文档视界 最新最全的文档下载
当前位置:文档视界 › 基于单片机的PID温度控制器的设计

基于单片机的PID温度控制器的设计

基于单片机的PID温度控制器的设计
基于单片机的PID温度控制器的设计

毕业设计(论文)课题基于单片机的PID温度控制器的设计

学院电子信息工程学院

专业(方向)应用电子技术(通信电子)

班级电子104

学号

姓名

完成日期2012年11月30号

指导教师

基于单片机的PID温度控制器的设计

摘要

本文从软硬件两方面设计了一个温度自动控制器系统。本设计系统以单片机(STC89C51RC)为控制核心,主要包括按键部分、DS18B20温度采集部分、温度报警部分、1602显示部分、温度控制部分及MAX232通信接口部分等硬件部分,从而实现智能温度控制。

本系统通过按键预设加热的最终保持水温的温度并进行实时显示预设温度和当前温度,并采用PID 算法的控制输出宽度可调的PWM 波来控制双向可控硅的导通和关断用以调整输出加热功率,使之切断或接通加热器,从而控制水温稳定在预设值上。

文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:LCD1602显示程序、键盘扫描及按键处理程序、温度信号处理程序、温度控制程序、超温报警程序。

本系统的主要设计思想是以硬件为基础,软件和硬件相结合,最终实现各个模块的功能。

关键词:单片机;DS18B20;PID算法;PWM波;双向可控硅;

Project name

The Design of PID Temperature Control System Based

on SCM

Abstract

This article from two aspects of hardware and software design of a temperature automatic controller.This design system with single chip microcomputer (STC89C51RC) as the control core, including the key part, DS18B20 temperature acquisition part, temperature alarm part, 1602 portion of the display, temperature control part and MAX232 communication interface and other hardware components, thereby realizing the intelligent temperature control.

This system through the keys to the preset heating ultimately keep water temperature and real-time display preset temperature and the temperature, and PID algorithm is used to control the output with adjustable width PWM to control thyristor turn-on and turn-off is used to adjust the output of the heating power, to cut off or switch on the heater, thereby controlling the temperature stability at a preset value.

The article also emphatically introduced the software design part, uses the modular structure in here, the main modules: LCD1602 display program, the keyboard scan and key process, temperature signal processing procedure, temperature control procedures, over-temperature alarm program.

This system main design idea is on the base of hardware, software and hardware integration, and ultimately to achieve the functions of each module.

Key words:SCM DS18B20 PID Algorithm PWM Waveform Bidirectional controllable silicon

目录

摘要

Abstract

1 引言 (1)

2 系统设计的内容及要求 (2)

2.1 系统设计的内容 (2)

2.2 系统设计的要求 (2)

3 系统总体设计方案选择与论证 (2)

3.1 控制芯片选择 (2)

3.2 传感器的选择 (3)

3.3 显示方式的选择 (3)

3.4 键盘的选择 (4)

3.5 温度加热控制的选择 (4)

3.6 方案选择 (4)

3.7 方案比较 (5)

四.系统硬件设计 (5)

4.1 系统的组成及框图 (5)

4.2 系统功能及工作原理 (6)

4.3 单片机最小系统控制部分 (6)

4.4 温度采集部分 (7)

4.4.1 DS18B20工作原理 (7)

4.4.2 温度采集电路 (8)

4.6 通信部分 (9)

4.6.1 MAX232资料简介 (9)

4.6.2 串口通信电路 (9)

4.7 加热控制部分 (10)

4.8 超温报警部分 (10)

4.9 液晶显示部分 (10)

4.9.1 液晶的介绍 (11)

4.9.2液晶显示电路 (12)

4.10 电源部分 (12)

五.系统的软件设计 (13)

5.1软件设计思路 (13)

5.2 系统变量定义及I/O口分配 ......................................................................... 错误!未定义书签。

5.3 整体的软件流程图 (13)

5.4 PID算法 (13)

5.4.1 PID控制理论 ...................................................................................... 错误!未定义书签。

5.4.2 PID算法 .............................................................................................. 错误!未定义书签。

5.5 部分软件设计 ................................................................................................. 错误!未定义书签。

5.5.1 主程序模块 ......................................................................................... 错误!未定义书签。

5.5.2 温度采集模块 ..................................................................................... 错误!未定义书签。

5.5.3 键盘模块 ............................................................................................. 错误!未定义书签。

5.5.4 液晶显示模块 ..................................................................................... 错误!未定义书签。

5.5.5 报警模块 ............................................................................................. 错误!未定义书签。

5.5.6 PID算法模块 ...................................................................................... 错误!未定义书签。

5.5.7 温度控制模块 ..................................................................................... 错误!未定义书签。六.调试过程及测试结果 ............................................................................................. 错误!未定义书签。总结 .. (21)

参考文献 (20)

致谢 (21)

附录一完整的电路图

附录二元件清单

引言

随着科技进步和生产的发展,人们对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向,而温度控制是控制系统中最为常见的控制类型之一。

本文介绍了一个基于单片机STC89C51为设计平台,结合DS18B20数字温度传感器测温,LCD1602显示,MAX232通信,按键调温与超温报警等电路构成的PID温度测控系统,该系统可以方便地实现温度采集、温度显示等功能。本系统的温度控制部分采用单片机完成。单片机有着体积小、功耗低、功能强、性能价格比高、使用电子元件较少、内部配线少、制造调试方便等显著优点,将其用于温度检测和控制系统中可大大地提高控制质量和自动化水平,具有良好的经济效益和推广价值。在温度控制系统中,单片机更是起到了不可替代的核心作用。利用单片机对温度进行测控的技术,日益得到广泛应用。在众多的温度控制系统中,测温元件常常选用热敏电阻、半导体测温二极管、三极管、集成温度传感器等。相比而言,集成温度传感器具有线性好、稳定度高、互换性强、易处理等突出优点,故在许多场所得到了广泛应用。本系统中采用DS18B20数字温度传感器,完成测温任务,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。并通过与单片机连接的按键可以实时设定测控温度的上、下限。本系统还可以连接相应的外围加热电路,当温度低于设定下限温度时,单片机发出的指令,加热器起动对水温进行加热,当温度回升到下限温度时加热器停止加热。而在温度控制当中,PID控制技术应用相对来说比较广泛,PID 控制器算法简单,计算量小,恒温效果稳定。本系统应而采用了PID温度控制技术。

