文档视界 最新最全的文档下载
当前位置:文档视界 › 高一数学一元二次不等式解法练习题及解答

高一数学一元二次不等式解法练习题及解答

高一数学一元二次不等式解法练习题及解答
高一数学一元二次不等式解法练习题及解答

高一数学一元二次不等式解法练习题及答案

[ ]

分析 求算术根,被开方数必须是非负数.

解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2.

例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.

分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理.

解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知

例若<<,则不等式--<的解是1 0a 1(x a)(x )01

a

A a x

B x a

.<<

.<<1

1

a a C x a

D x x a

.>或<.<或>x a

a

1

1

分析比较与的大小后写出答案. a 1

a

解∵<<,∴<,解应当在“两根之间”,得<<.

选.

0a 1a a x A 11

a a 例有意义,则的取值范围是

.2 x x 2--x 6

例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)

分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成).

答 (1){x|x <2或x >4}

(4)R (5)R

说明:不能使用解公式的时候要先变形成标准形式.

[ ]

A .{x|x >0}

B .{x|x ≥1}

-=-+=-=-=-??

?????b

a

a ()()1211122×得a

b =

=-121

2

,.(4)3x 2-+--+-3132

511

3

12

2x x x x x x >>()()

(2){x|1x }≤≤3

2(3)?例不等式+>

的解集为5 1x 1

1-x

C .{x|x >1}

D .{x|x >1或x =0}

分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.

∵x 2>0,∴x -1>0,即x >1.选C .

说明:本题也可以通过对分母的符号进行讨论求解.

[ ]

A .(x -3)(2-x)≥0

B .0<x -2≤1

D .(x -3)(2-x)≤0

故排除A 、C 、D ,选B .

两边同减去2得0<x -2≤1.选B . 说明:注意“零”.

[ ]

解不等式化为+-

>,通分得>,即>,

1x 0001

11122

----x

x x x x 例与不等式

≥同解的不等式是6 0x x

--3

2C .

≥23

0--x

x 解法一原不等式的同解不等式组为≥,

≠. ()()x x x ---???

32020解法二≥化为=或-->即<≤

x 3

20x 3(x 3)(2x)02x 3--x

例不等式

<的解为<或>,则的值为7 1{x|x 1x 2}a ax

x -1

[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}

答 选C .

说明:注意本题中化“商”为“积”的技巧.

解 先将原不等式转化为

∴不等式进一步转化为同解不等式x 2+2x -3<0,

即(x +3)(x -1)<0,解之得-3<x <1.解集为{x |-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 例9 已知集合A ={x|x 2-5x +4≤0}与B ={x|x 2-2ax +a +2

A a

B a

C a

D a .<

.>

.=

.=-

1

21

21

2

1

2

分析可以先将不等式整理为

<,转化为 0()a x x -+-11

1

可知-<,即<,且-=,∴=.a 10a 12a 111

2

a -例解不等式≥.8 237

23

2x x x -+-37

23

202x x x -+--≥即≥,所以≤.

由于++=++>,

---+-+++-21232123

147

8

2222x x x x x x x x 002x x 12(x )022≤,若,求的范围.0}B A a ?

分析 先确定A 集合,然后根据一元二次不等式和二次函数图像关

解 易得A ={x|1≤x ≤4} 设y =x 2-2ax +a +2(*)

4a 2-4(a +2)<0,解得-1<a <2.

说明:二次函数问题可以借助它的图像求解. 例10 解关于x 的不等式

(x -2)(ax -2)>0.

分析 不等式的解及其结构与a 相关,所以必须分类讨论.

系,结合,利用数形结合,建立关于的不等式.B A a ?(1)B B A 0若=,则显然,由Δ<得??(2)B (*)116若≠,则抛物线的图像必须具有图-特征:?应有≤≤≤≤从而{x|x x x }{x|1x 4}12?12a 12042a 4a 2014

12a 22-·++≥-·++≥≤≤解得≤≤a a

--?

????

??22187综上所述得的范围为-<≤

.a 1a 18

7

解 1° 当a =0时,原不等式化为 x -2<0其解集为{x|x <2};

4° 当a =1时,原不等式化为(x -2)2>0,其解集是{x|x ≠2};

从而可以写出不等式的解集为: a =0时,{x|x <2};

a =1时,{x|x ≠2};

说明:讨论时分类要合理,不添不漏.

