文档视界 最新最全的文档下载
当前位置:文档视界 › 第八章 研究遗传多样性的基本原理和方法

第八章 研究遗传多样性的基本原理和方法

第八章 研究遗传多样性的基本原理和方法
第八章 研究遗传多样性的基本原理和方法

遗传算法

遗传算法发展前景概况 (华北电力大学电气与电子工程学院,北京102206) 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。 关键词:遗传算法; 遗传算子;进化计算;编码 GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT (North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding 1.引言 现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。 2.遗传算法基本思想 遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。 遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。 遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。这一过程循环执行,直到满足优化准则为止。 3.遗传算法基本操作

第三章-遗传算法的理论基础

第三章 遗传算法的理论基础 遗传算法有效性的理论依据为模式定理和积木块假设。模式定理保证了较优的模式(遗传算法的较优解)的样本呈指数级增长,从而满足了寻找最优解的必要条件,即遗传算法存在着寻找到全局最优解的可能性。而积木块假设指出,遗传算法具备寻找到全局最优解的能力,即具有低阶、短距、高平均适应度的模式(积木块)在遗传算子作用下,相互结合,能生成高阶、长距、高平均适应度的模式,最终生成全局最优解。Holland 的模式定理通过计算有用相似性,即模式(Pattern)奠定了遗传算法的数学基础。该定理是遗传算法的主要定理,在一定程度上解释了遗传算法的机理、数学特性以及很强的计算能力等特点。 3.1 模式定理 不失一般性,本节以二进制串作为编码方式来讨论模式定理(Pattern Theorem)。 定义3.1 基于三值字符集{0,1,*}所产生的能描述具有某些结构相似性的0、1字符串集的字符串称作模式。 以长度为5的串为例,模式*0001描述了在位置2、3、4、5具有形式“0001”的所有字符串,即(00001,10001) 。由此可以看出,模式的概念为我们提供了一种简洁的用于描述在某些位置上具有结构相似性的0、1字符串集合的方法。 引入模式后,我们看到一个串实际上隐含着多个模式(长度为 n 的串隐含着2n 个模式) ,一个模式可以隐含在多个串中,不同的串之间通过模式而相互联系。遗传算法中串的运算实质上是模式的运算。因此,通过分析模式在遗传操作下的变化,就可以了解什么性质被延续,什么性质被丢弃,从而把握遗传算法的实质,这正是模式定理所揭示的内容 定义3.2 模式H 中确定位置的个数称作该模式的阶数,记作o(H)。比如,模式 011*1*的阶数为4,而模式 0* * * * *的阶数为1。 显然,一个模式的阶数越高,其样本数就越少,因而确定性越高。 定义3.3 模式H 中第一个确定位置和最后一个确定位置之间的距离称作该模式的定义距,记作)(H δ。比如,模式 011*1*的定义距为4,而模式 0* * * * *的定义距为0。 模式的阶数和定义距描述了模式的基本性质。 下面通过分析遗传算法的三种基本遗传操作对模式的作用来讨论模式定理。令)(t A 表示第t 代中串的群体,以),,2,1)((n j t A j =表示第t 代中第j 个个体串。 1.选择算子 在选择算子作用下,与某一模式所匹配的样本数的增减依赖于模式的平均适值,与群体平均适值之比,平均适值高于群体平均适值的将呈指数级增长;而平均适值低于群体平均适值的模式将呈指数级减少。其推导如下: 设在第t 代种群)(t A 中模式所能匹配的样本数为m ,记为),(t H m 。在选择中,一个位串 j A 以概率/j j i P f f =∑被选中并进行复制,其中j f 是个体)(t A j 的适应度。假设一代中群体 大小为n ,且个体两两互不相同,则模式H 在第1+t 代中的样本数为:

