文档视界 最新最全的文档下载
当前位置:文档视界 › 银杏黄酮类化合物的提取1

银杏黄酮类化合物的提取1

银杏黄酮类化合物的提取1
银杏黄酮类化合物的提取1

银杏黄酮类化合物的性质

银杏黄酮类化合物的苷元一般难溶于或不溶于水,可按于甲醇、乙醇、丙酮、乙酸乙酯、氯仿、乙醚等有机溶剂及稀碱溶液中。银杏黄酮苷元与糖结合成苷后,水溶性相应增大,一般可溶于热水、甲醇、乙醇、丙酮、乙酸乙能中,难溶于乙醚、石油醚、苯、氯仿等有机溶剂。银杏黄酮类化合物因分子中具有酚羟基而显弱酸性,可溶于碱性水溶液、吡啶、甲酰胺及二甲基甲酰胺等。

根据活性成分的特性,本实验中主要采用了简单易行、比较常用的有机溶剂提取法来进行有效成分的提取。由于回流提取法是利用易挥发的有机溶剂进行加热提取,并采用冷却装置使溶剂连续回流,使植物有效成分能充分提出,且此法简单易行,溶剂用量少,提取较完全,故本实验中采用了回流提取法。

通过查找相关文献知银杏绿叶中总黄酮含量约为1.19%,银杏黄叶的总黄酮含量约为0.83%,所以采用绿叶作为原料提取黄酮类化合物,可以提高总黄酮的产量。在60℃时碱性去离子水的提取率为46.2%,纯乙醇的提取率为73.41%,乙醇水溶液的提取率介于两者之间,考虑成本,使用乙醇水溶液作为浸取剂更为合适。且在70%的乙醇水溶液,浸取温度为80℃,料液比为1:15,提取时间为4h的提取条件下黄酮类化合物的提取率为87.54%。

试剂与仪器

试剂:芸香叶苷标准品(纯度≥95%),银杏叶,乙醇,亚硝酸钠,硝酸铝,氢氧化钠。

仪器:紫外—可见分光光度计、粉碎机,烘箱,分析天平,恒温水浴锅,搅拌器,搅拌叶,升降架,冷凝管,温度计(量程100℃),真空泵,三口烧瓶(100ml)容量瓶(10ml、50ml)。

具体步骤

1、银杏黄酮的提取将银杏叶干燥,粉碎,筛分,精确称量20目的银杏叶样品10g。

(1)将其和35mL70%乙醇水溶液加入到100mL带搅拌、冷凝管和温度计的三口烧瓶中进行回流提取,在50℃搅拌提取2h。

(2)将粗提液过滤、抽滤,再用70%乙醇定容至50mL。

(3)定容液中黄酮类化合物的含量用紫外—可见分光光度计测定。

2、银杏黄酮的测定

(1)标准溶液的配制精确称取芸香叶苷5mg,置于50mL容量瓶中,加入适量60%乙醇,在水浴上加热溶解,自然冷却,用60%乙醇稀释至刻度,摇匀。(2)标准曲线的制作取10mL容量瓶6只,分别准确吸取标准溶液1.0mI、2.0mI、3.0mI、4.0mI、5.0mL置于10mL容量瓶中,另一容量瓶中不加标准溶液(配制空白溶液,作参比)。然后各加30%乙醇补充至5mI,加入5%亚硝酸钠溶液0.3mI,摇匀,放置6min,再加10%硝酸铝溶液0.3mL,摇匀,再放6min,加4%NaOH溶液4mL,用水稀释到10mI,放置20min。在紫外—可见分光光度计上,先取两个2cm比色皿加空白溶液,调零。取出一个比色皿,分别加入不同浓度的溶液,在波长510nm处测定吸光度,以酮含量为横坐标,吸光度为纵坐标,绘制标准曲线。

(3)未知液中酮含量的测定吸取2mL未知液代替标准溶液,其他步骤均同上,测定吸光度。由未知液的吸光度在标准曲线上查出2mL未知液中黄酮的含量。乙醇提取

银杏叶采集后洗净,于60℃烘干至恒重,粉碎、过筛。称取粉碎银杏叶100g,加入400ml75%酒精,浸泡过夜,再于55℃左右水浴,并不断搅拌,5~6h后趁热过滤,收集滤液。将滤渣重复上述操作,合并两次滤液;将滤液盛于分液漏斗中,用石油醚萃取1~2次,每次石油醚用量约为滤液体积的1/25,直到水层不含叶绿素时为止;将分液漏斗中分出的水相,用旋转蒸发器旋转蒸发,同时回收乙醇;当蒸至少量液体时,转入培养皿中,于60~70℃干燥箱中烘干,得到棕红色粘稠物,这就是主要成份为黄酮类化合物的银杏叶提取物。

1.溶剂热法

是指在特制密封容器中,以有机溶剂为反应介质,通过对体系加热进行合成的一种方法,该法中溶剂因在密闭条件下而表现出高压、高传质速率等优势性。利用这一原理,将该方法用作银杏叶黄酮的提取,取得了较理想的效果。

