文档视界 最新最全的文档下载
当前位置:文档视界 › 空气折射率

空气折射率

空气折射率
空气折射率

空气折射率

【实验目的】

1. 进一步了解光的干涉原理

2. 利用迈克尔逊干涉仪测量空气折射率 【实验原理】

由下图可知,在o 点两束光的光程差为)(22211L n L n -=δ,式中,n1,n2分别是两条光

路上的折射率。

设单色光在真空中,传播的波长为0λ,当

0λδm =,m=0,1,2, (1)

时,产生干涉条纹,在L1路径上放置一根长为L 的空气管,当管内空气折射率改变时,条纹改变m ?条,则有

L

m n 20

λ?=

?(2) 在恒温空气流动情况较小的情况下折射率n 只与气压有关,假设气压从一个大气压下降到真空时,则p ?即为一个大气压,有关系式

L

m n 210

λ?=

-(3) 通常在温度处于15度到30度之间空气的折射率可表示为

910003617.018793.21-?+=

-t

p

n (4)

此时说明n-1是与气压p 成正比,因此p 也与m ?成正比,假设我们的环境气压为p ,对应的条纹数为m ,可测得气压为p1,p2,对应的条纹数分别为m1,m2,则有关系式

2

1212211m m p p m p m p m p --===?(5) 将此式代入(3)式,得到

p p p m m L n 2

12

1021--=

-λ(6)

【实验步骤】

1. 调节干涉仪,产生干涉条纹。

2. 向管内打起,使得管内气压大于110kpa ,记下此时的气压p1。

3. 慢慢放气,眼睛看着干涉条纹的变化,当条纹变化为60条时,停止放气,记下此时的

气压p2。 4. 连续测测量六次。 【实验数据处理】

室温t=27。C ;大气压p=101kpa;管长L=95mm;

0λ=633.0nm;m1-m1=60;

∑=?=

?6

1

kpa 75.1036

1i

p p

p ?的标准差为

67.8)(5

16

1

=?-?=

∑?p p i

p σ

所以n 的平均值为

000195.175

.103952101

601063316=?????+=-n

折射率n 的不确定度为

000002.01

2602

=??=

p L p u n 实验结果为

??

?

??==±=%0002.0000002.0000195.1n u u n n

rn 【实验数据记录】

实验十四 测定玻璃的折射率

实验十四测定玻璃的折射率 考纲解读 1.学会用插针法确定光路.2.会用玻璃砖和光的折射定律测定玻璃的折射率. 基本实验要求 1.实验原理 如实验原理图甲所示,当光线AO1以一定的入射角θ1穿过两面平行的玻璃砖时,通过插针法找出跟入射光线AO1对应的出射光线O2B,从而求出折射光线O1O2和折射角θ2,再根据n =sin θ1 sin θ2或n= PN QN′ 算出玻璃的折射率. 2.实验器材 木板、白纸、玻璃砖、大头针、图钉、量角器、三角板、铅笔. 3.实验步骤 (1)用图钉把白纸固定在木板上. (2)在白纸上画一条直线aa′,并取aa′上的一点O为入射点,作过O点的法线NN′. (3)画出线段AO作为入射光线,并在AO上插上P1、P2两根大头针. (4)在白纸上放上玻璃砖,使玻璃砖的一条长边与直线aa′对齐,并画出另一条长边的对齐线bb′. (5)眼睛在bb′的一侧透过玻璃砖观察两个大头针并调整视线方向,使P1的像被P2的像挡住,然后在眼睛这一侧插上大头针P3,使P3挡住P1、P2的像,再插上P4,使P4挡住P3和P1、P2的像. (6)移去玻璃砖,拔去大头针,由大头针P3、P4的针孔位置确定出射光线O′B及出射点O′,连接O、O′得线段OO′.