2 a 02(x 2)(x )0°当<时,由于>,原不等式化为--<,其解

集为

22

a a {x|2

a

x 2}<<;3 0a 12(x 2)(x )0°当<<时,因<,原不等式化为-->,其解

集为

22

a a {x|x 2x }<或>;2

a

5 a 12(x 2)(x )0°当>时,由于>,原不等式化为-->,其解

集是

22

a a {x|x x 2}<或>.2

a

a 0{x|2

a x 2<时,<<};0a 1{x|x 2x }<<时,<或>;2

a

a 1{x|x x 2}>时,<或>.2

a

例11 若不等式ax 2+bx +c >0的解集为{x|α<x <β}(0<α<β),求cx 2+bx +a <0的解集.

分析 由一元二次函数、方程、不等式之间关系,一元二次不等式的解集实质上是用根来构造的,这就使“解集”通过“根”实现了与“系数”之间的联系.考虑使用韦达定理:

解法一 由解集的特点可知a <0,根据韦达定理知:

∵a <0,∴b >0,c <0.

解法二 ∵cx 2+bx +a =0是ax 2+bx +a =0的倒数方程. 且ax 2+bx +c >0解为α<x <β,

-=α+β,=α·β.b

a

c a

??

?????即=-α+β<,=α·β>.b

a c a

()00???????又

×,b a a c b c

=∴

=-α+β①

由=α·β,∴=α·β②

b c c a a c (1)111对++<化为+

+>,cx bx a 0x x 022b c a

c

由①②得

α,β是++=两个根且α>β

>,1111

x x 002b c a c ∴++>即++<的解集为>α或<β

.x x 0cx bx a 0{x|x x }22b c a c 11

说明:要在一题多解中锻炼自己的发散思维.

分析 将一边化为零后,对参数进行讨论.

进一步化为(ax +1-a)(x -1)<0. (1)当a >0时,不等式化为

(2)a =0时,不等式化为x -1<0,即x <1,所以不等式解集为{x|x <1};

综上所述,原不等式解集为:

例13 (2001年全国高考题)不等式|x 2-3x|>4的解集是________. 分析 可转化为(1)x 2-3x >4或(2)x 2-3x <-4两个一元二次不等式.

答 填{x|x <-1或x >4}.

∴++<的解集为>

α或<β

.cx bx a 0{x|x x } 211

例解关于的不等式:

<-∈.12 x 1a(a R)x

x -1

解原不等式变为

--<,即<, (1a)00x x ax a x -+--111

(x )(x 1)01{x|a 1

a x 1}--<,易见<,所以不等式解集为<<;

a a a a ---11(3)a 0(x )(x 1)01{x|x 1x }<时,不等式化为-

·->,易见>,所以不等式解集为<或>.

a a a a

a a

---11

1

当>时,<<;当=时,<;当<时,>或<.a 0{x|a 1

a

x 1}a 0{x|x 1}a 0{x|x x 1}--a a

1

由可解得<-或>,.(1)x 1x 4(2)?

例14 (1998年上海高考题)设全集U=R,A={x|x2-5x-6>0},B={x||x-5|<a}(a是常数),且11∈B,则

[ ]

A.(U A)∩B=R

B.A∪(U B)=R

C.(U A)∪(U B)=R

D.A∪B=R

分析由x2-5x-6>0得x<-1或x>6,即

A={x|x<-1或x>6}由|x-5|<a得5-a<x<5+a,即

B={x|5-a<x<5+a}

∵11∈B,∴|11-5|<a得a>6

∴5-a<-1,5+a>11 ∴A∪B=R.

答选D.

说明:本题是一个综合题,涉及内容很广泛,集合、绝对值不等式、一元二次不等式等内容都得到了考查

不等式中恒成立问题的解法研究

在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。

恒成立问题的基本类型:

类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00?且a ;(2)R x x f ∈<在0)(上恒成立00

(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立

?????>>-

?????<-?0

)(2020)(2βββαααf a

b

a b f a b 或或, ],[0)(βα∈

)(0)(βαf f

(2)当0x x f 在上恒成立?

??>>?0)(0

)(βαf f

],[0)(βα∈-?????<-

?0

)(2020)(2βββαααf a b

a

b f a b 或或 类型3:

αα>?∈>min )()(x f I x x f 恒成立对一切αα>?∈

类型4:

)

()()()()()()(max min I x x g x f x g x f I x x g x f ∈>?∈>的图象的上方或的图象在恒成立对一切

恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。 一、用一次函数的性质

对于一次函数],[,)(n m x b kx x f ∈+=有:

??

?<>?>0

)(0

)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立

例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:

0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0

)(

)12()1(20

)12()1(22

2

x x x x ,所以x 的范围是)2

31,271(++-∈x 。

二、利用一元二次函数的判别式

对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00

例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。

(1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需??