称取1.0g磨细的银杏叶粉末,装入50ml止聚四氟乙烯内衬的不锈钢反应釜中,加入70%的乙醇40ml,将反应釜密封好,置于干燥箱,在90℃下按设定的时间(3小时)加热,待自然冷至室温后取釜,将提取液抽滤,取滤液10mL加入3mL体积比为1:4的盐酸,在90℃的水浴中水解30min后迅速冷至室温,用甲醇定容于25ml容量瓶得分析液。

银杏叶提取黄酮及分离纯化

银杏叶提取黄酮及分离纯化 组员:李佳辉、黄埔、赵超武 一、实验目的 1.掌握传统的溶剂提取法并对银杏中的黄酮进行提取 2.掌握紫外分光光度计的应用,以及相关溶液的配置 3.学会自主设计实验,培养团队合作精神 二、实验原理 ⑴关于黄酮:银杏中最具药用价值的成分,有提高人体免疫力的作用;并且抗衰老、调节内分泌,还具有抗炎、抗真菌的作用; ⑵实验需设置空白参比液,由文献资料可知芦丁标准液的最大波长大概为510nm; ⑶本实验采用硝酸铝(氯化铝)法测定银杏叶总黄酮的质量浓度,因 为黄酮类化合物可以与铝盐发生络合显色反应。 其主要原理为:在中性或弱碱性及亚硝酸钠存在的条件下,黄酮类化合物与铝盐发生螯合反应,加入氢氧化钠溶液后,溶液显橙红色,在510nm(左右)处有吸收峰,且符合定量分析的朗伯—比尔定律(即A=kbc)一般与芦丁标准溶液比较定量。先用亚硝酸钠还原黄酮类化

合物,再加铝盐络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2-羟基查尔酮而显色。显色原理发生在黄酮醇类邻位无取代的邻二酚羟基部位,不具有邻位无取代的邻二酚羟基的黄酮类成分加入上述试剂时是不显色的。(如二氢黄酮类化合物就不发生该显色反应)

目前银杏叶黄酮的提取方法主要有:溶剂提取法、超临界流体萃取法(SFE法)、高速逆流色谱技术提取法(HSCCC)微波提取法、超色波提取法、酶提取法、分子烙印技术。因溶剂提取法操作简单,所需试剂廉价易得,故通常使用此法来进行大规模生产。 其工艺流程如下: 银杏叶—→粉碎—→NaOH-60%乙醇回流提取—→离心—→过滤—→滤液收集—→二次醇提—→合并两次滤液—→树脂吸附—→脱吸—→浓缩—→干燥—→提取物 由于银杏叶黄酮中的类黄酮主要为芦丁,故用芦丁为对照物绘制标准曲线,并采用分光光度法进行测定。 三.实验材料及器材 1.材料 酸银杏叶、芦丁、亚硝酸钠、硝酸铝、氢氧化钠、95%乙醇、磷酸氢二钠、磷二氢钠、D101大孔吸附树脂、盐酸