(7)用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1和sin θ2. (8)改变入射角,重复实验,算出不同入射角时的sin θ1sin θ2 ,并取平均值. 规律方法总结 1.数据处理 (1)计算法:用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1和sin θ2.算出不同入 射角时的sin θ1sin θ2 ,并取平均值. (2)作sin θ1-sin θ2图象:改变不同的入射角θ1,测出不同的折射角θ2,作sin θ1-sin θ2图象, 由n =sin θ1sin θ2 可知图象应为直线,如实验原理图乙所示,其斜率为折射率. (3)“单位圆”法确定sin θ1、sin θ2,计算折射率n . 以入射点O 为圆心,以一定的长度R 为半径画圆,交入射光线OA 于E 点,交折射光线OO ′于E ′点,过E 作NN ′的垂线EH ,过E ′作NN ′的垂线E ′H ′.如实验原理图丙所示,sin θ1=EH OE ,sin θ2=E ′H ′OE ′ ,OE =OE ′=R ,则n =sin θ1sin θ2=EH E ′H ′.只要用刻度尺量出EH 、E ′H ′的长度就可以求出n . 2.注意事项 (1)用手拿玻璃砖时,手只能接触玻璃砖的毛面或棱,不能触摸光洁的光学面,严禁把玻璃砖当尺子画玻璃砖的另一边bb ′. (2)实验过程中,玻璃砖在纸上的位置不可移动. (3)大头针应竖直地插在白纸上,且玻璃砖每两枚大头针P 1与P 2间、P 3与P 4间的距离应大一点,以减小确定光路方向时造成的误差. (4)实验时入射角不宜过小,否则会使测量误差过大,也不宜过大,否则在bb ′一侧将看不到P 1、P 2的像. 考点一 实验原理与操作 例1 (2012·江苏·12B(2))“测定玻璃的折射率”实验中,在玻璃砖的一侧竖直插两个大头针 A 、 B ,在另一侧再竖直插两个大头针 C 、 D .在插入第四个大头针D 时,要使它________________.图1是在白纸上留下的实验痕迹,其中直线a 、a ′是描在纸上的玻璃砖的两个边.根据该图可算得玻璃的折射率n =________.(计算结果保留两位有效数字)

实验十一迈克尔逊干涉法测量空气折射率

实验十一用迈克尔逊干涉光路测空气折射率光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。光的波长虽然很短(4×10-7~8×10-7m之间),但干涉条纹的间距和条纹数却很容易用光学仪器测得。根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。 相干光源的获取除用激光外,在实验室中一般是将同一光源采用分波阵面或分振幅2种方法获得,并使其在空间经不同路径会合后产生干涉。 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。 一、实验目的 1、掌握迈克尔逊干涉光路的原理和调节方法。 2、学会调出非定域干涉条纹、等倾干涉条纹、等厚干涉条纹。 3、学习利用迈克尔逊干涉光路测量常温下空气的折射率。 二、实验仪器 He-Ne激光器及电源,扩束镜(短焦距凸透镜),全反镜,温度计,小孔光阑,密封玻璃管,气压计等。 三、实验原理 1、迈克尔逊干涉光路 图11.1是迈克尔逊干涉光路原理图,从光源S发出的一束光射到分束板1G上,1G的后表面镀有半反射膜(一般镀金属银),光在半反射膜上反射和透射,被分成光强接近相等

大学物理实验报告系列之空气折射率的测定

【实验名称】 空气折射率的测定 【实验目的】 1、了解空气折射率与压强的关系; 2、进一步熟悉迈克尔逊干涉仪的使用规范; 【实验仪器】 迈克尔逊干涉仪(动镜:100mm ;定镜:加长);压力测定仪;空气室(L=95mm );气囊(1个);橡胶管(导气管2根) 【实验原理】 1、等倾(薄膜)干涉 根据实验7“迈克尔逊干涉仪调节和使用”可知,(如图1所示)两束光到达O 点形成的光程差δ为: δ=2L 2 -2L 1 =2(L 2 -L 1 ) 若在L2臂上加一个为L 的气室,如图2所示,则光程差为: δ=2(L 2 -L )+2n L -2L 1 δ=2(L 2 -L 1 )+2(n-1)L (2) 保持空间距离L 2 、L 1 、L 不变,折射率n 变化时,则δ 随之变化,即条纹级别也随之变 化。(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹。)以明纹为例有 δ1 =2(L 2 -L 1 )+2(n 1 -1)L =k 1 λ δ2 =2(L 2 -L 1 )+2(n 2 -1)L =k 2 λ 令:Δn =n 2-n 1,m =(k 2-k 1),将上两式相减得折射率变化与条纹数目变化关系式。 2ΔnL=mλ (3) 2、折射率与压强的关系 若气室内压强由大气压p b 变到0时,折射率由n 变化到1,屏上某点(观察屏的中心O 点)条纹变化数为m b ,即 n-1=m b λ/2L (4) 通常在温度处于15℃~30℃范围内,空气折射率可用下式求得: 设从压强p b 变成真空时,条纹变化数为m b ;从压强p 1变成真空时,条纹变化数为m 1;从压强p 2变成真空时,条纹变化数为m 2;则有 根据等比性质,整理得 将(4)、(5)整理得 式中p b 为标况下大气压强,将p 2→p 1时,压强变化记为Δp (=p 1-p 2),条纹变化记为m (=m 1-m 2),则有 3、测量公式