?<---=?>-0

)1(8)1(0

12

m m m ,所以,)9,1[∈m 。

三、利用函数的最值(或值域)

(1)m x f ≥)(对任意x 都成立m x f ≥?min )(;

(2)m x f ≤)(对任意x 都成立max )(x f m ≥?。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。 例3:在?ABC 中,已知2|)(|,2cos )2

4

(sin sin 4)(2<-++

=m B f B B

B B f 且π

恒成立,求实数m 的范围。 解析:由

]1,0(sin ,0,1sin 22cos )2

4(

sin sin 4)(2∈∴<<+=++

=B B B B B

B B f ππ

,]3,1()(∈B f ,2|)(|<-m B f 恒成立,2)(2<-<-∴m B f ,即??

?+<->2

)(2

)(B f m B f m 恒成立,]3,1(∈∴m 例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 解析:由于函]4

3,4[4),4sin(2cos sin π

πππ

-∈--

=

->x x x x a ,显然函数有最大值

2,2>∴a 。

如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2

,0(4,cos sin π

π

∈-

->x x x a 恒成立的实数a 的范围。

解析:我们首先要认真对比上面两个例题的区别,主要在于自变量的取值范围的变化,这样使得x x y cos sin -=的最大值取不到2,即a 取2也满足条件,所以2≥a 。 所以,我们对这类题要注意看看函数能否取得最值,因为这直接关系到最后所求参数a 的取值。利用这种方法时,一般要求把参数单独放在一侧,所以也叫分离参数法。 四:数形结合法

对一些不能把数放在一侧的,可以利用对应函数的图象法求解。

例5:已知恒成立有时当2

1)(,)1,1(,)(,1,02<-∈-=≠>x f x a x x f a a x ,求实数a 的取

值范围。

解析:由x x a x a x x f <-<-=2

121)(22,得,在同一直角坐标系中做出两个函数的图

象,如果两个函数分别在x=-1和x=1处相交,则由1222

1

)1(211-=--=-

a a 及得到a 分别等于2和0.5,并作出函数x x y y )21(2==及的图象,所以,要想使函数x a x <-2

1

2在

区间)1,1(-∈x 中恒成立,只须x y 2=在区间)1,1(-∈x 对应的图象在2

1

2-=x y 在区间

)1,1(-∈x 对应图象的上面即可。当2,1≤>a a 只有时才能保证,而

2

110≥<

[ ∈a 。

由此可以看出,对于参数不能单独放在一侧的,可以利用函数图象来解。利用函数图象解题时,思路是从边界处(从相等处)开始形成的。

例6:若当P(m,n)为圆1)1(22=-+y x 上任意一点时,不等式0≥++c n m 恒成立,则c 的取值范围是( )

A 、1221-≤≤--c

B 、1212+≤≤-c

C 、12--≤c

D 、12-≥c

解析:由0≥++c n m ,可以看作是点P(m,n)在直线0=++c y x 的右侧,而点P(m,n)在圆1)1(22=-+y x 上,实质相当于是1)1(22=-+y x 在直线的右侧并与它相离或相切。

1211

1|10|0

1022-≥∴???

??≥+++>++∴c c c ,故选D 。 其实在习题中,我们也给出了一种解恒成立问题的方法,即求出不等式的解集后再进行处理。

以上介绍了常用的五种解决恒成立问题。其实,对于恒成立问题,有时关键是能否看得出来题就是关于恒成立问题。下面,给出一些练习题,供同学们练习。

练习题:1、对任意实数x ,不等式),,(0cos sin R c b a c x b x a ∈>++恒成立的充要条件是_______。][22b a c +>

2、设]1,(7

932lg

lg -∞++=在a y x x x 上有意义,求实数a 的取值范围.),95

[+∞。

3、当1||)3,31

(<∈x Log x a 时,

恒成立,则实数a 的范围是____。)],3[]3

1,0[(+∞

4、已知不等式:3

2)1(1211......2111+->++++++a Log n n n n a 对一切大于1的自然数n 恒成立,求实数a 的范围。)]2

5

1,1([+∈a

含参不等式恒成立问题的求解策略

“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。 一、判别式法

若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数

),0()(2R x a c bx ax x f ∈≠++=,有

1)0)(>x f 对R x ∈恒成立??

??00

a ;

2)0)(

??

?+-+a x a x 对R x ∈恒成立,即有

04)1(22<--=?a a 解得3

1

1>-

所以实数a 的取值范围为),3

1()1,(+∞--∞ 。

若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。

例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为:

???

?

???

-≤--≥-≥?1

220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-。 二、最值法

将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ?