基于最小二乘法的系统辨识的设计与开发(整理版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于最小二乘法的系统辨识的设计与开发(整理版)课程(论文)题目: 基于最小二乘法的系统辨识摘要: 最小二乘法是一种经典的数据处理方法。 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。 在系统辨识领域中, 最小二乘法是一种得到广泛应用的估计方法, 可用于动态系统, 静态系统, 线性系统, 非线性系统。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 关键词: 最小二乘法;系统辨识;参数估计 1 引言最小二乘理论是有高斯( K.F.Gauss)在 1795 年提出: 未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。 这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。 递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。 1 / 10

对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。 最小二乘法是一种经典的数据处理方法。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 2 最小二乘法的系统辨识设单输入单输出线性定常系统的差分方程为: 1),()()() 1()(01knkubkubnkxakxakxnn ( 1)上式中: )(ku为输入信号;)(kx为理论上的输出值。 )(kx只有通过观测才能得到,在观测过程中往往附加有随机干扰。 )(kx的观测值)(ky可表示为 ( 2)将式( 2)代入式( 1)得 1()()() 1()(101kubkubnkyakyakyn (3) 我们可能不知道)(kn的统计特性,在这种情况下,往往把)(kn看做均值为 0 的白噪声。 设 ( 4)则式( 3)可以写成 (5) 在测量)(ku时也有测量误差,系统内部也可能有噪声,应当

遗传算法与优化问题

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm —GA),就是模拟达尔文的遗传选择与自然淘汰的生物进化过程的计算模型,它就是由美国Michigan大学的J、Holla nd教授于1975 年首先提出的?遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算? 1. 遗传算法的基本原理 遗传算法的基本思想正就是基于模仿生物界遗传学的遗传过程?它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体?这个群体在问题特定的环境里生存 竞争,适者有最好的机会生存与产生后代?后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解?值得注意的一点就是,现在的遗传算法就是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身就是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法就是由进化论与遗传学机理而产生的直接搜索优化方法;故而 在这个算法中要用到各种进化与遗传学的概念? 首先给出遗传学概念、遗传算法概念与相应的数学概念三者之间的对应关系这些概念

(2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要就是:先把问题的解表示成“染色体”,在算法中也就就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则从中选 择出较适应环境的“染色体”进行复制 ,再通过交叉、变异过程产生更适 应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就就是问题的最优解. 下面给出遗传算法的具体步骤,流程图参见图1: 第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间; 第二步:定义适应函数,便于计算适应值; 第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数; 第四步:随机产生初始化群体; 第五步:计算群体中的个体或染色体解码后的适应值; 第六步:按照遗传策略,运用选择、交叉与变异算子作用于群体,形成下一代群体; 第七步:判断群体性能就是否满足某一指标、或者就是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步. 图1 一个遗传算法的具体步骤

遗传多样性与起源研究

西北农林科技大学 2009级硕博连读研究生学位论文开题报告 黄牛、水牛和牦牛Y染色体分子遗传多样性与起源研究Y-chromosome Molecular Genetic Diversity and Origins in Cattle, Buffalo and Yak 学院:动物科技学院 学科、专业:动物遗传育种与繁殖 研究方向:动物遗传学 研究生:XX 指导教师:雷初朝教授