黄酮类化合物提取方法的研究

黄酮类化合物提取方法的研究 发表时间:2019-07-23T09:36:27.620Z 来源:《医师在线(学术版)》2019年第10期作者:鲍兴隆[导读] 旨在研究黄酮类化合物的提取分离工艺,为选择合适的方法提供参考依据。 浙江大学校医院浙江杭州310000 摘要:近年来,随着对黄酮研究的深入,国内外对黄酮的研究也越来越重视,本文旨在研究黄酮类化合物的提取分离工艺,为选择合适的方法提供参考依据。通过对比黄酮类化合物传统及新型方法的总黄酮提取率发现,新型提取方法相对于传统提取法而言提取率具有明显优势,但新型提取技术对原料、设备、处理要求也相应提高,目前国内外研究相对偏少。 关键词:黄酮类化合物;微波提取;超临界流体萃取法 黄酮类化合物是一类存在于自然界的、具有2-苯基色原酮结构的化合物,泛指两个苯环通过三个碳原子或一个吡喃环或吡喃环连接而成的化合物,主要包括:黄酮和黄酮醇类、二氢黄酮和二氢黄酮醇、异黄酮类及二氢异黄酮类、查尔酮和二氢查耳酮类及花青素类等[1]。黄酮类化合物属植物次生代谢产物,在植物体内大部分与糖结合成苷类,小部分以苷元的形式存在,具有多种生物活性,有抗炎、抗氧化、抗肿瘤、抗衰老等药理活性,在医药、保健食品等行业中均有广泛的开发利用。对黄酮类化合物的提取有传统的超声波提取法等;以及新型的:微波提取法、超临界流体萃取法、双水相萃取法等。 1传统提取方法 1.1超声波提取法 超声波空化作用使植物细胞壁及整个生物体破裂,这样有利于黄酮类化合物的释放和溶出,另一方面可加速提取液的分子运动,使得提取液和苎麻叶中的黄酮类化合物快速接触,相互溶合、混合,此外超声波热效应也有利于水溶作用,有效缩短了提取时间。贺波[2]以“华苎4号”苎麻叶为原料,采用超声辅助提取法,通过单因素及正交实验,得出最佳的提取工艺条件是:液固比30:1,乙醇浓度70%,超声功率60W,超声时间30min,超声温度60℃,提取一次。在此工艺条件下苎麻叶中黄酮类化合物得率为4.94%。2新型提取方法 2.1微波提取法 微波提取法是微波转化成热能使细胞内部温度上升,当细胞内部压力超过细胞壁的承受能力,细胞破裂,其有效成分流出,在较低的温度条件下萃取介质捕获并溶解。此外,微波产生的电磁场还能加速被萃取部分成分向萃取溶剂界面扩散速率,缩短萃取组成的分子由物料内部扩散到萃取溶剂界面的时间。张海慧等[3]以黑穗醋栗为试材,进行单因素实验,在此基础上设计了四因素三水平正交试验。最后确定了微波辅助法提取黑穗醋栗黄酮的最佳条件为:以95%乙醇为溶剂,微波功率500W,微波65℃,提取8min,液料比10:1,此时提取率可达到0.738mg/g。张鹏等[4]通过实验得出银杏黄酮微波提取的最佳条件为乙醇浓度50%,料液比1:25,回流温度70℃,微波时间120s,在此条件下总黄酮提取率为11.02%。与传统方法相比,微波提取法具有省时、节约溶剂、提取率高等优点,有较大的推广价值。 2.2超临界流体萃取法 超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。余青等[5]采用单因素与正交试验对超临界CO2萃取具乌饭树叶总黄酮的工艺进行了研究,结果表明,最佳提取条件为:萃取压力18MPa,萃取时间1.5h,萃取温度50℃,夹带剂乙醇浓度75%,CO2流量20kg/h,夹带剂添加量5mL/g在此条件下乌饭树叶总黄酮平均提取率为73.10%(n=3,RSD=3.58%)。谢建华等[6]利用响应面发优化超临界CO2萃取苦瓜总黄酮的工艺参数,在实验的基础上,确定最佳工艺条件:以无水乙醇为夹带剂1.0mL/g,萃取压力33.4MPa,萃取温度46℃,萃取时间53.2min。此条件下苦瓜总黄酮提取率达到84.3%。超临界流体萃取技术萃取速度快,提取率高,流程简单,且对生物活性保留较好,具有一定的应用价值。 除以上的提取方法外,还有双水相萃取分离、双水相—超声耦合、超声—酶法耦合、酶法—高压脉冲电场耦合等技术。总的来说,传统提取方法的总黄酮提取率基本在5%左右,而新型提取方法的提取率在10%以上(有的甚至可达80%-90%),相对于传统提取法而言,新型提取方法的提取率具有明显优势,但对新型提取技术对原料、设备、处理要求也相应提高,目前国内外研究相对偏少。3展望 黄酮类化合物分布范围广、种类多,黄酮类化合物的保健品也早在二十世纪八十年代末就引起国际医药界的注意,而且大部分毒理学研究提示其一般无毒,近年来此类化合物一直是生化制药、保健品生产方面的热门之一,在最近上市的保健产品中也有很大一部分其主要功效成分就属于黄酮类化合物,其涉及的功能食品也很多。最近由于心血管疾病、癌症等疾病死亡人数呈快速增长,而黄酮对心血管系统及防癌抗癌有一定的作用,许多国家和地区正在开发相关的产品,前景较好。由于黄酮类化合物可能存在几种不同的作用机制与合成途径,有些实验结果的解释可能依然存在不足之处。因此今后黄酮类化合物的研究还需要关注的是生物利用度、代谢动力学、体内的氧化损伤及长期服用产生的慢性后果等方面[7]。开发出更加可靠、令人信服的模型或系统,以此来精确评估黄酮类化合物在人体内的代谢作用是非常必要的。 参考文献 [1] TAYLOR L P,GROTEWOLD E. Flavonoids as developmental regulatoes [J].Current Opinion in Plant Biology,2005,3(8):317-323. [2] 贺波.苎麻叶中黄酮的提取、分离纯化、结构及抗氧化活性研究[D].武汉:华中农业大学硕士学位论文,2010. [3] 张海慧.微波辅助法提取黑穗醋栗中黄酮类物质的研究[J].东北农业大学学报,2008.39(9):32-35. [4] 张鹏.银杏叶黄酮的微波提取及抗氧化性研究[J].安徽农业科学,2009,37(12):5496-5497,5730. [5] 余青,郑小严,黄红霞,等.超临界CO2萃取乌饭树叶总黄酮的工艺[J].2009,38(01):97-102. [6] 谢建华,单斌,彭云.超临界CO2流体萃取苦瓜总黄酮工艺及其抗氧化活性[J].2010,08(1):66-71. [7] 佟永薇.黄酮类化合物提取方法的研究及展望[J].食品研究与开发,2008,29(7):188-190.