系统软件主要由初始化程序、主程序、测控显示程序等组成。其中初始化程序是对单片机的接口工作方式等进行设置;显示程序包括对显示模块的初始化、显示方式设定及输出显示;主程序则完成对采集数据进行处理、控制。

该系统应用范围相当广泛,同时采用单片机技术,由于单片机自身功能强大,因而系统设计简单,工作可靠,抗干扰能力强,也可在此基础上加入通信接口电路,实现与相互之间的通信。

1 系统设计的内容及要求

1.1 系统设计的内容

(1)利用51系列单片机作为主控制器实现温度的自动控制;

(2)可以实现温度的设定调节;

(3)根据要求实现程序的设计编写。

1.2 系统设计的要求

(1)硬件电路的制作要科学合理,布局要美观,性能要稳定;

(2)温度控制范围为0℃-99℃,温度精确到±3℃。

2 系统总体设计方案选择与论证

2.1 控制芯片选择

本设计选用单片机为控制芯片是因为它有以下优点。第一,可靠性良好。单片机是按照工业控制要求所设计的,其抗工业噪声优于一般的CPU,程序指令及常数数据都烧写在ROM内,其许多信号通道均在同一个芯片内,因此可靠性高;第二,易扩充。单片机具有一般微电脑所必需的器件,如三态双向总线、并行及串行的输入/输出引脚,可以扩充为各种规模的微电脑系统;第三,控制功能强。为了满足工业控制的要求,单片机的指令除了输入/输出控制指令、逻辑判断指令外,还有更为丰富的条件分支跳跃指令。

利用单片机的智能性,可方便的实现具有智能的数据采集和处理。在采用单片机为实现形式时,有很多种单片机可以实现数据采集、数据处理功能,通常会用以下几种单片机来实现:

1、采用PIC来实现。美国微芯科技股份有限公司推出的采用RISC(精简指令集)和哈佛总线(Harvard)结构的PIC系列CMOS 8位单片机,其主要特点是数据总线是8位的,而其指令总线则有12位、14位和16位3种。

2、采用AVR来实现。AVR单片机的特点:速度快、片内资源丰富、保密性好、可重复擦写及在系统编程ISP、工作电压范围宽、功耗低、支持JTAG仿真、与C语言的完美配合。

3、采用STC89C51RC来实现。STC89C51RC结合了HMOS的高速和高密度技术及CHMOS的低功耗特征,它基于标准的MCS-51单片机体系结构和指令系统,属于80C51增强型单片机版本,集成了时钟输出和向上或向下计数器等更多的功能,适

合于类似马达控制等应用场合。

基于以上优点本系统采用STC89C51RC作为主控芯片。

2.2 传感器的选择

测量温度有很多传感器。热电偶灵敏度较低,但能在很宽广的温度范围内使用;热敏电阻的工作温度范围较窄,但灵敏度高,有利于检测微小温差,其输出特性量非线性,检测时需要有线性化装置;廉价的集成电路(IC)温度传感器性能离散度很大,用于高精度测量时,必须进行校准;测温铂电阻温度系数的离散度很小,精确度高,灵敏度也较好,特别适用于1000度以下的温度测量,但价格昂贵。

集成电路温度传感器利用了半导体PN结电流电压特性和温度的相关性,与热敏电阻、热电偶相比,最大优点是输出线好,测温精度较高。DS18B20包含一个10位AD 转换器,是一个以0.25的分辨力将温度数字化的温度传感器,也支持“一线总线”接口,测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为± 2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小.分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

选择温度传感器,首先应该考虑温度传感器的测量精度和测量范围,精度符合使用要求,所以我们直接选择数字,避免在收到模拟信号后再将其转化成数字信号,那样会扩大测量误差,影响精确度,故在本系统中选择DS18B20传感器比较好。

2.3 显示方式的选择

方案一:使用液晶1602。液晶显示屏(LCD)具有低压、微功耗、无辐射危险,平面直角显示以及影象稳定不闪烁等优势,显示信息量大,分辨率高,抗干扰能力强等特点,在袖珍式仪表和低功耗应用系统中得到越来越广泛的应用。

方案二:使用数码管。数码管作为单片机系统最为常用的输出器件,在显示时可以由数字和少量字母组合完成输出功能的系统中应用十分方便。数码管有以下优点:低能耗、低损耗、低压、寿命长、耐老化、防晒、防潮、防火、防高(低)温,对外界环境要求相对较低,易于维护,同时其精度较高,称重轻,精确可靠,操作简单。数码管

采用BCD编码显示数字,程序编译容易,资源占用较少。但数码管要驱动,同时要给位选和段选。

根据以上的论述,采用方案一对于本设计显示方便。

2.4 键盘的选择

在温度过程控制中,系统需要对环境的温度进行设定,因此需要用按键。

方案一:使用独立键盘。独立键盘是指直接用I/O口线构成的单个按键电路。优点是电路设计配置灵活,软件便于实现。同时也存在明显缺点,每个按键要占用一根I/O 口,若按键数量较多,电路结构将变得复杂且浪费资源。因此独立按键主要用于按键较少或对操作速度要求较高的场合。编写软件时,可以采用中断或者查询方式。