黄牛、水牛和牦牛Y染色体分子遗传多样性与起源研究 一、选题的目的与意义 黄牛、水牛和牦牛是我国3个重要的牛种,具有对周围环境的高度适应性、耐粗放管理、抗病力强、繁殖力高、肉质好等特点。这些地方牛种本身就是一座天然的基因库,正是进行杂种优势利用和进一步培育高产品种的良好原始材料。在当今世界畜禽品种资源日趋匮乏,品种逐步单一化的情况下,对我国这些牛种遗传资源的保护将对今后的育种工作产生很大的影响,起到难以估量的作用[1]。 中国黄牛的起源进化与遗传多样性一直是国内外动物遗传学家感兴趣的课题之一。一般认为,中国黄牛是多元起源的,并主要受普通牛和瘤牛的影响,但究竟起源于哪几个牛种,观点不一[2, 3]。在黄牛遗传多样性方面,自二十世纪八十年代以来,众多研究者分析了中国地方黄牛的核型,发现不同黄牛品种的Y 染色体形态具有明显的多态性,普通牛为中着丝粒或亚中着丝粒,瘤牛为近端着丝粒[4-6]。常振华等发现中国黄牛Y染色体主要属于Y2(普通牛)和Y3(瘤牛)单倍群[7],但事实上黄牛的每种Y染色体单倍群下都可细分为多种单倍型,而中国黄牛由哪些Y染色体单倍型组成,有无优势单倍型以及单倍型的品种分布有无地理特点,与国外黄牛品种有何不同,这些问题都亟待阐明,以期为黄牛品种资源保护和杂交育种工作提供参考依据。 中国也拥有丰富的水牛资源。水牛的驯化时间,地点尚无定论,国内一些学者在形态学和考古学方面进行了一些研究,给中国水牛的驯化历史提供了一些参考[8, 9],但仅靠形态学和考古学的研究是远远不够的,还需要分子遗传学的更多证据。目前国内外对水牛的起源研究主要是在线粒体DNA的母系起源方面,认为水牛有两个母系起源(A支系和B支系)[10-12],近年来,也有中国学者对水牛的常染色体微卫星多态性进行了研究,其结果都表明中国水牛的遗传多样度丰富,倾向于支持中国水牛的本土起源假说[13, 14]。对Y染色体遗传多样性的研究,将提供更多的分子遗传学信息,会有助于评估水牛的遗传资源状况,也有助于阐明中国水牛的驯化历史。 牦牛主要分布于我国的青藏高原,俗称“万能种”,通常皆为兼用,如乳、肉、毛、皮、役力,是经济价值极高的珍贵畜种[1]。家牦牛是在青藏高原驯化的,藏族自古以来生息于西藏,是驯化牦牛之主,因此牦牛的驯化始终与藏族文化的发展休戚相关,是当地人民不可分离的生产和生活资料[15]。从牦牛生活的特定气候地带的适应性和生态地理、生理特征的表现看,牦牛是地球之巅特有的高寒环境中生存的一个宝贵的特化种,牦牛的驯化与繁衍有着与其他牛种极其不同的种类特点,牦牛对高寒山区的气候和贫瘠的草地所具有的特殊的适应性也是世界

系统辨识研究的现状_徐小平

系统辨识研究的现状 徐小平1,王 峰2,胡 钢1 (1.西安理工大学自动化与信息工程学院 陕西西安 710048;2.西安交通大学理学院 陕西西安 710049) 摘 要:综述了系统辨识问题的研究进展,介绍了经典的系统辨识方法及其缺点,引出了将集员、多层递阶、神经网络、遗传算法、模糊逻辑、小波网络等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。 关键词:系统辨识;集员;多层递阶;神经网络;遗传算法;模糊逻辑;小波网络 中图分类号:TP27 文献标识码:B 文章编号:1004-373X (2007)15-112-05 A Survey on System Identif ication XU Xiaoping 1,WAN G Feng 2,HU Gang 1 (1.School of Automation and Information Engineering ,Xi ′an University of Technology ,Xi ′an ,710048,China ; 2.School of Science ,Xi ′an Jiaotong University ,Xi ′an ,710049,China ) Abstract :In this paper the advance in the study of system identification is summarized.First ,the traditional system identi 2fication methods and their disadvantages are introduced.Then ,some new methods based on set membership ,multi -level re 2cursive ,neural network ,genetic algorithms ,f uzzy logic and wavelet network are presented.Finally ,f urther research directions of system identification are pointed out. K eywords :system identification ;set membership ;multi -level recursive ;neural network ;genetic algorithms ;f uzzy logic ;wavelet network 收稿日期:2007-04-16 基金项目:教育部博士学科基金(20060700007); 陕西省自然科学基金(2005F15)资助项目 1 引 言 辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。从1967年起,国际自动控制联合会(IFAC )每3年召开一次国际性的系统辨识与参数估计的讨论会。历届国际自动控制联合会的系统辨识会议均吸引了众多的有关学科的科学家和工程师们的积极参加。 系统辨识是建模的一种方法,不同的学科领域,对应 着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。1962年,L.A.Zadeh 给出辨识这样的定义[1]:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh 的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。而从实用性观点出发,对模型的要求并非如此苛刻,为此,对辨识又有一些实用性的定义。比如,1974年,P.E.ykhoff 给出辨识的定义[2]为:“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。”1978年,L. Ljung 给辨识下的定义[3] 更加实用:“辨识有三个要素—数 据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。”总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 本文首先介绍了经典的系统辨识方法,并指出其存在的缺陷,接着对近年来系统辨识的现代方法作以简单的综述,最后指出了系统辨识未来的发展方向。2 经典的系统辨识 经典的系统辨识方法[4-6]的发展已经比较成熟和完 2 11