例3.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,求实数a 的取值范围。

解:设c x x x x g x f x F -++-=-=1232)()()(23, 则由题可知0)(≤x F 对任意]3,3[-∈x 恒成立 令01266)(2'=++-=x x x F ,得21=-=x x 或

而,20)2(,7)1(a F a F -=-=-,9)3(,45)3(a F a F -=-=- ∴045)(max ≤-=a x F

∴45≥a 即实数a 的取值范围为),45[+∞。

例4.函数),1[,2)(2+∞∈++=

x x

a

x x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。

解:若对任意),1[+∞∈x ,0)(>x f 恒成立,

即对),1[+∞∈x ,02)(2>++=

x

a

x x x f 恒成立, 考虑到不等式的分母),1[+∞∈x ,只需022>++a x x 在),1[+∞∈x 时恒成立而得 而抛物线a x x x g ++=2)(2在),1[+∞∈x 的最小值03)1()(min >+==a g x g 得3->a 注:本题还可将)(x f 变形为2)(++=x

a

x x f ,讨论其单调性从而求出)(x f 最小值。 三、分离变量法

若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:

1)为参数)a a g x f )(()(<恒成立max )()(x f a g >? 2)为参数)a a g x f )(()(>恒成立max )()(x f a g

略解:022>++a x x 在),1[+∞∈x 时恒成立,只要x x a 22-->在),1[+∞∈x 时恒成立。而易求得二次函数x x x h 2)(2--=在),1[+∞上的最大值为3-,所以3->a 。 例5.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

x x a 2

4-<

对]4,0(∈x 恒成立。 令x x x x g 2

4)(-=

,则min )(x g a < 由14

4)(2

-=-=

x

x

x x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g

∴0

注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。 四、变换主元法

处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。

例6.对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围。

分析:题中的不等式是关于x 的一元二次不等式,但若把a 看成主元,则问题可转化为一次不等式044)2(2>+-+-x x a x 在]1,1[-∈a 上恒成立的问题。

解:令44)2()(2+-+-=x x a x a f ,则原问题转化为0)(>a f 恒成立(]1,1[-∈a )。 当2=x 时,可得0)(=a f ,不合题意。

当2≠x 时,应有??

?>->0

)1(0

)1(f f 解之得31>

故x 的取值范围为),3()1,(+∞-∞ 。

注:一般地,一次函数)0()(≠+=k b kx x f 在],[βα上恒有0)(>x f 的充要条件为

?

?

?>>0)(0

)(βαf f 。 四、数形结合法

数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:

1)?>)()(x g x f 函数)(x f 图象恒在函数)(x g 图象上方; 2)?<)()(x g x f 函数)(x f 图象恒在函数)(x g 图象下上方。

例7.设x x x f 4)(2--= , a x x g -+=13

4

)(,若恒有)()(x g x f ≤成立,求实数a 的取值范围.

分析:在同一直角坐标系中作出)(x f 及)(x g

如图所示,)(x f 的图象是半圆(4)2(22=++y x

)(x g 的图象是平行的直线系03334=-+-a y x 要使)()(x g x f ≤恒成立,

则圆心)0,2(-到直线03334=-+-a y x 的距离 满足 25

338≥-+-=

a

d

解得3

5

5≥

-≤a a 或(舍去) 由上可见,含参不等式恒成立问题因其覆盖知识点多,方法也多种多样,但其核心思想还是等价转化,抓住了这点,才能以“不变应万变”,当然这需要我们不断的去领悟、体会和总结。

含参不等式恒成立问题中,求参数取值范围一般方法

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。

在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求

出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。

例1、已知函数()lg 2a f x x x ??

=+- ???

,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。

解:根据题意得:21a

x x

+

->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,

设()2

3f x x x =-+,则()2

3924f x x ?

?=--+ ??

?

当2x =时,()max 2f x = 所以2a >

在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若()()f a g x ≥恒成立,只须求出()max g x ,则()()max f a g x ≥,然后解不等式求出参数a 的取值范围;若()()f a g x ≤恒成立,只须求出()min g x ,则()()min f a g x ≤,

然后解不等式求出参数a 的取值范围,问题还是转化为函数求最值。

例2、已知(],1x ∈-∞时,不等式()

21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,

(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22

1

t a a t +-<

, 要使上式在(]0,2t ∈上恒成立,只须求出()21

t f t t

+=

在(]0,2t ∈上的最小值即可。 ()2

2

211111124t f t t t t t +????==+=+- ? ?????