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

折射率与厚度的估算方法

镀个较厚一点的单层膜,根据极值点(膜比基底折射率高的看极小值,膜比基底折射率低的看极大值,并且选取长波段的极值点,因为在长波段折射率色散小)估算出膜层的折射率,该点的反射率,根据薄膜光学原理,相当于单个四分之一光学厚度的膜厚(单层四分之一光学厚度的薄膜等效折射率为n^2/ng,n为膜的折射率,ng为基底折射率)的反射率。算出折射率后,再判断极值级次,根据这个级次就可算出膜厚。现在举一例子加深理解。 图中基底折射率为1.52,该曲线的透过率极大值是空白玻璃的透过率,说明镀的膜没有起增透作用,判断膜的折射率应该大于基底的折射率,所以我们要选极小值点的反射率来分析薄膜的折射率(选极大值等于在分析空白玻璃,因为是偶数个四分之一膜厚,等同虚设层),为选色散小的区域,可以找到最长波段的极小值为1184nm,透过率为80.08%。设空白基底的单面透过率为T1,镀有膜层侧的单面透过率为T2,总和透过率,也就是所测透过率为T,则有关系式1/T=1/T1 + 1/T2 - 1(大家可以自己推算,就是简单的等比数列叠加,可先算出R1,R2和R的关系式R=(R1+R2-2R1R2)/(1-R1R2),然后用1-Rx代替Tx),在这儿T1=95.742%, T=80.08%, T2为未知数,代入后得出T2=83.037%,于是R2=1-T2=16.963%,R2=(n ^2/ng-1)^2 / (n^2/ng +1)^2 ,n=sqrt(ng*(1+sqrt(R2))/(1-sqrt(R2) )=1.910,这就是膜层的折射率 然后来算膜厚。首先判断透过率曲线的级次,在脑中要明确的是,当膜的折射率大于基底时,所有的极小值都是奇数个四分之一膜厚,当膜的折射率小于基底时,所有的极大值都是奇数个四分之一膜厚,根据前面分析,这儿当然是极小值啦。如果没有折射率色散,相邻两个极值之间的波长位置的比值应为k/(k+1), k=1,3,5,7....(设第一个极值位置波长为λ1,相邻的另一个极值位置波长为λ2,这里假设λ2的级次高于λ1,所以λ1>λ2,则kλ1/4=nd, (k+1)λ2/4=nd,两者比较后,就得出λ1/λ2=(k+1)/k )。我们来看891.0nm和1184nm这两个极值,1184/891=1.328,所以判断k=3,于是根据kλ1/4=nd 有d=kλ1/4n =3*1184/(4*1.91)=464.9nm。 说明:这种方法只是粗略地估计膜层的折射率和厚度,因为我们忽略了折射率的色散,也忽略了薄膜在沉积过程中的折射率非均匀性。要精确测量还是要通过带有修正因子的程序拟合,或且专门仪器测量。

空气折射率的测定

空气折射率的测定 〖摘要〗本实验利用分立光学原件在光学平台上搭制迈克尔孙干涉仪和夫琅禾费双缝干涉装置来测定空气的折射率。 〖关键词〗空气折射率;迈克尔孙干涉;夫琅禾费双缝干涉 1引言 介质的折射率是表征介质光学特性的物理量之一,气体折射率与温度和压强有关,。气折射率对各种波长的光都非常接近于1,然而在很多科学研究领域中,仅把空气折射率近似为1远远满足不了科研的要求,所以研究空气折射率的精确测量方法是很必要的。本实验将用迈克耳孙干涉仪(分振幅法)和夫琅禾费双缝干涉(分波前法)2种方法对空气折射率进行测量(参考值为1.000296)。【1】 2 实验原理 ⑴迈克尔逊干涉仪的原理见图1。其中G为平板玻璃,称为分束镜。它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。M1、M2M1、M2镜面与分束镜G均成45°角,M1可以 移动,M2固定。 2 M表示M2对G金属膜的虚像。 从光源S发出的一束光,在分束镜G的半反射面上被分成反射光束1和透射光束2。光束1从G反射出后投向M1镜,反射回来再穿过G。光束2投向M2镜,经M2镜反射回来再通过G膜面上反射。于是,反射光束1与透射光束2 发生干涉。