什么是遗传多样性

什么是遗传多样性、物种多样性、生态系统多样性? 遗传多样性是指存在于生物个体内、单个物种内以及物种之间的基因多样性。一个物种的遗传组成决定着它的特点,这包括它对特定环境的适应性,以及它被人类的可利用性等特点。任何一个特定的个体和物种都保持着大量的遗传类型,就此意义而言,它们可以被看作单独的基因库。基因多样性,包括分子、细胞和个体三个水平上的遗传变异度,因而成为生命进化和物种分化的基础。一个物种的遗传变异愈丰富,它对生存环境的适应能力便愈强;而一个物种的适应能力愈强,则它的进化潜力也愈大。 物种多样性是指动植物及微生物种类的丰富性,它是人类生存和发展的基础。物种资源为人类提供了必要的生活物质,特别是在医学方面,许多野外生物种属的医药价值对人类健康具有重大意义。随着医学科学的发展,许多目前人类未知的物种其医药价值也将不断被发现。 生态系统多样性是指生态系统类型的多种多样。地球上的生态类型极其繁多,但是所有生态系统都保持着各自的生态过程,这包括生命所必需的化学元素的循环和生态系统组成部分之间能量流动的维持。不论是对一个小的生态系统而言或是从全球范围来看,这些生态过程对于所有生物的生存、进化和持续发展都是至关重要的。维持生态系统多样性对于维持物种和基因多样性也是必不可少的。 简言之: 物种多样性,是从宏观方面来说的,指的是生物表现的性状多样性。 遗传多样性,是从微观方面来说的,指的是生物遗传物质DNA序列的多样性,也称为基因多样性。遗传多样性,决定了物种多样性。 例子:老虎、狮子、大象,属于不同的物种,反映了物种的多样性(性状有巨大差异)。决定这一切的,是它们细胞内的遗传物质的多样性,即DNA序列的多样性,它们的遗传物质是各自不同的。

系统辨识研究综述

系统辨识研究综述 摘要:本文综述了系统辨识的发展与研究内容,对现有的系统辨识方法进行了介绍并分析其不足,进一步引出了把神经网络、遗传算法、模糊逻辑、小波网络知识应用于系统辨识得到的一些新型辨识方法。并对基于T-S模型的模糊系统辨识进行了介绍。文章最后对系统辨识未来的发展方向进行了介绍 关键词:系统辨识;建模;神经网络;遗传算法;模糊逻辑;小波网络;T-S 模型 1.系统辨识的发展和基本概念 1.1系统辨识发展 现代控制论是控制工程新的理论基础。辨识、状态估计和控制理论是现代控制论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持;控制理论的应用又几乎不能没有辨识和状态估计。 而现代控制论的实际应用不能脱离被控对象的动态特性,且所用的数学模型需要选择一种使用方便的描述形式。但很多情况下建立被控对象的数学模型并非易事,尤其是实际的物理或工程对象,它们的机理复杂且含有各种噪声,使建立数学模型更加困难。系统辨识就是应此需要而形成的一门学科。 系统辨识和系统参数估计是六十年代开始迅速发展起来的。1960年,在莫斯科召开的国际自动控制联合会(IFCA)学术会议上,只有很少几篇文章涉及系统辨识和系统参数估计问题。然而,在此后,人们对这一学科给予了很大的注意,有关系统辨识的理论和应用的讨论日益增多。七十年代以来,随着计算机的开发和普及,系统辨识得到了迅速发展,成为了一门非常活跃的学科。 1.2系统辨识基本概念的概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。 L. A. Zadeh于1962年给辨识提出了这样的定义:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。根据实用性观点,对模型的要求并非如此苛刻。1974年,P. E. ykhoff给出辨识的定义“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统) 本质为: 特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。而1978