11,2t ??∈+∞???? ()()min 324f t f ∴==

234a a ∴-< 13

22

a ∴-<<

高一数学上册期末测试题及答案

高一数学上册期末测试题及答案 考试时间:90分钟 测试题满分:100分 一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的. 1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1} B .{x |0<x ≤1} C .{x |x <0} D .{x |x >1} 2.下列四个图形中,不是..以x 为自变量的函数的图象是( ). A B C D 3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2 B .a 2+1 C .a 2+2a +2 D .a 2+2a +1 4.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4 log 8log 22=4 8log 2

C .log 2 23=3log 2 2 D .log 2(8+4)=log 2 8+log 2 4 5.下列四组函数中,表示同一函数的是( ). A .f (x )=|x |,g (x )= 2 x B .f (x )=lg x 2,g (x )=2lg x C .f (x )=1 -1-2 x x ,g (x )=x +1 D .f (x )=1+x ·1-x ,g (x )=1-2x 6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1, 1) C .一定经过点(-1,1) D .一定经过点(1,- 1) 7.国内快递重量在1 000克以内的包裹邮资标准如下表: 如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元 B .6.00元 C .7.00元 D .8.00元 8.方程2x =2-x 的根所在区间是( ). A .(-1,0) B .(2,3) C .(1,2)

一元二次不等式练习题含答案

一元二次不等式练习 一、选择题 1.设集合S ={x |-50 B .a ≥13 C .a ≤13 D .02} C .{x |-1≤x ≤2} D.{x |-1≤x <2} 4.若不等式ax 2 +bx -2>0的解集为? ????? x |-2

5.不等式x(x-a+1)>a的解集是{} x|x<-1或x>a,则( ) A.a≥1 B.a<-1 C.a>-1 D.a∈R 6.已知函数f(x)=ax2+bx+c,不等式f(x)>0的解集为{} x|-30的解集是(1,+∞),则关于x的不等式ax+b x-2 >0 的解集是________. 10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________. 三、解答题

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

高一数学不等式解法例题.doc

典型例题一 例 1 解不等式:( 1)2x3 x2 15 x 0 ;(2) ( x 4)( x 5)2 (2 x)3 0 . 分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f ( x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况. 解:( 1)原不等式可化为 x(2x 5)( x 3)0 把方程 x(2 x 5)( x 3) 0 的三个根 x1 0, x2 5 , x3 3顺次标上数轴.然后从右上2 开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为x 5 0或 x 3 x 2 ( 2)原不等式等价于 ( x 4)( x 5)2 (x 2)3 0 x 5 0 x 5 (x 4)( x 2) 0 x 4或 x 2 ∴原不等式解集为x x 5或 5 x 4或x 2 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或 奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” ,其法如下图. 典型例题二 例 2 解下列分式不等式: ( 1) 3 1 2 ;(2) x2 4x 1 1 x 2 x 2 3x2 7x 2 分析:当分式不等式化为f (x) 0(或0) 时,要注意它的等价变形g( x)

① f ( x) f ( ) g ( ) 0 g( x) x x ② f ( x) f (x) g(x) f ( x) f ( x ) 0或 ( ) ( ) 0 或 g( x) g (x) 0 g (x) f x g x ( 1)解: 原不等式等价于 3 x 3 x 0 x 2 x 2 x 2 x 2 3( x 2) x( x 2) x 2 5x 6 ( x 2)( x 2) (x 2)( x 2) ( x 6)( x 1) 0 (x 6)( x 1)( x 2)(x 2) 0 ( x 2)( x 2) (x 2)( x 2) 0 用“穿根法” ∴原不等式解集为 ( , 2) 1,2 6, 。 ( 2)解法一 :原不等式等价于 2x 2 3x 1 0 3x 2 7x 2 (2x 2 3x 1)(3x 2 7 x 2) 0 2x 2 3x 1 0 2x 2 3x 1 3x 2 7x 2 或 3x 2 7x 2 1 或 1 x 或 x 2 x 2 1 3 ∴原不等式解集为 ( , 1 ) ( 1 ,1) (2, ) 。 3 2 解法二:原不等式等价于 ( 2x 1)( x 1) 0 (3x 1)( x 2) (2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” ∴原不等式解集为 ( , 1) ( 1 ,1) (2, ) 3 2 典型例题三 例 3 解不等式 x 2 4 x 2

最新-高一数学上学期期末考试试题及答案

2017-2018学年度第一学期期末考试 高一数学试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己の姓名、座号、考籍号分别填写在试卷和答题纸规定の位置. 第Ⅰ卷(选择题 共48分) 参考公式: 1.锥体の体积公式1 ,,.3 V Sh S h =其中是锥体的底面积是锥体的高 2.球の表面积公式2 4S R π=,球の体积公式3 43 R V π=,其中R 为球の半径. 一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出の四个选项中,只有一项 是符合题目要求の. 1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( ) A .{}0 B .{}1,2 C .{}0,2 D .{}0,1,2 2.空间中,垂直于同一直线の两条直线 ( ) A .平行 B .相交 C .异面 D .以上均有可能 3.已知幂函数()α x x f =の图象经过点? ?? ?? 2, 22,则()4f の值等于 ( ) A .16 B.116 C .2 D.1 2 4. 函数()lg(2)f x x =+の定义域为 ( ) A.(-2,1) B.[-2,1] C.()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|の最小值为 ( ) A B .C D .2 6.设m 、n 是两条不同の直线,α、β是两个不同の平面,则下列命题中正确の是 ( ) A .若m ∥n ,m ∥α,则n ∥α B .若α⊥β,m ∥α,则m ⊥β C .若α⊥β,m ⊥β,则m ∥α D .若m ⊥n ,m ⊥α, n ⊥β,则α⊥β