量n 与气压的变化量p ?成正比: 1n n p p -?==?常数 所以: 1n n p p ?=+ ? 又可得: 12N P n L p λ=+ ? 上式给出了气压为p 时的空气折射率n 。 1p 变化 到2p 时的条纹变化数n 即可计算压强为p 的空气折射率n 气室内压强不必从0开始。 (2) 用夫琅和费双缝干涉装置测定空气折射率 并分别通过两气室A 、B L2、L3后在屏上形成干涉条纹。当B 室相对于A 室 气压变化ΔP ΔN n 001p T n n p T l λ ?=+ ?

三棱镜折射率

三棱镜折射率 测定的不同方法比较

姓名:YUE 摘要:折射率为一光学常数,它表示光在介质中传播时,介质对光的一种特征。折射率是反映透明介质材料光学性质的一个重要参数。测量三棱镜的折射率,常用的方法很多,其中最小偏向角法和布儒斯特角法是大学物理中运用到的两个重要实验,此外还可以利用临界角法(全反射法)来测量三棱镜的折射率。根据对这三种方法的实验原理、实验步骤以及对实验的误差进行分析比较,总结得出各种测量方法的优点与缺点。 关键词:最小偏向角;布儒斯特角;临界角;折射率 引言 在生产和科学研究中往往需要测定一些固体和液体的折射率。三棱镜的折射率可以用很多方法和仪器来测量,方法和仪器的选择取决于对测量结果精度的要求。在分光计上用最小偏向角法测量棱镜的折射率可以达到较高的精度,所测折射率的大小不受限制。同时最小偏向角法还可以用来测定光栅常数。因此,学习和掌握三棱镜最小偏向角的测量原理和方法,有很大的实用意义。 布儒斯特角法测量三棱镜折射率原理简单,过程复杂。一般对布儒斯特角的测量,利用高校物理实验室都有的测量液体折射率实验装置,可以既简单又较精确地测量布儒斯特角,并验证布儒斯特定律。但是一般实验中常利用目测消光的方法来测量,由于目测的不精确性就给结果造成了较大的误差。所以在实验中我们利用功率功率激光探头来测量光强,减小实验误差。 临界法(全反射法)属于比较测量,利用光学中的全发射,光从三棱镜射入空气中,入射角为某一数值时,会发生全反射,而且这种方法的实验步骤与最小偏向角法相似,操作过程简单。

一、 实验原理 1.1 分光计简介 分光计是一种常用的光学仪器,实际上就是一种精密的测角仪。在几何光学实验中,主要用来测定棱镜角,光束偏向角等,而在物理光学实验中,加上分光元件(棱镜、光栅)即可作为分光仪器,用来观察光谱,测量光谱线的波长等。 分光计的测量原理:光源发出的光经过准直管后变成平行光,平行光经载物台上的光学元件折射、反射或衍射后改变了传播方向,绕中心转轴转动的望远镜先后接收到方向没有改变和改变后的平行光,然后由读数圆盘读出望远镜前后两个位置所处的角度,即可由相关公式计算出望远镜的转动角度。 图1.1.1为学生分光计[1] 的读数与角度计算原理图。分光计的主刻度盘与望远镜锁定在一起,而游标盘与主轴锁定在一起;望远镜绕主轴转动时,游标尺不动而主刻度盘随望远镜转动,这样就可以由起止角度的差值计算出望远镜的转动角度。分光计上圆弧形游标的读数原理类似于游标卡尺读数,主刻度盘上每一小格为03',游标尺上最小分度值为1'。读数时,先读出游标尺零刻度线左边所在主刻度盘刻度线所代表的角度值,不足03'的部分由游标尺上与主刻度盘刻度线对齐的那一条刻度线读出,两者之和即为总读数。计算角度时要注意转动过程中游标尺是否经过零刻度线。当望远镜转动后,某游标尺相对于主刻度盘的位置由1变为2时,相对应的角度读数分别为1α和2α。望远镜在转动过程中游标尺如果没经过零刻度线,这时望远镜转动的角度为12ααα-=,若转动过程中游标尺经过零刻度线,则望远镜的转动角度为1 2360ααα--?=[2] 。 图1.1.1 分光计的读数与角度计算图 1.2 最小偏向角法测量三棱镜折射率原理 参见图1.2.1,一束平行的单色光射向一棱镜,先后经棱镜表面两次折射,使得出射 360o -|α1-α2| |α1-α2| 1 180 2 A r ’ i ' G F δ r ' i