方案二:使用矩阵键盘。矩阵键盘是由行线和列线组成,按键位于行、列的交叉点上,行线、列线分别连接到按键开关的两端。其特点是简单且不增加成本,这种键盘适合按键数量较多的场合。

根据以上的论述,因本系统需要的按键多,所以采用方案二矩阵键盘。

2.5 温度加热控制的选择

方案一:利用PLC实现恒温控制,采用PLC控制实现电热丝加热全通、间断导通和全断加热的自控方式,来保持温度的恒定。智能型电偶温度表将置于被测对象中,热电偶的传感信号与恒定温度的给定电压进行比较,生成温差,自适应恒温控制电路根据差值大小控制电路的通断,比较繁琐。

方案二:控制电路部分采用SSR固态继电器控制加热器的通断,此方案电路简单并且可以满足题目中的各项要求的精度,但不够稳定。

方案三:利用PID算法实现温度控制。PID算法简单,计算量小,恒温效果稳定。

根据以上的论述,应而我们选择PID算法控制温度。

2.6 方案选择

方案一

采用美国DALLAS半导体公司继DS1820之后推出的一种该进型智能温度传感器

DS18B20作为检测元件,检测范围—55~125℃,最大分辨率可达0. 0625℃。DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点,

本电路由3个模块组成;主控制器,测温电路、显示电路以及扫描驱动。

主控制电路:单片机STC89C51具有低电压供电和小体积等特点。

显示电路;采用LCD液晶1602显示。

测量电路:采用DS18B20测量。

扫描驱动:DS18B20与单片机的接口电路

DS18B20可以采用两种方式供电,一种是采用电源供电方法,DS18B20可以采用两种方式供电,一种是采用电源供电方法,另一种是寄生电源供电方式,单片机接口接单线总线,为保证有效的DS18B20时钟周期内提供足够的电源,可用一个MOSFET管来完成总线的上位。

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上位,上位开启时最大为10 uA。采用寄生电源供电方式时VDD和GND端军接地。由于单线制只有一根线,因此发送接口必须是三态的。

方案二

由AD590配以ADC0809。ADC0809是最常用的8位模数转换器,属于逐次逼近型。ADC0809采用单一的+5V供电,片内有带锁存功能的8路模拟开关,可对0—5V,8路模拟信号分时进行转换,完成一次转换的的时间是100US,数字输出信号具有TTL三态锁存器,可以直接与STC89C51相连。

2.7 方案比较

方案二中使用AD590配以ADC0809采集温度,结构较复杂,适合较大规模的工业农业使用。成本较高故从以上两种方案,很容易看出采用方案一,电路不仅比较简单,软件设计也比较简单,故采用了方案一。

3 系统硬件设计

3.1 系统的组成及框图

系统由硬件与软件两大部分组成。硬件电路由以下几个部分组成:温度采集部分、单片机最小系统控制部分、键盘部分、通信部分、加热控制电路部分、报警电路部分和液晶显示部分及电源部分。系统的组成框图如图3.1所示:

单片机系统是整个控制系统的核心,STC89C51可以提供系统控制所需的I/O口、中断、定时及存放中间结果的RAM电路。

键盘设定:用于温度设定。

数据采样:将由传感器DS18B20采集到的温度转为电压信号,送入STC89C51相应

接口中,换算成温度值,用于控制和显示。

数据显示:采用了液晶1602进行显示设置温度与测量温度。

加热控制:通过PWM波控制双向可控硅的导通闭合来完成对电阻丝的控制。

图3.1 系统总体组成框图

3.2 系统功能及工作原理

该电路实现的功能是温度控制器,是用传感器DS18B20实现对温度的测量,首先通过DS18B20检测温度,将信号传至单片机,对温度设置上限值和下限值,如果DS18B20能正常工作,双向可控硅闭合,对电阻丝加热,如果温度超过了所限制的温度值时,双向可控硅导通,停止对电阻丝加热;如果此时的温度低于所设置的温度时,双向可控硅闭合,继续对电阻丝加热。上下值的设置由键盘(4×4)来完成,键盘还有切换功能作用。同时在LCD 1602上显示,并且将其数值与设定值进行比对,温度高于设定值或者温度低于设定值的时候,单片机会输出信号使报警指示灯闪烁,从而提醒用户温度异常采取措施使温度上升或者下降到用户所调节的范围之内,达到温度的控制。

3.3 单片机最小系统控制部分

STC89C52RC单片机为40引脚双列直插芯片,有四个I/O口P0,P1,P2,P3, MCS-51

单片机共有4个8位的I/O口(P0、P1、P2、P3),每一条I/O线都能独立地作输出或

输入。

单片机的最小系统主要由单片机、晶振电路、复位电路组成,其电路图如图3.3所示。18引脚和19引脚接时钟电路,XTAL1接外部晶振和微调电容的一端,在片内它是振荡器倒相放大器的输入,XTAL2接外部晶振和微调电容的另一端,在片内它是振荡器倒相放大器的输出。第9引脚为复位输入端,接上电容,电阻及开关后够上电复位电路,20引脚为接地端,40引脚为电源端,31引脚接电源端。

P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78R ESE T 9R XD /P3.010TX D /P 3.111INT 0/P3.212INT 1P3.313T0/P 3.414T1/P 3.515W R /P3.616R D/P3.717X TA L218X TA L119V SS 20

P2.0/A 821

P2.1/A 922P2.2/A 1023P2.3/A 1124P2.4/A 1225P2.5/A 1326P2.6/A 1427P2.7/1528PS EN 29A LE/PR O G 30EA /VD D 31P0.7/A D 732P0.6/A D 633P0.5/A D 534P0.4/A D 435P0.3/A D 336P0.2/A D 237P0.1/A D 138P0.0/A D 039V CC 40