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

高一数学一元二次不等式解法练习题及答案.doc

高一数学一元二次不等式解法练习题及答案 例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<11 a a C x a D x x a .>或<.<或>x a a 1 1 分析比较与的大小后写出答案. a 1 a 解∵<<,∴<,解应当在“两根之间”,得<<. 选. 0a 1a a x A 11 a a 例有意义,则的取值范围是 .2 x x 2--x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-?? ?????b a a ()()1211122×得

a b ==-1212 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+- -+-3132 511 3 122x x x x x x >>()() 分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 1-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1 或x =0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得>,即>, 1x 0001 111 22 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解.

高一数学上册期末考试试题(含答案)

D C A B 8 8 8 8 4 4 4 4 x x y y y y O O O O 数学部分 一、选择题 1、如图,两直线a ∥b ,与∠1相等的角的个数为(C ) A 、1个 B 、2个 C 、3个 D 、4个 2、不等式组的解集是( A ) A 、 B 、 C 、 D 、无解 3、如果,那么下列各式中正确的是( D ) A 、 B 、 C 、 D 、 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( A ) A 、AAS B 、ASA C 、SAS D 、SSS 5、已知一组数据1,7,10,8,x ,6,0,3,若=5,则x 应等于( B ) A 、6 B 、5 C 、4 D 、2 6、下列说法错误的是( B ) A 、长方体、正方体都是棱柱; B 、三棱住的侧面是三角形; C 、六棱住有六个侧面、侧面为长方形; D 、球体的三种视图均为同样大小的图形; 7、△ABC 的三边为a 、b 、c ,且 ,则( D ) A 、△ABC 是锐角三角形; B 、c 边的对角是直角; C 、△ABC 是钝角三角形; D 、a 边的对角是直角; 8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( C ) A 、中位数; B 、平均数; C 、众数; D 、加权平均数; 9、如右图,有三个大小一样的正方体,每个正方体的六个面上都按照相同的顺序,依次标有1,2,3,4,5,6这六个数字,并且把标有“6”的面都放在左边,那么它们底面所标的3个数字之和等于( A ) A 、8 B 、9 C 、10 D 、11 10、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。现假设该市某户居民某月用水x 立方米,水 1 a b 4 1 3 2 1 2 6

一元二次方程练习题(较难)

一元二次方程练习题 1、已知关于x 的方程0)1(222=+--k x k x 有两个实数根1x 、2x ⑴、求k 的取值范围; ⑵、若12121-?=+x x x x ,求k 的值。 、 2.、已知关于x 的一元二次方程 有两个实数根1x 与2x (1)求实数m 的取值范围; (2)若7)1)(1(21=--x x ,求m 的值。 } 3.已知)(11y x A , ,)(22y x B , 是反比例函数x y 2 -= 图象上的两点,且212-=-x x ,3 21=?x x . (1)求21y y - 的值及点A 的坐标; (2)若-4<y ≤ -1,直接写出x 的取值范围. 【 4.(本小题8分)已知关于x 的方程014)1(2 2=+++-k x k x 的两根是一个矩形的两邻边的长。 (1)k 为何值时,方程有两个实数根; (2)当矩形的对角线长为 时,求k 的值。 ;

5.已知关于x 的一元二次方程 . 】 (1)求证:方程总有两个不相等的实数根; (2)当Rt△ABC 的斜边长 ,且两直角边和是方程的两根时,求△ABC 的周长和面积. ~ 6.如果一元二次方程02=++c bx ax 的两根1x 、2x 均为正数,且满足1< 2 1x x <2(其中1x >2x ),那么称这个方程有“邻近根”. (1)判断方程03)13(2=++-x x 是否有“邻近根”,并说明理由; (2)已知关于x 的一元二次方程01)1(2 =---x m mx 有“邻近根”,求m 的取值范围. 。 7.设关于x 的一元二次方程0122=++px x 有两个实数根,一根大于1,另一根小于1,试求实数p 的范围. ¥ 8.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,商店为适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可