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

油脂中折射率的测定

项目二 油脂中折射率的测定 1实验目的及要求 (1)理解阿贝折光仪测定油脂折射率的原理。 (2)掌握阿贝折光仪的使用和测定方法。 2 测定意义: 油脂的折射率与油脂的组成和结构密切相关,可用来鉴别油脂 的种类和纯度。 油脂中脂肪酸的分子质量越大,不饱和程度越高,其折射率就越大。 油脂中若含有共轭双键和羟基的脂肪酸,其折射率也会偏高。 3 测定原理 (1) 折射现象和折光率 当一束光从一种各向同性的介质m 进入另一种各向同性的介质M 时,不仅光速会发生改变,如果传播方向不垂直于界面,还会发生折射现象,如图1所示。 图1 光在不同介质中的折射 光速在真空中的速度(v 真空)与某一介质中的速度(v 介质)之比定义为该介质的折光率,它等于入射角α与折射角β的正弦之比,即: βαλsin sin v ==介质真空v n t 在测定折光率时,一般光线都是从空气中射入介质中,除精密工作以外,通常都是以空气作为真空标准状态,故常以空气中测得的折光率作为某介质的折光率,即:

β αλsin sin v ==介质空气v n t 物质的折光率随入射光的波长λ、测定时的温度t 及物质的结构等因素而变化,所以,在测定折射率时必须注明所用的光线和温度。 当λ、t 一定时,物质的折光率是一个常数。例如 3611.120=D n 表示入射光波长为钠光D 线(λ=589.3nm ),温度为20℃时,介质的折光率为1.3611。 由于光在任何介质中的速度均小于它在真空中的速度,因此,所有介质的折光率都大于1,即入射角大于折射角。 阿贝尔折光仪测定液体介质折光率的原理 阿贝尔折光仪是根据临界折射现象设计的,如图2所示。 图2 阿贝折光仪的临界折射 入射角 ?=?90i 时,折射角i β最大,称临界折射角。如果从0?到90?(i ?)都有单色光入射,那么从到临界角i β也有折射光。换言之,在临界角i β以内的区域均有光线通过,该区是亮的,而在临界角以外的区域,由于折射光线消失而设有光线通过,故该区是暗的,两区将有一条明暗分界线,有分界线的位置可测出临界角i β。 当i i ββα==?,90时,i i n t ββλsin 1sin 90sin ==? (3) 仪器结构 图(3)是一种典型的阿贝折光仪的结构示意图,图 (4)是它的外形图(辅助棱镜呈开启状态)。

大学物理实验报告系列之空气折射率的测定

【实验名称】空气折射率的测定 【实验目的】 1、了解空气折射率与压强的关系; 2、进一步熟悉迈克尔逊干涉仪的使用规范; 【实验仪器】 迈克尔逊干涉仪(动镜:100mm;定镜:加长);压力测定仪;空气室(L=95mm);气囊(1个);橡胶管(导气管2根) 【实验原理】 1、等倾(薄膜)干涉 根据实验7“迈克尔逊干涉仪调节和使用”可知,(如图1所示)两束光到达O点形成的光程差δ为: δ=2L 2-2L 1 =2(L 2 -L 1 ) 若在L2臂上加一个为L的气室,如图2所示,则光程差为: δ=2(L 2-L)+2n L-2L 1 δ=2(L 2-L 1 )+2(n-1)L (2) 保持空间距离L 2、L 1 、L不变,折射率n变化时,则δ随之变化,即条纹级别也 随之变化。(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹。)以明纹为例有 δ 1 =2(L 2 -L 1 )+2(n 1 -1)L=k 1 λ δ 2 =2(L 2 -L 1 )+2(n 2 -1)L=k 2 λ 令:Δn=n 2 -n 1 ,m=(k 2 -k 1 ),将上两式相减得折射率变化与条纹数目变化关系式。 2ΔnL=mλ (3) 2、折射率与压强的关系 若气室内压强由大气压p b 变到0时,折射率由n变化到1,屏上某点(观察屏的中 心O点)条纹变化数为m b ,即 n-1=m b λ/2L (4)通常在温度处于15℃~30℃范围内,空气折射率可用下式求得: 设从压强p b 变成真空时,条纹变化数为m b ;从压强p 1 变成真空时,条纹变化数为m 1 ; 从压强p 2 变成真空时,条纹变化数为m 2 ;则有 根据等比性质,整理得