U 1

A T89C51

S17SW -P B C 3

27p F

C 2

27p F

Y 1

11.0592MHz

C 110u F

R 510K

V CC

图3.3单片机最小系统

3.4 温度采集部分

本系统采用了DS18B20单总线可编程温度传感器, 如图3.4所示来实现对温度的采集和转换,大大简化了电路的复杂度,以及算法的要求。首先介绍一下DS18B20传感器的特性及其功能: DSl8B20的管脚及特点 DS18B20可编程温度传感器有3个管脚。

图3.4 DS18B20的外形及管脚图

3.4.1 DS18B20工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨

率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3.5所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图4.4-2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

图3.5 DS18B20测温原理框

3.4.2 温度采集电路

温度传感器DS18B20与单片机的P0.0口相连接。如图3.6所示。

1

2

3

U2

D S180

R7

10K

V CC

P0.0

图3.6 温度采集电路

3.5 键盘部分

键盘上的按键是总共有16个,其中按键上第1个到第10个显示的是0—9的值;按键11的功能是按下按键温度值加1;按键12的功能是按下按键温度值减1;按键13的功能是出现温度调节界面,然后利用按键1到按键10来设定温度值;按键14的功能是确定温度值;按键15的功能是显示温度范围;按键16的功能是切换功能。与单片机的P1口相连,如图3.7所示:

图3.7 键盘电路

3.6 通信部分

3.6.1 MAX232资料简介

该产品是由德州仪器公司(TI)推出的一款兼容RS232标准的芯片。由于电脑串口RS232电平是-10V 、+10V,而一般的单片机应用系统的信号电压是TTL电平0、

+5V,MAX232就是用来进行电平转换的,该器件包含2驱动器、2接收器和一个电压发生器电路提供TIA/EIA-232-F电平。主要特点:1、单5V电源工作;2、 LinBiCMOSTM 工艺技术;3、两个驱动器及两个接收器;4、±30V输入电平;5、低电源电流:典型值是8mA。

3.6.2 串口通信电路

51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。

在本设计中采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我来说已经足够使用了,电路如下图3.8所示,MAX232的第10脚和单片机的11脚TXD 连接,第9脚和单片机的10脚RXD连接,第15脚和单片机的20脚接地连接。

图3.8 串口通信电路

3.7 加热控制部分

该温控系统接于单片机STC89C51的P0.1口,当红灯亮时,说明所测温度低于设定的温度,系统将启动加热器的加热。使温度始终保持在所设温度中,以实现智能化。

本部分设计主要由光耦MOC3021和双向可控硅构成。双向可控硅管和加热丝串接在交流220V 、50Hz 市电回路。在给定周期T 内,AT89C51只要改变可控硅管的接通时间即可改变加热丝的功率,以达到调节温度的目的。加热控制电路主要利用单片机P0.1口产生的PWM 波,使光电耦合器实现强电与弱电的隔离,避免回执机构的运行对前端电路的影响,并将光耦输出的控制信号送至双向可控硅的控光制端,实现控制其开关状态的关断与闭合,从而控制加热器件的加热时间,以实现对系统温度的控制,并且此电路还有低噪声、可靠性高、驱动功率小、对电源电压适应能力强和抗干扰能力强等优点。所以在控制电路的设计中,采用了此电路作为加热控制开关。其具体电路如图3.9所示。

图3.9 加热控制电路图

3.8 超温报警部分

电路由蜂鸣电路和指示电路组成。蜂鸣电路由一个三极管和蜂鸣器组成。当温度值在设定的范围时,单片机STC89C51的P0.7口高电平引脚始终保持高电平,当所采集的温度越限时,P0.7口便由高电平改为低电平,使三极管导通从而发出蜂鸣声进行报警来提醒操作人员实施相应的措施。蜂鸣电路用于在温度超出设定值范围时提供声音报警,它由单片机的P0.7引脚控制。蜂鸣电路如图3.10所示。而指示电路由发光二极管组成。当温度超过设定范围,指示灯会闪烁从而提醒操作人员。其电路如图3.10所示。

图3.10 蜂鸣电路及指示电路

3.9 液晶显示部分

字符型液晶显示模块是一种专门用于显示字母、数字、版本号等的点阵式液晶显示

模块。它是由若干个5×7或5×11等点阵符位组成的,第一个点阵字符位都可以显示一个字符。点阵字符位之间有一定点距的间隔,这样就起到了字符间距和行距的作用。本系统采用字符型液晶显示模块1602。

3.9.1 液晶的介绍

(1)1602型液晶接口信号说明

1602 型液晶接口信号说明如表3所示

表3 液晶1602引脚及符号

编号符号引脚说明编号符号引脚说明

1 VSS 电源地9 D

2 数据口

2 VDD 电源正极10 D2 数据口

2 V0 液晶显示器对比度调解端11 D4 数据口

4 RS 数据命令选择端12 D

5 数据口

5 R/W 读写选择端(H/L)12 D

6 数据口

6 E 使能信号14 D

7 数据口

7 D0 数据口15 BLA 背光电源正极

8 D1 数据口16 BKL 背光电源负极

(2)基本操作时序

读状态输入:RS=L, R/W=H,E=H 输出:D0~D7=状态字读数据输入:RS=H, R/W=H,E=H 输出:无

写指令输入:RS=L, R/W=L,D0~D7=指令码,E=高脉冲输出:D0~D7=数据

写数据输入:RS=H, R/W=L, ,D0~D7=数据,E=高脉冲输出:无。

(3)写操作时序

通过 RS 确定是写数据还是写命令。读/写控制端设置为写模式,即低电平。将数据或命令送达数据线上,给 E 一个高脉冲将数据送入液晶控制器,完成写操作。写操作时序如下图3.11所示:

图3.11 1602 液晶写操作时序图

3.9.2液晶显示电路

如图3.12所示:液晶的数据线接P2口,而RS、RW、E分别接单片机的P0.2、P0.3、P0.4口,通过单片机的控制显示设定的温度值或实际温度值。

图3.12 1602 液晶电路显示电路图

3.10 电源部分

电源模块为系统板上其它模块提供+5V电源,电源输入有两种方式,一种为交直流电源从电源插座输入,输入的电压要求,直流输入应大于7.5V,交流输入应大于5V,通过7805三端稳压器得到5V的直流电源供给系统其它模块工作,另一种为从USB接口获取+5V电源,只要用相应配套的USB线从电脑主机获取+5V直流电源,在电源模块中加有保护电路,即电路中有短路,不会对7805三端稳压器及电脑主机电源有损害!其电路原理图如图3.13所示。其主要原理是把单相交流电经过电源变压器、整流电路、滤波电路、稳压电路转换成稳定的直流电压。

由于输入电压为电网电压,一般情况下所需直流电压的数值和电网电压的有效值相差较大,因而电源变压器的作用显现出来起到降压作用。降压后还是交流电压,所以需要整流电路把交流电压转换成直流电压。由于经整流电路整流后的电压含有较大的交流分量,会影响到负载电路的正常工作。需通过低通滤波电路滤波,使输出电压平滑。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得稳定性足够高的直流电压。本电路使用集成稳压芯片7805解决了电源稳压问题。

图3.13 电源电路

4.系统的软件设计

4.1软件设计思路

系统的软件部分采用模块化的设计方法,将软件分为主程序模块、中断服务模块、温度采集模块、键盘模块、液晶显示模块、报警模块、PID算法模块和PID控制模块。其中数据采样及处理、报警、PID控制算法子程序和PID控制值输出用中断服务模块来处理。加温控制通过使用PID算法计算出控制值,然后使用定时器1产生的PWM波控制P0.1口高低电平转换来控制双向可控硅的通断来实现加热的控制。

为了方便单片机和I/O口,我们给单片机系统变量定义及I/O口进行分配,如表4.1所示。

表4.1 单片机I/O分配表

4.2 整体的软件流程图

系统的软件部分采用模块化的设计方法,将软件分为主程序模块、温度采集模块、键盘模块、液晶显示模块、报警模块、PID算法模块和温度控制模块。如图4.1所示。

图4.1 系统软件总体流程图

4.3 部分软件设计

4.3.1 主程序模块

主程序模块的主要工作是上电后对系统初始化和构建系统整体软件框架,其中初始化包括对单片机和串口的初始化等。然后等待温度设定,若温度已经设定好了,判断系统运行键是否按下,若系统运行,则依次调用各个相关模块,循环控制直到系统停止运行。主程序模块的程序流程图如图4.2所示。

图4.2 主程序流程图 图4.3 温度采集流程图 4.3.2 温度采集模块

数据采集模块的任务是负责温度信号的采集以及将采集到的温度模拟量信号转化为相应的数字量信号提供给单片机。单片机再经过相应的数据处理,数据采集主要通过DS18b20温度传感器采集被测物体的温度。数据采集模块的程序流程:数据采集的程序初始化即DS18b20的程序初始化→采集温度→等待温度转换→读取温度送给单机处理,如图4.3所示。

4.3.3 键盘模块

温度设置范围主要通过键盘输入实现,我们采用的矩阵键盘,这种键盘可以大量的I/O 资源,使用方便灵活,其中矩阵键盘的10个键的功能可定义为数字0~9,这样输入就十分方便,其中程序流程为:首先程序初始化→外部中断1打开设置温度标志→进入温度设置界面→键盘扫面→设置温度并显示在液晶上→设置完毕→在次中断清除设置

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

基于PLC的锅炉温度控制系统毕业设计

基于PLC的锅炉温度控制系统 作者姓名xxx 专业自动化 指导教师姓名xxx 专业技术职务讲师

目录 摘要 (1) 第一章绪论 (3) 1.1课题背景及研究目的和意义 (3) 1.2国内外研究现状 (3) 1.3项目研究内容 (4) 第二章 PLC和组态软件基础 (5) 2.1可编程控制器基础 (5) 2.1.1可编程控制器的产生和应用 (5) 2.1.2可编程控制器的组成和工作原理 ··············错误!未定义书签。 2.1.3可编程控制器的分类及特点 (7) 2.2组态软件的基础 (8) 2.2.1组态的定义 (8) 2.2.2组态王软件的特点 (8) 2.2.3组态王软件仿真的基本方法 (8) 第三章 PLC控制系统的硬件设计 (9) 3.1 PLC控制系统设计的基本原则和步骤 (9) 3.1.1 PLC控制系统设计的基本原则 (9) 3.1.2 PLC控制系统设计的一般步骤 (9) 3.1.3 PLC程序设计的一般步骤 (10) 3.2 PLC的选型和硬件配置 (11) 3.2.1 PLC型号的选择 (11) 3.2.2 S7-200CPU的选择 (12) 3.2.3 EM235模拟量输入/输出模块 (12) 3.2.4 热电式传感器 (12) 3.2.5 可控硅加热装置简介 (12) 3.3 系统整体设计方案和电气连接图 (13) 3.4 PLC控制器的设计 (14) 3.4.1 控制系统数学模型的建立 (14)