遗传算法基本理论实例

目录 _ 一、遗产算法的由来 (2) 二、遗传算法的国内外研究现状 (3) 三、遗传算法的特点 (5) 四、遗传算法的流程 (7) 五、遗传算法实例 (12) 六、遗传算法编程 (17) 七、总结 ......... 错误!未定义书签。附录一:运行程序.. (19)

遗传算法基本理论与实例 一、遗产算法的由来 遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。John H.Holland教授及其学生首先提出的遗传算法就是一个重要的发展方向。 遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程和现象叫做“自然选择,适者生存”。按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的

遗传多样性的原因

产生遗传后代多样性的因素 2013012590高上涵经35 广义的遗传多样性是指地球上生物所携带的各种遗传信息的总和。这些遗传信息储存在生物个体的基因之中,是指种内或种间表现在分子、细胞、个体3个水平的遗传变异度,在分子水平上,遗传多样性主要体现在基因的多样性;在细胞水平上,主要体现在细胞形态和功能的多样性;在个体水平上,主要体现在个体表现型的多样性。狭义上则主要是指种内不同群体或个体间的遗传多态性程度。遗传后代多样性是多层次多水平的。 产生遗传后代多样性的因素很多,从宏观角度来看,生物进化影响着遗传多样性;从微观角度来看,遗传物质的多样性、变异性和繁殖的复杂性也是产生遗传后代多样性的因素。 (一)从进化的角度来看,在生物的长期演化过程中,具有适合生存环境的性状的个体更容易存货,决定这些性状的基因也更容易留存下来,由于外界环境的多变,一个物种所包含的基因越丰富,它对环境的适应能力越强。环境的多变是产生遗传多样性的原因。 (二)从遗传后代多样性的物质基础来看,基因、蛋白质、染色体具有多样性。大多数生物的遗传物质是DNA,DNA由四种脱氧核糖核苷酸按照一定的排列顺序组成,每一种排列顺序都代表着一种遗传信息,因此DNA可以储存大量的遗传信息,具有多样性,不同个体具有不同的遗传物质。基因表达的产物一般是蛋白质,而蛋白质由氨基酸构成,氨基酸的排列顺序、肽链的折叠方式、蛋白质的空间结构都导致了蛋白质的多样性。遗传物质的多样性、表达产物的多样性是遗传后代多样性的物质基础。 (三)基因与性状的关系来看,基因具有选择性表达的性质,相同基因的表达并不完全相同,同一个体不同细胞内的基因表达情况不同,不同个体的基因表达情况差异更大,即使是同卵双胞胎,基因的表达也会有很大的差异。基因表达的多样性是产生遗传后代多样性的因素。基因存在不完全显性:一个杂合体的表型介于两个产生它的纯合体的表型的过渡状态,还存在共显性:一个性状的体现由不止一个显性等位基因的表达,一个性状由多个基因共同控制。此外染色体数目的差异也会导致性状的不同(如唐氏综合征),基因和性状的关系的复杂性也是遗传多样性的因素。 (五)从遗传物质的突变来看,遗传物质在某种因素的刺激下能够发生变化基因突变、基因重组、染色体变异。遗传物质的突变主要有两种类型,即染色体数目和结构的变化以及基因位点内部核苷酸的变化,此外,基因重组也可以导致生物产生遗传变异。遗传物质的突变的概率较高,也是遗传多样性的根本原因。 (六)从繁殖方式来看,多数生物是有性繁殖,个体通过减数分裂产生配子,配子结合产生合子,个体从父母双方各继承一半的遗传信息。在产生配子的过程中,同源染色体分离,非同源染色体自由组合,姐妹染色单体的交叉互换等导致了配子的多样性。另外,配子是随机结合的,又增加了合子的多样性。 遗传物质的多样性、多变性,基因和性状关系的复杂性、环境的多变性等都是遗传后代多样性的因素。