光学材料折射率的测定报告

光学材料折射率的测定 Summary :Refractive index is one of the important parameters of optical materials, which often needs to be measured in scientific research and production practice. The method of measuring the refractive index can be divided into two categories: one is the application of refractive index and reflection, total reflection law, through the accurate measurement of the angle of the refractive index of the geometric optics method, such as the minimum deviation angle method, grazing incidence method, total reflection method and displacement method, etc. Another kind is the light passed the medium (or by a dielectric reflection) and the polarization state changes of the phase change of the transmitted light or reflected light) and refraction rate is closely related to the principle to measure the refractive index of the physical optics method, such as cloth Brewster angle method, interferometry, ellipsometry etc.. 摘要:折射率是光学材料的重要参数之一,在科研和生产实际中常需要测量它。测量折射率的方法可分为两类:一类是应用折射率及反射、全反射定律,通过准确测量角度来求折射率的几何光学方法,如最小偏向角法、掠入射法、全反射法和位移法等。另一类是利用光通过介质(或由介质反射)后,透射光的相位变化(或反射光的偏振态变化)与折射率密切相关的原理来测定折射率的物理光学方法,如布儒斯特角法、干涉法、椭偏法等。 关键词:最小偏向角 偏振 全反射 分光计 干涉 布儒斯特角 引言:本实验要求综合已学过的光学知识和基本实验操作,查阅有关资料,拟定实验方案,完成对各种待测样品的折射率测定,从而对光学材料折射率的测量,在原理和方法上有更全面的认识。加深对分光计、阿贝折射仪、迈克尔孙干涉仪等光学仪器使用方法的了解。 一、最小偏向角法 【实验原理】 由图1的三棱镜光路图,可以证明: 2 sin 2sin sin sin min 1 1 A A r i n +== δ 其中A 是三棱镜的顶角,δmin 是出射光在i 1=i 2时的最小偏向角。由上式可见,只要测得三棱镜的顶角A 和对钠黄光的最小偏向角δmin ,便可间接测出对该波长的光的折射率n 。 【实验步骤】 1. 调节分光计到使用状态,打开汞灯照明平行光管,找到折射光谱 2. 对准某条谱线,转动游标盘和望远镜跟踪此谱线,当其不再继续移动而反向移动时,记录游标盘读数θ1、θ2 3. 测定入射光方向,将望远镜对准平行光管,使分划板十字竖线对准狭缝中央,读出此时两游标的读数θ1'、θ2',则最小偏向角δmin 为: ()()[] '2 1 22'11min θθθθδ-+-= 4. 重复测量,求平均值 图1 三棱镜中的光路图

[实验报告]两种光路测空气折射率

两种光路测空气折射率 摘要:折射率是表征介质光学特性的物理量之一。空气折射率会随空气状态而改变,在许多研究领域有重要的参考价值。本实验使用迈克耳孙干涉仪和夫琅禾费双缝干涉,通过改变气压室气压,使空气折射率发生改变,来观察干涉条纹的移动。根据折射率与压强关系,得出空气折射率。 关键词:空气折射率测量;迈克耳孙干涉仪;夫琅禾费双缝干涉;气压; Study on two measurement methods of air refractive index Abstract:Refractive index is one of the physical quantities that can characterize optical properties of medium.The refractive index of air will change with the state of air,which many research fields can make great reference to.In this experiment, we use Michelson interferometer and Fraunhofer interferometer to detect the air refractive index. We change the air refractive index by adjust the pressure of air in air room, and observe the move of stripes. Then use relationships between refractive index and pressure to work out the air refractive index. Key words:measurement of air refractive index;Michelson interferometer;Fraunhofer interferometer ;atmospheric pressure; 一、引言 介质的折射率是表征介质光学特性的物理量之一,气体折射率与温度和压强有关,。气折射率对各 种波长的光都非常接近于1,然而在很多科学研究领域中,仅把空气折射率近似为1远远满足不了科研的要求,所以研究空气折射率的精确测量方法是很必要的。本文将用迈克耳孙干涉仪和夫琅禾费双缝干涉2种方法对空气折射率进行测量。 二、实验原理 1. 迈克耳孙干涉仪测空气折射率 实验光路如图一所示,其中,G为平板玻璃,称为分束镜, 它的一个表面镀有半反射金属膜,使光在金属膜处的反射 光束与透射光束的光强基本相等。M 1、M 2 为互相垂直的平 面反射镜,M 1、M 2 镜面与分束镜G均成450角; M 2 ’表示M 2 对G 金属膜的虚像。从光源S发出的一束光,在分束镜G的半反射面上被分成反射光束1和透射光束2。光束1从G反射出后 投向M 1镜,反射回来再穿过G;光束2投向M 2 镜,经M 2 镜反射 回来再通过G膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 在一定温度(15~30),气压不太大时, 气体折射率变 M 2 M O 图1 迈克尔逊干涉仪光路示意图