黄酮类化合物

黄酮测定的研究进展 简要:黄酮类化合物(Flavonoids),又称生物黄酮(Bioflavon-oids)或植物黄酮,是植物在长期自然选择过程中产生的一些次级代谢产物,黄酮类化合物有着广泛的生物活性和多种药理活性,比如抗氧化、抗炎、抗诱变、抗肿瘤形成与生长等,特别是近年来关于黄酮在心血管、脑血管、肿瘤等方面的研究已经比较深入,此外黄酮类物质还有低毒性的特点,因此长期以来一直是天然药物和功能性食品研究开发的热点[1]。 关键词:黄铜,含量,测定方法,研究进展 前言:黄酮类物质是植物光合作用产生的一种天然有机物。植物界中分布广泛,主要分布于芸香料、唇形科、豆科、伞形科、银杏科、菊科等。根据化学方法定义黄酮类物质为含一个共同的苯基苯并二氢吡喃环结构,有一个或多个羟基取代基,包括其衍生物。在食物中,黄酮类物质一般以酯类、醚类或配糖类衍生物及混合物的形式存在,共有5000 多种化合物。对于哺乳动物,只能通过饮食获取黄酮物质,这些食物包括水果、蔬菜、谷物、坚果、茶及红酒。在日常膳食中,黄酮类物质通常表现为具有抗氧化性的羟基衍生物形态,显示出多种生物活性,对于一些疾病,例如癌症和心血管疾病,胃和十二指肠的病理性失调,以及病毒和细菌感染的预防和治疗。此外,类黄酮还被发现有广泛的药物特性,包括抗氧化性、抗过敏、抗病毒及预防糖尿病,对肝和胃的保护,抗病原体及抗瘤活性。除在医药工业上已广泛应用其生理活性外,目前也将黄酮类物质作为功能食品的添加剂[2] 。 (一)测定黄铜的几种方法 1 紫外分光光度法 紫外分光光度法具有重复性好、准确、简便、易掌握、不需要复杂的仪器设备, 加之所需试剂便宜易得, 因此该方法应用于测定植物中黄酮含量最为广泛[ 3]。 1.1 直接测定法 大多数黄酮类化合物分子中存在桂皮酰基和苯甲酰基组成的交叉共轭体系, 其MeOH 谱200 nm~400 nm的区域内存在两个主要的紫外吸收带, 峰带I(300 nm~400nm)和峰带Ⅱ( 220 nm~280 nm)[ 4]。 1.2 比色法 向供试样品中加入显色剂后测定吸光度以测定其含量, 这种方法称为比色法。黄酮类化合物分子中若具有3- 羟基、5- 羟基或邻二酚羟基, 易于与金属盐类如铝盐、锆盐、锶盐、镁盐等反应, 生成有色金属络合物。常用于黄酮类化合物含量测定的金属盐试剂有Al(NO3)3、A1Cl3等,这些络合物作用在光

银杏叶黄酮提取及含量测定

银杏叶黄酮提取及含量测定 一、实验目的 1、掌握银杏叶中黄酮的提取方法 2、了解银杏叶中黄酮的含量测定 二、实验原理 近几年来,随着对黄酮类化合物研究的日益深入与重视,黄酮类化合物提取技术的发展也得到了促进。目前提取黄酮类化合物的方法主要包括有机溶剂浸提法、超声波提取法、超临界流体萃取法、微波提取法和酶提取法等。 1.1有机溶剂浸提法 目前国内外使用最广泛的银杏叶中黄酮的提取方法就是有机溶剂提取法,一般可用乙酸乙酯、丙酮、乙醇、甲醇或某些极性较大的混合溶剂,如甲醇-水(1+1)溶液。由于甲醇的毒性、挥发性较大,因此一般采用乙醇作为提取剂。银杏叶干燥粉碎后用有机溶剂浸泡、提取、过滤,滤液中的溶剂经减压蒸馏除去后得银杏叶浸膏粗提物。徐桂花等[1]提取银杏叶中黄酮类化合物时,采用乙醇(70+30)溶液为提取剂,提取温度为70℃,料液质量浓度比为1g比40mL,提取时间为4h。由于乙醇提取工艺在安全性、溶剂成本、效率及杂质酚酸去除等方面都不能应对日益严酷的市场竞争,张林涛等[1]提出了以硼砂- 氢氧化钙碱水为溶剂提取银杏叶黄酮,其黄酮提取率与文献值相近,但提取工艺时间缩短为1h。 1.2超声波提取法 超声波提取法是利用搅拌作用、强烈的振动和空间效应、高的加速度等使药物有效成分进入溶剂,从而提高提取率,缩短提取时间,并能消除高温对提取成分影响的一种提取法。刘晶芝等[2]运用了超声波技术与水浸提取相结合的方法得出超声波提取的最佳工艺条件为:超声频率40kHz,超声处理时间55min,料液质量比1比100,提取温度35℃,静置3h,提取率为81.9%。郭国瑞等[3]以水为介质,超声波提取银杏叶中黄酮苷,与常规水浸提法比较,超声波提取效率大大提高,确定超声波提取的最佳工艺为:超声处理时间55min,料液质量比1比30,提取温度50℃,提取率为82.3%。 1.3超临界流体萃取法 超临界流体萃取法是一种以超临界流体代替常规有机溶剂对有效成分进行萃取和分离的新技术。可作为超临界流体的物质很多,其中二氧化碳临界温度(TC=31.3℃)接近室温,且具有无色、无毒、无味、不易燃、化学惰性、价廉、易制成高纯气体等优点而被广泛应用,特别在中药材及其制剂中更显示出其独特、简便、快速、具有较高的选择性、提取杂质少、可直接进样分析的优点。邓启焕等[4]探讨了超临界萃取银杏叶有效成分的影响因素,最佳条件为萃取压力20MPa、时间90min、粒度3.9mm、温度40℃,经测定银杏叶黄酮的质量分数为28%,高于国际公认标准。 1.4微波提取法 微波提取法是利用分子或离子在微波场中的导电效应直接对物质进行加热从而提取植物细胞内耐热物质的新工艺。曾里等[5]的研究表明以乙醇溶液作溶剂比以水作溶剂的效果好,最佳条件为以乙醇 (60+40)溶液为提取剂,解冻处理20min。张鹏等[6]对微波法提取银杏叶中黄酮类物质进行了研究,最佳提取条件为以乙醇(50+50)溶液