3.4.2 PID控制及参数整定 (14) 第四章 PLC控制系统的软件设计 (16) 4.1 PLC程序设计的方法 (16) 4.2 编程软件STEP7--Micro/WIN 概述 (17) 4.2.1 STEP7--Micro/WIN 简单介绍 (17) 4.2.2 计算机与PLC的通信 (18) 4.3 程序设计 (18) 4.3.1程序设计思路 (18) 4.3.2 PID指令向导 (19) 4.3.3 控制程序及分析 (25) 第五章组态画面的设计 (29) 5.1组态变量的建立及设备连接 (29) 5.1.1新建项目 (29) 5.2创建组态画面 (33) 5.2.1新建主画面 (33) 5.2.2新建PID参数设定窗口 (34) 5.2.3新建数据报表 (34) 5.2.4新建实时曲线 (35) 5.2.5新建历史曲线 (35) 5.2.6新建报警窗口 (36) 第六章系统测试 (37) 6.1启动组态王 (37) 6.2实时曲线观察 (38) 6.3分析历史趋势曲线 (38) 6.4查看数据报表 (40) 6.5系统稳定性测试 (42) 结束语 (43) 参考文献 (44) 致谢 (45)

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

简易水温控制器设计报告

简易水温控制器设计报告 目录 一.设计要求 (2) 二.设计作用、目的 (2) 三.设计的具体实现 (3) 1.系统概述 (3) 2.单元电路设计、仿真与分析 (4) 四.心得体会及建议 (21) 五.附录 (23) 六.参考文献 (25)

简易水温控制器设计报告 一.设计要求 设计一个简易的水温控制器,在市电的情况下,能够检测容器内水的温度,以检测到的温度信号控制加热器的开关,将水温控制在一定的范围之内。 (1).当温度小于t1时,两个电阻丝同时通电加热,将容器内的水加热; (2).当水温大于t2,但小于t1时,仅一根电阻丝通电加热; (3).当水温大于t2时,两根电阻丝都不通电; (4).用显示电路显示出开关通断情况; (5).电源:220V/50HZ的工频交流电供电; (6).根据上述要求选定设计方案,画出系统框图,写出详细的设计过程; (7).利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单。 二.设计作用、目的 模拟电路课程设计是电子技术基础课程的实践性教学环节,通过课程设计,要求达到以下目的。 (1).通过水温控制器的设计,使我们能够巩固和加深对模拟电子电路基本知识的理解,了解日常电子产品的设计与应用; (2).培养学生根据课题需要选学参考书籍,查阅手册,图表和文献资料的自学能力。通过独立思考,深入研究有关问题,学会自己分析并解决问题的方法。 (3).通过电路方案的分析、论证和比较,设计计算和选取元

器件初步掌握简单实用电路的分析方法和工程设计方法。 (4).了解与课题有关的电子电路及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。 三.设计的具体实现 1.系统概述 水温控制器电路的总体框图如图所示。它由水温检测电路、比较电路、电阻丝开关电路,显示电路和电源电路5部分组成。 图1 简易水温控制电路的总体框图 水温检测电路的功能是利用温度传感器的特性检测水温的变化,在这里利用可变电阻代替热敏电阻,同时将温度信号转化为电信号。比较电路的功能是利用比较器的原理实现水温范围的确定,同时利用滞回比较器的迟滞特性来避免跳闸现象。电阻丝开关电路的功能是完成控制电路和对水温的加热。显示电路的功能是利用发光二极管将电阻丝通电与否显示出来。电源电路的功能是为上述所有电路提供直流电源。

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

基于单片机的温度控制器设计

技术参数和设计任务:1、利用单片机AT89S51实现对温度物理量的控制,以实现对温度控制的目的;2、为达到电源输出5V电压目标,完成电源电路的设计;3、为达到数码管显示目标,完成显示电路的设计;4、为达到键盘控制的目标,完成键盘电路的设计;5、为达到检测温度的目标,完成检测电路的设计;6、完成报警设计;7、进行软件设计[分配系统资源,编写系统初始化和主程序模块;编写数字调节器软件模块;编写A/D转换器处理程序模块;编写输出控制程序模块;其它程序模块(数字滤波、显示与键盘等处理程)等等。一、本课程设计系统概述1、系统原理温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机 AT89S51 获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备 (压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) 。当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声。系统中将通过串口通讯连接PC机存储温度变化时的历史数据,以便观察整个温度的控制过程及监控温度的变化全过程。2、系统结构图本设计以AT89S51单片机为主控核心设计的一个温度控制系统,低温时可控制加热设备,高温时控制风扇,超出设定最高温度值时蜂鸣器发出声响报警。 图1 总体硬件方框图 3、文字说明控制方案(1)温度测量部分方案 DS18B20是DALLAS公司生产的一线式数字温度传感器,它具有微型化、低功耗、高性能抗干扰能力、强易配处理器等优点,特别适合用于构成多点温度测控系统,可直接将温度

单片机智能温控器课程设计

单片机课程设计 说明书 专业:机械设计制造及其自动化 设计题目:智能温控器 设计者: 指导老师: 设计时间:

一、课题名称:一个基于51单片机的智能温控器课程 设计 二、主要技术指标及工作内容和要求:本设计以MCS-51系列单片机为核心,采用常用电子 器件设计,一个电源开关,两个控制温度设定按键(增大/减小),四位数码管分别显示设 定温度和实际温度,量程为0~99度,打开电源开关后设定温度初始化为26度。 1,按键输入采用中断方式,两个按键分别接INT0和INT1。 2,采用铂电阻(Pt100)温度传感器进行温度测量,模数转换采用ADC0809。 3,单片机根据设定温度S和实测温度P控制继电器R的动作,死区设为2度:当P<=S-1时,控制R接通电加热回路; 当P>S+1时,控制R断开电加热回路; 当S-1

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温度测控仪设计-毕业设计

温度测控仪设计 学生:XXX 指导教师:XXX 容摘要:本文主要介绍了智能温度测量仪的设计,包括硬件和软件的设计。先对该测量仪进行概括性介绍,然后介绍该测量仪在硬件设计上的主要器件:“Pt100热电阻”、AT89C51单片机和LCD显示器以及描述测量仪的总体结构原理。在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D 转换器进行温度信号的采集。总体来说,该设计是切实可行的。 关键词:温度 Pt100热电阻 AT89C51单片机 LCD显示器

Design of and control instrument Abstract: This paper describes the design of the intelligent temperature measuring instrument, including hardware and software design. Be the first general description of the measuring instrument, and then describes the hardware design of the measuring instrument's main device: "Pt100 thermal resistance", AT89C51 microcontroller and LCD display, and describe the principle of measuring the overall structure. In this design, as is the PT100 platinum resistance temperature sensor, temperature measurement using constant current method, through the microcontroller to control, amplifier, A/D converter for temperature signal acquisition. Overall, the design is feasible. Keywords:temperature Pt100 thermal resistance AT89C51 microcontroller LCD monitor .