中国主要东方蜜蜂种群的遗传多样性分析

中国主要东方蜜蜂种群的遗传多样性分析 任勤1,曹联飞2,赵红霞3,,王瑞生1,程尚1,罗文华1,曹兰1,姬聪慧*1 (1.重庆市畜牧科学院,重庆 402460;2.浙江省农业科学院,浙江杭州 310021;3. 广东 省生物资源应用研究所,广东广州 510260) 摘要:对中国具代表性的东方蜜蜂遗传资源中7个种群的线粒体DNA tRNA leu~ CO Ⅱ基因进行扩增和测序,并进行遗传多样性比较及亲缘关系分析。结果表明,共发现43个单倍型,其中10个单倍型在GenBank数据库对比确认属于新发现单倍型;7个群体中,阿坝中蜂、滇南中蜂和海南中蜂遗传多样性水平较高,长白山中蜂遗传多样性水平较低,其他群体遗传多样性居中;不同种群间遗传距离变化较大,其中海南中蜂与滇南中蜂、阿坝中蜂间的遗传距离最大,长白山中蜂与云贵中蜂、北方中蜂、华南中蜂间的遗传距离最小;聚类分析显示7个种群可聚为4个类群。 关键词:东方蜜蜂;遗传多样性;线粒体DNA 中图分类号:文献标志码:A Analysis of genetic diversity of Apis cerana populations in China REN Qin1, CAO Lianfei2,ZHAO Hongxia3,WANG Ruisheng1,CHENG Shang1,LUO Wenhua1,CAO Lan1, JI Conghui*1 (1.Chong Qing Academy of Animal Science,Chongqing 402460,China;2.Zhejiang Academy of Agricultural Sciences,Zhejiang 310021,China; 3.Guangdong Institute of Applied Biological Resources, Guangdong 510260, China) Abstract:The mitochondrial DNA tRNA leu~CO II genes in 7 populations of Apis cerana Fabricius in China were amplified and sequenced, and their genetic diversity and phylogenetic relationships were analyzed. The results showed that a total of 43 haplotypes were identified, of which 10 haplotypes were identified new haplotypes in the GenBank database, Among 7 populations, Aba bee, Hainan bee and Yunnan bee have higher level of genetic diversity, Changbai Mountain bee has lower level of genetic diversity, other populationswere intermediate; The genetic distances between different populations varied greatly, of which Hainan bee andhave maximum genetic distance with Yunnan bee and Aba bee, The genetic distances between Changbai mountain bee and Yunnan bee, Middle China bee, Northern bee and Southern bee were small.; Cluster analysis showed that the 7 populations could be clustered into 4 taxa. Key words:Apis cerana Fabricius; genetic diversity; mitochondrial DNA 收稿日期: 基金项目:国家蜂产业技术体系基金项目(CARS-45SYZ15);重庆市畜牧科学院基金项目(16421). 作者简介:任勤(1979-), 男, 宁夏固原人,助理研究员, 硕士研究生,主要从事蜜蜂方面的研究。 通信作者:姬聪慧(1980-),女,河南平顶山人,助理研究员,硕士研究生。