银杏黄酮即银杏叶提取物

银杏黄酮即银杏叶提取物,它能够增加脑血管流量,改善脑血管循环功能,保护脑细胞,扩张冠状动脉,防止心绞痛及心肌梗塞,防止血栓形成,提高机体免疫能力。对冠心病、心绞痛、脑动脉硬化、老年性痴呆、高血压病人均十分有益。 银杏黄酮 银杏黄酮亦称银杏叶提取物Ginkgo biloba P.E. [本品来源]本品为银杏科植物银杏Ginkgo biloba L.的干燥叶提取物。 [植物分布]全国大部分地区有产,主产湖北、江苏、广西、四川、河南、山东、辽宁等地。. [产品性状]银杏叶提取物Ginkgo biloba P.E为浅黄棕色可流动性棕黄色粉末,略有银杏叶香味。 [产品含量]总黄酮甙含量:24-26%(HPLC法),总萜内酯含量8-10%(HPLC法)白果内酯≥2.5% 银杏内酯A≥1.4% 银杏内酯B≥1.2%,银杏内酯C≥0.9% ,银杏酸≤1-5ppm重金属含量≤20ppm AS≤1PPM 干燥失重≤3%,炽灼残渣≤1.5%,溶济残留≤1%。 [产品用途]适用于制药、保健品、日用品、化妆品等各个领域 [适用范围]增加脑血管流量,降低脑血管阻力,改善脑血管循环功能,保护脑细胞,免受缺血损害,扩张冠状动脉,防止心绞痛及心肌梗塞,抑制血小板聚集,防止血栓形成,清除有害的氧化自由基,提高免疫能力,具有防癌抗衰功能。对治疗冠心病、心绞痛、脑动脉硬化、老年性痴呆、高血压等病有神奇疗效。 1. 促进循环 银杏叶提取物Ginkgo biloba P.E.能同时促进大脑和身体肢体的循环。银杏叶提取物Ginkgo biloba P.E.的一个主要保健功能就是抑制一种称为血小板活化因子(PAF)的物质,PAF是一种从细胞中释放的介质,其会导致血小板聚集(堆积在一起)。高含量的PAF会导致神经细胞损伤,中枢神经系统血流量降低,发炎,和支气管收缩。与自由基非常相似,高PAF 水平也会导致衰老。银杏内酯和白果内酯可在缺血(体内组织缺少氧气)时期内保护中枢神经系统的神经细胞不受损伤。该功能可能能对苦于中风的患者有辅助治疗的作用。除了抑制血小板粘着外,银杏提取物调节血管张力和弹力。换句话说,其可令血管循环更加有效率。该提升循环效率作用对循环系统中的大血管(动脉)和较小血管(毛细血管)都有同样作用。 2. 抗氧化作用 银杏叶提取物Ginkgo biloba P.E.可能在大脑,眼球视网膜和心血管系统中可发挥抗氧化特性。其在大脑和中枢神经系统中的抗氧化作用可能有助于防止因年龄导致的大脑功能衰落。银杏叶提取物在大脑中的抗氧化功能特别使人感兴趣。大脑和中枢神经系统特别易受自由基攻击。自由基