玻璃折射率的测定,物理实验报告

此实验报告共六个方案,其中前三个为实验室可做并已测量数据的方案,第一个方案(最小偏向角法)已测量数据并进行了数据处理。 实验目的:测定玻璃折射率,掌握用最小偏向角法测定玻璃折射率的方法,掌握用读数显微镜法测定玻璃折射率的方法,复习分光计的调整等,掌握实验方案的比较,误差分析,物理模型的选择。要求测量精度E≤1%。 方案一,最小偏向角法测定玻璃折射率 实验原理:最小偏向角的测定,假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角称为偏向角,如图1所示。 ? 图1最小偏向角的测定 转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率与顶角及最小偏向角的关系式为 实验仪器:分光计,三棱镜。 实验步骤: 1,对分光计进行调节 2,顶角α的测量 利用自准直法测顶角,如下图所示,用两游标来计量位置,分别称为游标1和游标2,旋紧刻度盘 θ和游标2下螺钉是望远镜和刻度盘固定不动转动游标盘,是棱镜AC面对望远镜,记下游标1的读数 1

的读数2θ。转动游标盘,再试AB 面对望远镜,记下游标1的读数'1θ和游标2的读数'2θ。游标两次读数之差21θθ-或者''21 θθ-,就是载物台转过的角度,而且是α角的补角 ''212 1 1802 θθθ θ α? -+-=- 3,最小偏向角法测定玻璃折射率 如下图,当光线以入射角1i 入射到三棱镜的AB 面上后相继经过棱镜两个光学面AB AC 折射后,以 2i 角从AC 出射。出射光线和入射光线的夹角δ称为偏向角。 对于给定三棱镜, 偏向角δ的数值随 入射角1i 的变化而改变。当入射角1i 为某值时(或者1i 与2i 相等时),偏向角δ将达到最小值0δ,0δ称 为最小偏向角,由几何关系和折射定,可得它与棱镜的顶角A 和折射率n 之间有如下关系: 2 sin 2 sin A A n δ+= A.将待测三棱镜放在载物平台,调节平台到适当的高度,使得从平行光管发出的平行光只有少部分能从三棱镜的上方射入望远镜; B.调节三棱镜的位置使得平行光管的平行光以一定的角度入射到棱镜的AB 面;

迈克尔干涉仪测量空气折射率

实验四 用迈克尔逊干涉仪空气的折射率 一、实验目的 用分离的光学元件构建一个迈克尔逊干涉仪。 通过降低空气的压强测量其折射率。 二、仪器和光学元件 光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管 三、实验原理 借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。通过改变光路中容器内气体的压强,推算出空气的折射率。 If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at one location , they superimpose to ()()2211sin sin αα-?+-?=wt a wt a Y The resulting can be described by the followlng : ()α-?=wt A Y sin w ith the amplitude δcos 2212 2212?++=a a a a A (1) and the phase difference 21ααδ-= In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought to interference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different light paths , using the designations in Fig . 2 , 图 2 the phase difference is given by : θλ π δcos 22???= d (2) λis the wavelength of the laser ljght used . According to ( 1 ) , the intensity distribution for a a a ==21 is 2 cos 4~2 22δ ??=a A I (3) Maxima thus occur when δ is equal to a multiple of π2,hence with ( 2 ) λθ?=??m d cos 2;m=1,2,….. ( 4 )