系统辨识课程综述

系统辨识课程综述 通过《系统辨识》课程的学习,了解了系统辨识问题的概述及研究进展;掌握了经典的辨识理论和辨识技术及其优缺点,如:脉冲响应法、最小二乘法(LS)和极大似然法等;同时对于那些为了弥补经典系统辨识方法的不足而产生的现代系统辨识方法的原理及其优缺点有了一定的认识,如:神经网络系统辨识、基于遗传算法的系统辨识、模糊逻辑系统辨识、小波网络系统辨识等;最后总结了系统辨识研究的发展方向。 一、系统辨识概论 自40年代Wiener创建控制论和50年代诞生工程控制论以来,控制理论和工程就一直围绕着建立模型和控制器设计这两个主题来发展。它们相互依赖、相互渗透并相互发展;随着控制过程的复杂性的提高以及控制目标的越来越高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。但是大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,此时建立模型需要细致、完整地分析系统的机理和所有对该系统的行为产生影响的各种因素,从而变得十分困难。系统辨识建模正是适应这一需要而产生的,它是现代控制理论中一个很活跃的分支。 系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。所谓系统辨识,通俗地说,就是研究怎样利用对未知系统的试验数据或在线运行数据(输入/输出数据),运用数学归纳、统

计回归的方法建立描述系统的数学模型的科学。Zadeh与Ljung明确提出了系统辨识的三个要素:输入输出数据,模型类和等价准则。总之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合我们所关心的实际过程的静态或动态特性。 通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号;对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识亦称为实验建模方法,它是“系统分析”和“控制系统设计”的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。 二、经典的系统辨识 经典的系统辨识方法包括脉冲响应法、最小二乘法(LS)和极大似然法等。其中最小二乘法(LS)是应用最广泛的方法,但由于它是非一致的,是有偏差性,所以为了克服他的缺陷,形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GLS)、辅助变量法(IV)、增广最小二乘法(ELS)、广义最小二乘法(GLS),以及将一般的最小二乘法与其他方法相结合的方法,有:最小二乘两步法(COR—LS)

遗传算法的基本原理

第二章 遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S 作为搜索空间,f :S —>R 为目标函数,全局优化问题作为任务)(max x f S x ∈给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值+∞<=)(**x f f 称为一个全局最大值,当且仅当x ? S x ∈,(ρi i b a <,i 12)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P ; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。

2.1.3 遗传编码 由于GA 计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA 个体的表现型集合做组成的空间称为问题(参数)空间,由GA 基因型个体所组成的空间称为GA 编码空间。遗传算子在GA 编码空间中对位串个体进行操作。 定义:由问题空间向GA 编码空间的映射称为编码,而有编码空间向问题空间的映射成为译码。 1)2)3)它们对1) 2) k =1,2,…,K; l =1,2,…,L; K=2L 其中,个体的向量表示为),,,(21kL k k k a a a a =,其字符串形式为kL k k k a a a s 21=,s k 称为个体a k 对应的位串。表示精度为)12/()(--=?L u v x 。 将个体又位串空间转换到问题空间的译码函数],[}1,0{:v u L →Γ的公式定义为: 对于n 维连续函数),,2,1](,[),,,,(),(21n i v u x x x x x x f i i i n =∈=,各维变量的二进制

遗传多样性产生的原因

遗传多样性产生的原因 遗传多样性产生的原因 (一)从进化的角度来看,在生物的长期演化过程中,具有适合生存环境的性状的个体更容易存货,决定这些性状的基因也更容易留存下来,由于外界环境的多变,一个物种所包含的基因越丰富,它对环境的适应能力越强。环境的多变是产生遗传多样性的原因。 (二)从遗传后代多样性的物质基础来看,基因、蛋白质、染色体具有多样性。大多数生物的遗传物质是dna,dna由四种脱氧核糖核苷酸按照一定的排列顺序组成,每一种排列顺序都代表着一种遗传信息,因此dna可以储存大量的遗传信息,具有多样性,不同个体具有不同的遗传物质。基因表达的产物一般是蛋白质,而蛋白质由氨基酸构成,氨基酸的排列顺序、肽链的折叠方式、蛋白质的空间结构都导致了蛋白质的多样性。遗传物质的多样性、表达产物的多样性是遗传后代多样性的物质基础。 (三)基因与性状的关系来看,基因具有选择性表达的性质,相同基因的表达并不完全相同,同一个体不同细胞内的基因表达情况不同,不同个体的基因表达情况差异更大,即使是同卵双胞胎,基因的表达也会有很大的差异。基因表达的多样性是产生遗传后代多样性的因素。基因存在不完全显性:一个杂合体的表型介于两个产生它的纯合体的表型的过渡状态,还存在共显性:一