黄酮类化合物的提取纯化方法

黄酮类化合物的提取、药用价值和产品开发应用前景 任红丽2009090141 摘要:对黄酮类化合物的药用价值、提取工艺、分离方法等方面进行综述。在 药用价值方面,讨论了其抗抑郁作用、抗氧化与自由基消除活性作用、对化学性肝损伤的保护作用、抗肿瘤作用、抗骨质疏松作用、抗心肌缺血作用;在提取工艺方面,讨论了溶剂提取法、超声提取法、酶法、微波法等;及其开发应用,为今后黄酮类化合物的深入研究提供理论基础。 关键词:黄酮类化合物提取工艺药用价值 黄酮类物质是一类低分子天然植物成分,是自然界中存在的酚类物质[14],又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物的各个部位,尤其是花、叶,主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科中。迄今,已有数百种不同类型的黄酮类化合物在植物中被发现,人工合成的黄酮类化合物也不断问世。最初这类物质仅用于染料方面,自20世纪20年代,槲皮素、芦丁等黄酮类物质用于临床后,才开始引起人们的关注,研究发现其中相当一部分具有显著的生理及药理活性,例如抗氧化、抗病毒、抗炎、调节血管渗透性,改善记忆,抗抑郁、抗焦虑、中枢抑制、神经保护等功能[2,12]诸多生理和药理特性使其广泛应用于食品、医药等领域。 1.提取纯化方法 1.1 传统提取方法 1.1.1 热水提取法 水是最廉价的提取溶剂,是地球最丰富的物质,无色无味无毒,对人体和环境无害,挥发性不大,具有真正的绿色环保意义。但用水作为提取溶剂时,从中药材中提取的黄酮类化合物中杂质含量较多,往往因泡沫或粘液很多,给进一步分离带来许多麻烦,而且浓缩也会很困难。此外,水提取物容易发霉发酵[22]。1.1.2 碱性水、碱性稀醇浸提法 中草药中黄酮类成分多为多酚类化合物,因其结构中具有酚羟基[7],故可用碱性水或碱性稀醇液来提取中草药中的黄酮类化合物。黄酮母核的多样性主要是由黄酮本身骨架、环系的变化、氧化程度和数量而定,当碱的浓度过高,加热时便破坏黄酮类化合物的母核。 1.1.3 有机溶剂热回流及冷浸提取法 根据杂质极性不同,可选用不同的有机溶剂(如石油醚、乙酸乙酯、氯仿、乙醇、甲醇、丙酮等),一般采取乙醇为提取溶剂[15]。

银杏叶中黄酮类化合物的提取工艺研究

2006年第13卷第6期 化工生产与技术ChemicalProductionandTechnology !!!!!!" !" !!!!!!" !" 研究与开发 收稿日期:2006-10-10 以银杏叶提取物(GBE)为原料制成的药物具有清除自由基,防止脑缺血和脑水肿,改善脑功能等多种作用。银杏叶制剂还可用于保健食品和化妆品等[1,2]。银杏叶中黄酮类化合物的提取直接决定着银杏叶的药用价值,因而成为国内外的研究热点。 提取方法最早用水浸提法,此方法具有设备简单、成本低且对环境和人类无毒害的特点,但提取率偏低、杂质含量较高,后处理难度大。有机溶剂法尤其酮、醇提取法是相当经典的方法,比如用丙酮作为提取剂的方法有:(1)丙酮提取-四氯化碳萃取法;(2)丙酮提取-氢氧化铅沉淀法;(3)丙酮提取-氨水沉淀法;(4)丙酮提取-硅藻土过滤法。(1)法工艺产品黄酮含量太低,达不到标准,(2)~(4)法工艺虽然能较好地从银杏叶中提取出有效成分含量较高的提取物,但它们存在着很多缺点。例如,使用了丁酮、四氯化碳等有毒害溶剂等,产品中无法避免这些物质的残留;操作复杂和步骤多,导致GBE收率低且最终精制品的质量不够稳定。 随着超临界流体提取技术的迅速发展,应用该技术提取植物中活性成分已越来越广泛,与有机溶剂提取法相比,超临界流体萃取方法具有产品收率高、质量好、有效成分破坏少、无溶剂残留、操作方便等优点。但是超临界流体萃取法设备规模较大、技术要求高、投资大,安全操作要求高,难以用于较大规模的生产。乙醇和丙酮对活性成分提取率相近,但考虑到溶剂的成本和操作的安全性,使用乙醇水溶液比丙酮水溶液更合适。因此采用乙醇-水 为提取剂,对影响浸取的主要因素进行了研究。 1 实验部分 1.1 主要材料、试剂及仪器 银杏叶:产于连云港花果山,自采;氢氧化钠、无 水乙醇、硝酸铝、芦丁、亚硝酸钠、二氯甲烷和甲醇,均为分析纯。 723可见分光光度计,DF-1型集热式磁力搅拌 器,RE-5285A型旋转蒸发器,恒温水浴锅,电热鼓风干燥箱,SHZ-CD型循环水式真空泵,等。1.2工艺流程 采用有机溶剂提取法,因为甲醇和丙酮具有毒性,所以采用乙醇-水作为提取剂比较合适[3]。 GBE的提取工艺流程如下: 干燥银杏叶→粉碎→浸取→过滤→减压蒸馏→银杏浸膏粗提物→二氯甲烷萃取→减压除去溶剂→干燥→产物。 1.3银杏叶中总黄酮含量的测定 将银杏叶洗净,在低温下烘干至恒重,准确称取 2g,置于索氏提取器中用甲醇回流提取至提取液无色;提取液经浓缩,并转入50mL容量瓶中,用甲醇定容至刻度,摇匀,取1mL按照标准曲线的作法测定吸光度[4],水浴温度控制在75℃左右。 银杏叶中总黄酮的质量分数=50×ρ1/m1,ρ1为银杏叶中总黄酮的质量浓度,mg/mL;m1为银杏叶质 量,mg。 本实验中银杏叶中总黄酮的质量分数=50×0.7/ 银杏叶中黄酮类化合物的提取工艺研究 朱平华 (淮海工学院化工系,江苏连云港222005) 摘要 对银杏叶中黄酮类化合物的提取工艺进行了研究,通过单因素试验和L9(33)正交试 验,研究了浸取温度、乙醇含量和固液质量比对黄酮类化合物提取率的影响。结果显示温度是影响提取率的主要因素,最佳工艺为浸取温度80℃,乙醇的体积分数为70%和固液质量比1:7,银杏叶中黄酮类化合物的浸出率可达到92.3%。关键词 银杏叶;黄酮类化合物;乙醇;提取 中图分类号TQ234.2+1,TQ460.6+1文献标识码A文章编号1006-6829(2006)06-0025-03 ?25 ?