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

基于单片机的空调温度控制器设计设计

基于单片机的空调温度控制器设计设计

接口技术课程设计报告基于单片机的空调温度控制器设计 摘要 设计了基于AT89C52的高精度家用空调温度控制系统,系统硬件主要由电源电路、温度采集电路(DS18B20)、键盘、显示电路、输出控制电路及其他辅助电路组成;软件采用8051C语言编程;该系统可以完成温度的显示、温度的设定、空调的控制等多项功能。 关键词:单片机;DS18B20;温度检测;显示

目录 1 设计目的及要求 (1) 1.1 设计目的和意义 (1) 1.2 设计任务与要求 (1) 2 硬件电路设计 (2) 2.1 总体方案设计 (2) 2.2 功能模块电路设计 (3) 2.2.1 单片机的选型 (3) 2.2.2 振荡电路设计 (5) 2.2.3 复位电路设计 (5) 2.2.4 键盘接口电路设计 (6) 2.2.5 温度测量电路设计 (6) 2.2.6 系统显示电路设计 (7) 2.2.7 输出控制电路设计 (8) 2.3 总电路设计 (8) 2.4 系统所用元器件 (9) 3 软件系统设计 (10) 3.1 软件系统总体方案设计 (10) 3.2 软件流程图设计 (10) 4 系统调试 (12) 5 总结 (13)

5.1 本系统存在的问题及改进措施 (13) 参考文献 (14) 附录1:系统的源程序清单 (15) 附录2:系统的PCB图 (39)

1 设计目的及要求 1.1 设计目的和意义 21世纪的人们生活质量不断提高,同时也对高科技电子产业提出了更高的要求,为了使人们生活更人性化、智能化。我设计了这一基于单片机的空调温度控制系统,人们只有生活在一定的温度环境内才能长期感觉舒服,才能保证不中暑不受冻,所以对室内温度要求要高。对于不同地区空调要求不同,有的需要升温,有的需要降温。一般都要维持在21~26°C。 目前,虽然我国大量生产空调制冷产品,但由于我国人口众多,需求量过盛,在我国的北方地区,还有好多家庭还没有安装有效地室内温控系统。温度不能很好的控制在一定的范围内,夏天室内温度过高,冬天温度过低,这些均对人们正常生活带来不利的影响,温度、湿度均达不到人们的要求。以前温度控制主要利用机械通风设备进行室内、外空气的交换来达到降低室内温度,实现室内温度适宜人们生活。以前通风设备的开启和关停,均是由人手动控制的,即由人们定时查看室内外的温度、湿度情况,按要求开关通风设备,这样人们的劳动强度大,可靠性差,而且消耗人们体力,劳累成本过高。为此,需要有一种符合机械温控要求的低成本的控制器,在温差和湿度超过用户设定值范围时,启动制冷通风设备,否则自动关闭制冷通风设备。鉴于目前大多数制冷设备现在状况,我设计了一款基于MCS51单片机的空调温度控制系统。 1.2 设计任务与要求 系统要求利用单片机设计一空调温度控制器,能够实时检测并显示室温,能够利用键盘设定温度,并且和室温进行比较,当室温低于设定温度时,系统能够驱动加热系统工作,当室温高于设定温度时,系统能够驱动制冷系统工作,当两者温度相等时,不做动作。

温度控制器实验报告

单片机课程设计实验报告 ——温度控制器 班级:学号: 电气0806 姓名: 08291174 老师: 李长城 合作者: 姜久春 李志鹏

一、实验要求和目的 本课程设计的课题是温度控制器。 ●用电压输入的变化来模拟温度的变化,对输入的模拟电压通过 ADC0832转换成数字量输出。输入的电压为0.00V——5.00V, 在三位数码显示管中显示范围为00.0——99.9。其中0V对应00.0,5V对应99.9 ●单片机的控制目标是风机和加热器。分别由两个继电器工作来 模拟。系统加了一个滞环。适合温度为60度。 ◆当显示为00.0-50.0时,继电器A闭合,灯A亮,模拟加热 器工作。 ◆当显示为为50.0-55.0时,保持继电器AB的动作。 ◆当显示为55.0-65.0时,继电器A断开,灯A熄灭,模拟加 热器停止工作。 ◆当显示为65.0-70.0时,保持继电器AB的动作 ◆当显示为70.0-99.9时,继电器B闭合,灯B亮,模拟风机的 工作。 二、实验电路涉及原件及电路图 由于硬件系统电路已经给定,只需要了解它的功能,使用proteus 画出原理图就可以了。 实验设计的电路硬件有: 1、AT89S52 本温度控制器采用AT89C52单片机作为CPU,12MHZ晶振

AT89C52的引脚结构图: AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。 AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置