迈克尔孙干涉仪测空气折射率实验报告

系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________ 实验日期 _________________________ 教师评定 ______________ 【实验名称】迈克耳孙干涉仪 【目的要求】 1. 掌握M-干涉仪的调节方法; 2. 调出非定域干涉和定域干涉条纹; 3. 了解各类型干涉条纹的形成条件, 花纹特点, 变化规律及相互间的区别; 4. 用M-干涉仪测量气体折射率. 【仪器用具】 M-干涉仪(旧仪器第3组), He-Ne 激光器及其电源, 扩束透镜, 小孔光阑, 白炽灯, 毛玻璃, 小气室, 打气皮囊, 气压表, 凸透镜. 【实验原理】 1.M-干涉仪光路 M-干涉仪是一种分振幅双光束的干涉仪. 其光路如图. 期中M 1可以移动. G 1为分束板. 2

系别___________ 班号____________ 姓名______________ 同组姓名 __________ 实验日期_________________________ 教师评定______________ 2.干涉花纹的图样 (1)点光源照明——非定域干涉条纹 考虑虚光源S1和S2’. 若毛玻璃垂直于两者连线, 则得到圆条纹; 若毛玻璃垂直于两者的垂直平分线, 则得到线条纹; 若其它情况, 则得到椭圆或双曲线条纹. 非定域圆条纹特性: ?L = 2d(1 ? r2 2z2 ) ........................................................................ .(i) 亮纹条件: kλ = 2d(1 ? r2 2z2) ........................................................................ .(ii) 条纹间距: ?r = r k-1 ? r k≈λz2 2r k d.................................................................... .(iii) 条纹的”吞吐”:缓慢移动M1镜, 改变d, 可以看到条纹条纹吞或吐的数目N有: 2?d = Nλ .................................................................................. .(iv) d增大, r k增大, 即条纹”吐”; d减小, r k减小, 即条纹”吞”. (2)扩展光源照明--定域干涉条纹 (a)等倾干涉条纹--定域于无穷远 相邻两条纹角间距: ?θk = θk?θk+1≈ λ 2dθk.............................................................. .(v) (b)等厚干涉条纹--定域于镜面附近 ? = 2d cos θ≈ 2d(1 ? dθ2 / 2) ............................................... .(vi)

折射率计算方法

折射率计算 f=1/((n-1)*(1/r1-1/r2)),其中n是透镜材质在空气中的折射率,r1和r2是透镜两个球面的半径。 所以,当透镜外形固定不变时(r1和r2不变),折射率n越小,焦距f越大。 注意:应用公式时,代入r1和r2是有正负的,不可乱用,但只要形状不变,(1/r1-1/r2)就不变。 GPPS:1.52 PC:1.58 PMMA:1.48 ABS:1.56 PSU:1.62 COP:1.6-1.63 TPX:1.45 SAN: 1.567 (1)定义或解释 光在两种(各向同性)媒质中速度的比值叫做折射率。 (2)说明

①n=v1/v2表明光由第一媒质进入第二媒质后它们速度的比。这叫做第二媒质相对于第一媒质的折射率,又叫相对折射率。 ②媒质相对真空的折射率叫做绝对折射率。 由于光在真空中传播速度为最大,所以媒质的绝对折射率总是大于1。 ③同一媒质中不同波长(或频率)的光,具有不同的折射率。波长越短(频率越高),则折射率越大。这可用复色光经棱镜后发生的色散现象来加以说明。光通过棱镜而偏折,其最小偏向角和折射率之间的关系是 n=sin[(α+δmin)/2]/sin(α/2)。 α为棱角,δmin为最小偏向角。从该式中看出偏向角变大,则n也增大。其次,从正常色散现象知道频率越高的光,其偏向角越大,那么同一媒质中频率越高,其偏向角越大,又因偏向角越大,对应n也越大,所以折射率将随波长减小(频率增大)而增大。

④一般讲的折射率数值都是指对钠黄光(5893埃)的折射率。 ⑤光从某媒质进入另一媒质时,由于传播速度变化会引起波长变化,但它的频率是不变的 波长*频率=速度 在不同的介质中:v1*n1 = v2*n2 由于 lamda1*f1=v1 lamda2*f2=v2 故 从一种介质进入另一种介质的波,频率不变,即 f1=f2 故 v1/v2=lamda1/lamda2=n2/n1 从真空中传播到折射率为n的介质中: n1=1,n2=n,lamda1=lamda0,lamda2=lamda 则 1*lamda0=n*lamda

相关文档
相关文档 最新文档