银杏黄酮制备实验

实验四、银杏黄酮的提取与检测 一、实验目的: 1、了解黄酮类物质的分离提取和检测方法。 2、了解大孔吸附树脂的特性和在生化分离中的应用。 二、实验原理: 1、提取原理 溶剂加到原料中进行提取的过程中,由于扩散、渗透作用,逐渐通过细胞壁透入细胞中,溶剂进入细胞后溶解可溶性物质,造成了细胞内外浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入植物细胞中,可溶性成分不断被提取出来,如此多次反复,直到细胞内外浓度相等,达到动态平衡为止。 2、大孔吸附树脂纯化原理: 大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型树脂,为用于固体萃取而设计。是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。 大孔吸附树脂吸附能力高,易解吸,内部微孔即多又大,表面积也大,具有较多的活性中心,使离子、分子扩散速率增大,交换速度加快,在使用上可以缩短生产周期,提高效率,而且大孔吸附树脂可以进行再生重复使用,因此使生产成本大为降低,适于工业化生产。 3、银杏黄酮含量的分光光度法测定原理 黄酮类化合物的测定使用较广泛的是络合—分光光度法,该法的基本原理是,黄酮类化合物分子结构中,凡在C 3或C 5位上有羟基,都会与铝盐形成有颜色的配位化合物,见图:O O O Al 2+O O O Al 2黄酮和铝盐的络合物芦丁因此,银杏叶中的黄酮类化合物包括单黄酮、双黄酮和黄酮苷都能与铝盐形成络合物,比色测定结果 是总黄酮含量。硝酸铝络合分光光度法测定总黄酮的原理为:在中性或弱碱性及亚硝酸钠存在条件下,黄酮类化合物与铝盐生成螯和物,加入氢氧化钠溶液后显红橙色,在500波长处有吸收峰且符合定量分析的比尔定律,一般与芦丁标准系列比较定量. 如果细说,硝酸铝显色法是先用亚硝酸钠还原黄酮,再加硝酸铝络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2’羟基查耳酮而显色. 它的显色原理发生在黄酮醇类成分邻位无取代的邻二酚羟基部位,不具有邻位无取代邻二酚羟基的黄酮醇类成分加入上述试剂时是不显色的. 三、仪器: 电子天平(0.1mg )、紫外分光光度计、恒温水浴摇床、电热恒温水浴锅、索氏提取器、电热恒温干燥箱、微波炉、超声波破碎仪、超声波清洗机、旋转蒸发器、循环水式真空泵、布式漏斗、真空抽率瓶、真空泵。 四、材料与试剂: 银杏叶、甲醇、95%乙醇、丙酮、乙醚、石油醚(30~60℃)、硝酸铝、亚硝酸钠、氢氧化钠、芦丁、大孔吸附树脂。 五、操作步骤: 5.1、脱脂 +

溶剂提取法提取银杏叶中得黄酮实验报告

溶剂提取法提取银杏叶中得黄酮实验报告 小组成员:周璟、胡静、左兵华、刘云飞 2014年5月一、实验目的 ⅰ)掌握传统的溶剂提取法并对银杏中的黄酮进行提取 ⅱ)掌握紫外分光光度计的应用,以及origin软件绘图的基本操作ⅲ)学会自主设计实验,培养团队合作精神 二、实验原理 ⑴关于黄酮:银杏中最具药用价值的成分,有提高人体免疫力的作用;并且抗衰老、调节内分泌,还具有抗炎、抗真菌的作用; ⑵实验需设置空白参比液,由文献资料可知芦丁标准液的最大波长大概为510nm; ⑶本实验采用硝酸铝(氯化铝)法测定银杏叶总黄酮的质量浓度,因 为黄酮类化合物可以与铝盐发生络合显色反应。 其主要原理为:在中性或弱碱性及亚硝酸钠存在的条件下,黄酮类化合物与铝盐发生螯合反应,加入氢氧化钠溶液后,溶液显橙红色,在510nm(左右)处有吸收峰,且符合定量分析的朗伯—比尔定律(即A=kbc)一般与芦丁标准溶液比较定量。先用亚硝酸钠还原黄酮类化合物,再加铝盐络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2-羟基查尔酮而显色。显色原理发生在黄酮醇类邻位无取代的邻二

