n 2+1++1+∴左边= 2()11m n n m m C m n m +++++-= 2(2)(1)()(1)(1) m n n m n m m m C m n m +++-++=++- 232 () (1)(1) (2)(1)() (1)(1) m n m n n n C m n m n n C m n m ++=++-++=++- 右边=()1 2(2)!(2)(1)! (1)!1!(1)(1)()!! m n n n n n C n m m m n m n m m +++++= =+-+++--

(1)(2)(1)(1)m n n n C n m m ++=+-+ 左边=右边 即证. 例2 求证:n n n n n n n n n n C C C C 20112211233333=+++++--- . 分析:看到上式,很容易想到二项式的展开式,尝试利用二项式定理去做. 证明: 由二项式定理建立恒等式, 112221 1(3)3333n n n n n n n n n n n C x C x C x x ----+=+++++ 令1x =,即得 2112214233331 n n n n n n n n n C C C ---==+++++ 即证. 例3(1)设n 是大于2的整数,则 0)1(32321=-+++-n n n n n nC C C C . (2)n 为正整数,则 )12(1 11131211131-+=++++++n n n n n n C n C C . 分析:观察上面两式的系数,很容易想到它们和微分积分有关,我们可以尝试利用求积分或微分的方法去解决这道题目. 证明:(1)0122(1)n n n n n n n x C C x C x C x +=++++ 等式两边对x 求导, 112 1 (1)2n n n n n n n x C C x n C x --+=++ + 令0x =得, 1231023(1)n n n n n n C C C nC -=-+++- 即证. (2)由二项式定理有,

数学归纳法的应用

数学归纳法的应用 数学归纳法的应用:具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等. 上述过程主要体现在数学归纳法的过程及注意事项,主要是证明恒等式的一些例子,下面我们看看数学归纳法应用的其他类型. (1)证明恒等式(略) (2)证明不等式. 例题:记()11111,23n S n n N n =+ ++???+>∈,求证:()212,2 n n S n n N >+≥∈. 证明:(1)当2n =时,2211125211234122 S =+++=>+,∴当2n =时,命题成立. (2)设n k =时,命题成立,即2111112322 k k k S =+++???+>+,则当1n k =+时,121111111123221222k k k k k S ++=+++???++++???+++ 11121111112212222222222k k k k k k k k k k k +>++++???+>++=++=+++++ 故当1n k =+时,命题也成立. 由(1),(2)可知,对n N ∈,2n ≥,212 n n S >+. 注意:利用数学归纳法证不等式,经常要用到“放缩”的技巧. (3)证明数或式的整除性 例题:求证:()()2111n n a a n N -+++∈能被21a a ++整除 证明:(1)当1n =时,()21111211a a a a ?-+++=++,命题显然成立. (2)设n k =时,()2111k k a a ?-+++能被21a a ++整除.则当1n k =+时, ()()() 2122121111k k k k a a a a a a +-++++=?+++()()()()212212111111k k k k a a a a a a a ---+??=+++++-+? ? ()()()212112111k k k a a a a a a --+??=++++++?? 由归纳假设,以上两项均能被21a a ++整除,故1n k =+时,命题成立. 由(1),(2)可知,对n N ∈,命题成立

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

数学归纳法在高中数学中应用

数学归纳法在高中数学中的应用-中学数学论文 数学归纳法在高中数学中的应用 冯宁 (东莞市玉兰中学,广东东莞523413) 摘要:《全日制高中数学课程标准》指出在培养学生演绎推理能力的同时要重视合情推理能力的培养,与之对应的是归纳、猜想的思想和数学归纳的方法。数学归纳法是高中阶段一种重要的数学方法,它可用来解答或证明数列、函数、恒等式、不等式和几何等方面的问题,培养学生的观察、猜想与归纳的合情推理能力。 关键词:数学归纳法;高中数学;合情推理;演绎推理 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-02-0123-01 数学归纳法是高中阶段一种重要的数学方法,它常用来处理数列通项和其它关于自然数N的变化规律问题,以培养学生的观察、猜想与归纳的合情推理能力。在实际的教学中,教师对于数学归纳法的讲授和应用多停留在数列相关问题上。其实数学归纳法在中学数学中的应用远不止于此,它还可用来解答或证明恒等式、不等式、整除性和几何等方面的问题。 一、利用数学归纳法处理恒等式问题 例1、证明:C1n+2C2n+…+nCnn=n·2n-1n∈N。 分析:本题可运用二项展开式定理和倒序相加的技巧方法来证明,也可应用数学归纳法来证明。 证明:(1)当n=1时,显然命题成立; (2)假设当n=k时命题成立,即:C1k+2C2k+…+kCkk=k·2k-1。

则当n=k+1时,C1k+1+2C2k+1+3C3k+1+…+k+1Ck+1k+1=C0k+C1k+2C1k+C2k+3C2k +C3k+…+k+1Ckk=C1k+2C2k+…+kCkk+C0k+2C1k+…+k+1Ckk=k·2k-1+C0k+C1k+…+Ckk+C1k+2C2k+…+kCkk=k·2k-1+2k+k·2k-1 =k+1·2k 即当n=k+1时等式成立。 综上所述,当n∈N时,等式C1n+2C2n+…+nCnn=n·2n-1恒成立。二、利用数学归纳法处理不等式问题

相关文档
相关文档 最新文档