高一数学不等式解法经典例题92436

实用文档 标准文案大全典型例题一 例1解不等式:(1)015223???xxx;(2)0)2()5)(4(32????xxx. 分析:如果多项式)(xf可分解为n个一次式的积,则一元高次不等式0)(?xf(或0)(?xf)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 0)3)(52(???xxx 把方程0)3)(52(???xxx的三个根3,25,0321????xxx顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部 分. ∴原不等式解集为??????????3025xxx或 (2)原不等式等价于 ??????????????????????2450)2)(4(050)2()5)(4(32xxxxxxxxx或 ∴原不等式解集为??2455???????xxxx或或 说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”, 其法如下图. 典型例题二 例2 解下列分式不等式: (1)22123????xx;(2)12731422?????xxxx 分析:当分式不等式化为)0(0)()(??或xgxf时,要注意它的等价变形

实用文档 标准文案大全①0)()(0)()(????xgxfxgxf ② 0)()(0)(0)()(0)(0)()(0)()(?????????????xgxfxfxgxfxgxgxfx gxf或或 (1)解:原不等式等价于 ????????????????????????????????????????0)2)(2(0)2)(2)(1)(6(0)2 )(2()1)(6(0)2)(2(650)2)(2()2()2(302232232xxxxxxxxxxxx xxxxxxxxxxxxx 用“穿根法” ∴原不等式解集为????????????,62,1)2,(。 (2)解法一:原不等式等价于 027313222?????xxxx21213102730132027301320)273)(132(222222??? ???????????????????????????????xxxxxxxxxxxxxxx或或或 ∴原不等式解集为),2()1,21()31,(??????。 解法二:原不等式等价于0)2)(13()1)(12(?????xxxx 0)2()13)(1)(12(???????xxxx 用“穿根法” ∴原不等式解集为),2()1,21()31,(?????? 典型例题三 实用文档 标准文案大全 例3解不等式242???xx 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的

-2018高一数学上学期期末考试试题及答案

2017-2018高一数学上学期期末考试试题及 答案 https://www.docsj.com/doc/634543036.html,work Information Technology Company.2020YEAR

2 2017-2018学年度第一学期期末考试 高一数学试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置. 第Ⅰ卷(选择题 共48分) 参考公式: 1.锥体的体积公式1,,.3 V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式2 4S R π=,球的体积公式343 R V π=,其中R 为球的半径. 一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( ) A .{}0 B .{}1,2 C .{}0,2 D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( ) A .平行 B .相交 C .异面 D .以上均有可能 3.已知幂函数()αx x f =的图象经过点? ?? ??2,22,则()4f 的值等于 ( ) A .16 B.116 C .2 D.1 2 4. 函数()lg(2)f x x =+的定义域为 ( ) A.(-2,1) B.[-2,1] C.()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值为 ( ) A B .C D .2 6.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( ) A .若m ∥n ,m ∥α,则n ∥α B .若α⊥β,m ∥α,则m ⊥β

解一元二次方程及一元二次不等式练习题-

一元二次方程练习题 1. 解下列方程:(1)2(1) 9x -=; (2)2(21)3x +=; (3)2(61)250x --=. (4)281(2)16x -=. 2. 用直接开平方法解下列方程: (1)25(21) 180y -=; (2)21(31)644x +=; (3)26(2) 1x +=; (4)2()(00)ax c b b a -=≠,≥ 3. 填空 (1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 4. 用适当的数(式)填空: 23x x -+ (x =- 2);2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 5. 用配方法解方程. 23610x x --= 22540x x --= 6. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 7. 用适当的方法解方程(1)23(1) 12x +=; (2)2410y y ++=; (3)2884x x -=; (4)2310y y ++=. (5) ()9322=-x ; (6)162=-x x ; 一元二次不等式 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程2 0(0)ax bx c a ++=>之间判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 一、解下列一元二次不等式:

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

2020-2021高一数学上期末试题(带答案)

2020-2021高一数学上期末试题(带答案) 一、选择题 1.已知函数1 ()ln(1)f x x x = +-;则()y f x =的图像大致为( ) A . B . C . D . 2.已知奇函数()y f x =的图像关于点(,0)2π 对称,当[0,)2 x π ∈时,()1cos f x x =-,则当5( ,3]2 x π π∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 3.已知函数()()2,2 11,2 2x a x x f x x ?-≥?=???-