基于51单片机的多功能温度控制器的设计

基于51单片机的多功能温度控制器的设计 在某些工业生产过程中,如恒温炉、仓库储藏、花卉种植、小型温室等领域都对温度有着严格的要求,需要对其加以检测和控制。传统的温度测量方法是将温度传感器输出的模拟信号放大后送至远端A/D转换器,最后单片机对A/D转换后的数据进行分析处理。这种方法的缺点是模拟信号在传输的过程中存在损耗并且容易受到外界的干扰,导致测量的温度精度不高。 文中以STC89C52RC单片机为控制核心,利用美国Dallas公司最新推出的单总线数字温度传感器DSl8820测量温度,单片机处理后对温度进行控制,并将温度显示在LCDl602上,还可通过按键设置温度上下限值实现温度超限报警等功能。 1 系统的组成和工作原理 多功能温度控制系统的结构,系统由六部分组成:控制核心部分、温度数据采集部分、加热装置控制部分、液晶显示部分、按键输入部分和报警提示部分。单片机启动温度采集电路完成温度的一次转换,然后读出转换后的数字量并转化成当前的温度呈现在显示模块中,并将当前的温度与通过按键输入电路设定的保持恒温度数进行比较,以实现温度的控制。还可以通过按键设置温度的上下限值以实现超温或低温报警提示功能。本系统的设计目标要对温度的控制精度达到0.1℃。 1.1 报警电路 报警电路采用蜂鸣器作为发声装置,当温度高于设定的上限值或低于下限值,给蜂鸣器送周期为1s,占空比为50%的方波,报警的时间可以持续1分钟或等待按键解除报警,这由软件控制实现。 1.2 按键电路 采用2×3的小键盘,键盘的识别可以采用两种方法:行扫描法和行反转法。两种方法都要注意消除按键的抖动。文中采用行扫描法并做成子程序,出口参数为按键的键值。定义键K1设置TH,K2设置TL,K3调高TH或TL,K4调低TH或TL,K5对TH或TL的数值进行确认。 1.3 温度检测电路 温度检测电路采用智能温度传感器DSl8820,它与单片机相连只需要3线,减少了外部的硬件电路。DSl8820主要性能特点如下: (1)测温的范围为-55~125℃,最大分辨率可以达到0.0625℃; (2)电源电压范围为3.0~5.5V; (3)供电模式:寄生供电和外部供电; (4)封装形式有两种:3脚的TO-92封装和8脚的SOIC封装; (5)可编程的温度转换分辨率,分辨率为9~12位(包括1位符号位),由配置寄存器决定具体位数,配置寄存器的格式如表1所示。 其中RlR0是用来设定分辨率的,分辨率的定义如表2所示。 由表2可以看出,分辨率设定得越高,温度转换所需要的时间就越长,因此应根据实际应用的需要来选择合适的分辨率。本文中选取12位分辨率,每隔1秒检测一次温度。12位分辨率的温度数据值格式如下: 当S=0表示测得的温度为正值,当S=l表示测得的温度为负值。 1.3.1 DSl8820的存储器结构 DSl8820的存储器有高速暂存RAM和非易失性电擦写EEPROM。高速暂存RAM的内容从低

温湿度控制器(上下限继电器)设计报告

温湿度控制器设计报告 本设计研究单片机数字温湿度控制器,通过全数字型温湿度传感器测量宽范围的温湿度数据,用来满足恒温湿车间控制、大棚温湿度控制等工农业生产领域需要,要求温湿度测量响应时间快、长期稳定性好,抗干扰能力强,具有较高的应用价值。 一、性能特点 ●配用全数字型温湿度传感器DHT11,温度测量范围0℃--100℃,湿度测 量范围0%RH—90%RH,可以满足一般需要。若要求更宽测量范围,只需 更换温湿度传感器型号,硬件电路及软件程序全兼容。 ●温湿度测量响应时间快、长期稳定性好。 ●采用先进的专用微处理器芯片STC89C52,可靠性高,抗干扰能力强。 ●配用EEPROM芯片A T24C04,使存储的温度上下限和湿度上下限可以 掉电永久保存。 ●可以通过四个按键方便地实现温湿度上下限的调整。 ●当温度或湿度超限后,报警信号点亮相应报警灯。 ●配用三极管和继电器,可以通过驱动继电器打开或切断风机、加热器等 外部设备。 二、功能说明 1、实时测量当前温度值和湿度值,在液晶屏动态显示。 2、可以显示当前允许温度范围,在液晶屏显示,如“20-45”表示允许温度范围为20摄氏度至45摄氏度。 3、可以显示当前允许湿度范围,在液晶屏显示,如“15-60”表示允许湿度范围为15%至60%。 4、当温度低于温度下限时,低温报警灯亮,控制继电器动作。 5、当温度高于温度上限时,高温报警灯亮,控制继电器动作。

6、当湿度低于湿度下限时,低湿报警灯亮,控制继电器动作。 7、当湿度高于湿度上限时,高湿报警灯亮,控制继电器动作。 8、可以通过键盘调整温度上下限和湿度上下限,具体方法是连续按设置键直至温度下限、温度上限、湿度下限、湿度上限相应的位置闪烁,再通过Up键和Down键调整数值,调整完毕继续按设置键进入正常状态。 9、可以保存设置参数至EEPROM中,具体方法是按保存键,此时当前设置参数存盘,重新上电显示新的设置值。如果不按保存键,所调整的设置参数只在此次运行有效,关电后恢复原先设定值。 三、硬件设计 1、设计框图 本研究设计的温湿度控制器框图如图1所示。 图1 温湿度控制器方框图 图中STC89C52单片机每2秒钟从DHT11温湿度传感器中读入温度和湿度,在液晶屏上即时显示。 液晶屏上同时可以显示温湿度上下限值,该上下限设置值保存外外部EEPROM存储器中,掉电不失,并且可以通过四只按键上调或下调。 当温度或湿度值超过上下限值时,报警信号点亮相应报警灯。同时该报警信号通过三极管驱动继电器,以控制外部风机或加热器。

相关文档
相关文档 最新文档