个性状的体现由不止一个显性等位基因的表达,一个性状由多个基因共同控制。此外染色体数目的差异也会导致性状的不同(如唐氏综合征),基因和性状的关系的复杂性也是遗传多样性的因素。 (四)从遗传物质的突变来看,遗传物质在某种因素的刺激下能够发生变化基因突变、基因重组、染色体变异。遗传物质的突变主要有两种类型,即染色体数目和结构的变化以及基因位点内部核苷酸的变化,此外,基因重组也可以导致生物产生遗传变异。遗传物质的突变的概率较高,也是遗传多样性的根本原因。 (五)从繁殖方式来看,多数生物是有性繁殖,个体通过减数分裂产生配子,配子结合产生合子,个体从父母双方各继承一半的遗传信息。在产生配子的过程中,同源染色体分离,非同源染色体自由组合,姐妹染色单体的交叉互换等导致了配子的多样性。另外,配子是随机结合的,又增加了合子的多样性。 遗传多样性的研究意义 对遗传多样性的研究具有重要的理论和实际意义。 首先,物种或居群的遗传多样性大小是长期进化的产物,是其生存适应和发展进化的前提。一个居群或物种遗传多样性越高或遗传变异越丰富,对环境变化的适应能力就越强越;容易扩展其分布范围和开拓新的环境。即使对无性繁殖占优势的种也不例外。理论推导和大量实验证据表明,生物居群中遗传变异的大小与其进化速率成正比。因此对遗传多样性的研究可以揭示物种或居群的进化历史(起源的时间、地点、方式),也能为进一步分析其进化潜力和未来的命运提供重要的资料,尤其有助于物种稀有或濒危原因及过程的探讨。

ntsys-pc遗传多样性分析软件使用说明

NTSYS-PC使用说明 1 数据的录入方法: 1.1 利用Ntedit直接录入数据 0、1二元数据中的数据缺失记为2。其中列标可以写为样品编号,在No.rows 栏中写入0、1数据总数,No.cols 栏中写入样品总数。文件另存为*.nts格式。 1.2 从excel表中直接读入数据 Excel表中输入数据格式如下图。A1必须为1,B1为0、1数据总数,C1为样品总数。 打开Ntedit程序,选择从Excel表输入,结果见上图。文件另存为*.Nts格式 1.3 Ntsys-pc可以直接运行*.phy格式的文件(由phylip和phytool产生) 1.4 DNA序列数据Ntsys-PC也可以分析,但好像用的人较少。建议大家使用phylip或者其他的软件。DNA序列数据在Excel 中输入格式如下:

1.5 其他数据的Excel输入如下: 2 聚类分析 Ntsys-pc2.02界面如下: 以下以图中数据为例介绍聚类过程: 2.1 首先用similarity程序组中的SimQual计算形似系数矩阵。Coefficient通常选用SM 或DICE,结果输出到另一文件

2.2 以上步的结果作为input file利用Clustering程序组中的SHAN或者Njoin进行计算,聚类分法选用UPGMA,ties选用FIND,Maximum no. tied trees至少大于样品数。 Njoin程序组界面如下,rooting method可以选用Outgroup,但需输入外元。 2.3 将SHAN或NJoin方法得到的tree file文件输入到Graphics程序组中的tree plot程序中计算

相关文档