2121 ()() 0f x f x x x -<-,则( ). A .(3)(2)(1)f f f <-< B .(1)(2)(3)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<- 5.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时, ()()1h x g x =-;若函数()()y k f x h x =?-有五个零点,则正数k 的取值范围是 ( ) A .()3log 2,1 B .[ )3log 2,1 C .61log 2, 2?? ??? D .61log 2,2 ?? ?? ? 6.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1 ()21 f x x = -有2022个不同的实数根i x (1,2,3,2022i =L ),则1232022x x x x ++++=L ( ) A .1010 B .2020 C .1011 D .2022 7.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数 6()(1)cos 43g x x f x =-+?-有且只有唯一的零点,则(2019)f =( ) A .1 B .-1 C .-3 D .3 8.已知全集为R ,函数()()ln 62y x x =--的定义域为集合 {},|44A B x a x a =-≤≤+,且R A B ?e,则a 的取值范围是( ) A .210a -≤≤ B .210a -<< C .2a ≤-或10a ≥ D .2a <-或10a > 9.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有 ()()22f x f x -=+且当[]2,0x ∈-时, ()112x f x ?? =- ??? ,若在区间(]2,6-内关于x 的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2 B .()2,+∞ C .( D . ) 2 10.若函数y a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485 =( ) A .1 B .2 C .3 D .4 11.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( )

完整版一元二次不等式及其解法教学设计

元二次不等式及其解法 设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高; 逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课 正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学 生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决 问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学 生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5 第三章《不等式》第二节一元 次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不 等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领 悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数 之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解 决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 教学重点】一元二次不等式的解法。 教学难点】一元二次方程、一元二次不等式和二次函数的关系。 教学策略】 探究式教学方法 创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价)课前准备】教具:“几何画板”及PPT 课件. 粉笔:用于板书示范. 第1 页共4 页

一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2 (2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

2018高一数学上学期期末考试试题及答案

2018第一学期期末考试 高一数学试题 第Ⅰ卷(选择题 共48分) 参考公式: 1.锥体的体积公式1 ,,.3 V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式2 4S R π=,球的体积公式3 43 R V π=,其中R 为球的半径. 一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( ) A .{}0 B .{}1,2 C .{}0,2 D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( ) A .平行 B .相交 C .异面 D .以上均有可能 3.已知幂函数()α x x f =的图象经过点? ?? ?? 2, 22,则()4f 的值等于 ( ) A .16 B.116 C .2 D.1 2 4. 函数()lg(2)f x x =+的定义域为 ( ) A.(-2,1) B.[-2,1] C.()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值为 ( ) A B .C D .2 6.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( ) A .若m ∥n ,m ∥α,则n ∥α B .若α⊥β,m ∥α,则m ⊥β C .若α⊥β,m ⊥β,则m ∥α D .若m ⊥n ,m ⊥α, n ⊥β,则α⊥β 7.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=2 2,则()1f 等于 ( ) A .-3 B .-1 C .1 D .3

【典型题】高一数学上期末试题及答案

【典型题】高一数学上期末试题及答案 一、选择题 1.若函数2 ()2 f x mx mx =-+的定义域为R ,则实数m 取值范围是( ) A .[0,8) B .(8,)+∞ C .(0,8) D .(,0)(8,)-∞?+∞ 2.若函数*12*log (1),()3,x x x N f x x N ?+∈? =????,则((0))f f =( ) A .0 B .-1 C . 1 3 D .1 3.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的 “上界值”,则函数33 ()33 x x f x -=+的“上界值”为( ) A .2 B .-2 C .1 D .-1 4.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1 ()21 f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x +++ +=( ) A .1010 B .2020 C .1011 D .2022 5.用二分法求方程的近似解,求得3 ()29f x x x =+-的部分函数值数据如下表所示: x 1 2 1.5 1.625 1.75 1.875 1.8125 ()f x -6 3 -2.625 -1.459 -0.14 1.3418 0.5793 则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6 B .1.7 C .1.8 D .1.9 6.函数ln x y x = 的图象大致是( ) A . B . C . D . 7.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4}

一元二次不等式及其解法练习题.doc

一元二次不等式及其解法练习 班级: 姓名: 座号: 1 比较大小: (1)2 6+ (2)2 21)-; (3 ; (4)当0a b >>时,12log a _______12 log b . 2. 用不等号“>”或“<”填空: (1),____a b c d a c b d >><>? (4)2211 0___a b a b >>?. 3. 已知0x a <<,则一定成立的不等式是( ). A .220x a << B .22x ax a >> C .20x ax << D .22x a ax >> 4. 如果a b >,有下列不等式:①22a b >,②11 a b <,③33a b >,④lg lg a b >, 其中成立的是 . 5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 . 6.比较(3)(5)a a +-与(2)(4)a a +-的大小. 7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化 8.(1)已知1260,1536,a a b a b b <<<<-求及的取值范围. (2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围. 9. 已知22 ππ αβ-≤<≤,则2αβ-的范围是( ). A .(,0)2 π - B .[,0]2π - C .(,0]2π- D .[,0)2 π - 10.求下列不等式的解集. (1)2230x x +->; (2)2230x x -+-> (3)2230x x -+-≤.

相关文档
相关文档 最新文档