酚羟基部位,不具有邻位无取代的邻二酚羟基的黄酮类成分加入上述试剂时是不显色的。(如二氢黄酮类化合物就不发生该显色反应) 三、实验药品及仪器 ⑴药品:银杏叶(阴干碾碎储藏备用),芦丁,无水乙醇,亚硝酸钠,氯化铝和氢氧化钠; ⑵仪器:电子天平,旋转蒸发仪,索氏提取器,uv-1800型紫外分光光度计,研钵,比色皿,容量瓶(10ml*6,50ml*1,100ml*2),移液管,量筒,烧杯,玻璃棒。 四.实验步骤 Ⅰ)配制60%的乙醇溶液(黄酮同时具有水溶和油溶性)。 Ⅱ)准确称取10g银杏叶粉末置于索氏提取器中,加入60%的乙醇溶液10ml,回流提取3h,然后用旋转蒸发仪浓缩并回收乙醇溶液,抽滤得到银杏叶黄酮粗提物。再用60%的乙醇定容到100ml。 Ⅲ)芦丁标准液的配置:准确称取芦丁标准品0.005g,用60%的乙醇溶液加热溶解,并转移到50ml容量瓶内用乙醇溶液定容,摇匀,得质量浓度为0.1mg/ml的芦丁标准液。 Ⅳ)分别吸取上部配制的母液0.0,1.0,2.0,3.0,4.0,5.0ml于6只10ml容量瓶中摇匀,先加入5%的亚硝酸钠0.5ml摇匀,静置6min,再加入10%的氯化铝溶液0.31ml,摇匀,静置6min,再加入4%的氢氧化钠溶液4ml,用60%的乙醇溶液定容到10ml,放置20min。其中,加入

黄酮类化合物

黄酮类化合物 黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物黄酮类化 合物结构中常连接有酚羟基、甲氧基、甲基、异戊烯基等官能团。此外,它还常与糖结合成苷。多数科学家认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的。经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A[1]。1、分类:根据中央三碳链的氧化程度、B-环连接位置(2-或3-位)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类:黄酮类(flavones)、黄酮醇(flavonol)、二氢黄酮类(flavonones)、二氢黄酮醇类(flavanonol)、花色素类(anthocyanidins)、黄烷-3,4二醇类(flavan-3,4-diols)、双苯吡酮类(xanthones)、查尔酮(chalcones)和双黄酮类(biflavonoids)等十五种。另外,还有一些黄酮类化合物的结构很复杂,其中包括榕碱及异榕碱等生物碱型黄酮。2、理化性质:天然黄酮类化合物多以苷类形式存在,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄酮苷类。组成黄酮苷的糖类包括单糖、双糖、三糖和酰化糖。黄酮苷固体为无定形粉末,其余黄酮类化合物多为结晶性固体。黄酮类化合物不同的颜色为天然色素家族添加

了更多色彩。这是由于其母核内形成交叉共轭体系,并通过电子转移、重排,使共轭链延长,因而显现出颜色。黄酮苷一般易溶于水、乙醇、甲醇等级性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。糖链越长则水溶度越大。黄酮类化合物因分子中多具有酚羟基,故显酸性。酸性强弱因酚羟基数目、位置而异。3、显色:1.盐酸-镁粉(或锌粉) 反应为鉴定黄酮类化合物最常用的颜色反应,反应机理现在认为是因为生成了阳碳离子缘故[1]。2.四氢硼钠(NaBH4)是对二氢黄酮类化合物专属性较高的一种还原剂,产生红~紫色。而与其它黄酮类化合物均不显色。3. 黄酮类化合分子中常含有下列结构单元,故常可与铝盐、铅盐、锆盐、镁盐、锶盐、铁盐等试剂反应,生成有色络合物。与1%三氯化铝 或硝酸铝溶液反应,生成的络合物多为黄色(λmax=415nm),并有荧光,可用于定性及定量分析。4、黄酮对身体的好处黄酮广泛存在自然界的某些植物和浆果中,总数大约有4千 多种,其分子结构不尽相同,如芸香苷、橘皮苷、栎素、绿茶 多酚、花色糖苷、花色苷酸等都属黄酮。不同分子结构的黄酮可作用于身体不同的器官,如山楂--心血管系统,兰梅-- 眼睛,酸果--尿路系统,葡萄--淋巴、肝脏,接骨木果--免疫系统,平时我们可以通过多食葡萄、洋葱、花椰莱、喝红酒、多饮绿茶等方式来获得黄酮,作为身体的一种补充。 黄酮的功效是多方面的,它是一种很强的抗氧剂,可有效清

银杏叶中黄酮的提取原理及方法)

银杏叶中黄酮提取及含量测定 一、实验目的 提取银杏叶中的总黄酮并测定其含量。 二、实验原理 银杏系银杏科银杏属落叶乔木,银杏叶中含有多种生理活性成分,其中黄酮类化合物是重要的生理活性物质,具有保肝护肝、预防治疗心血管疾病、抗氧化、抗衰老等作用。因此,将银杏叶作为高营养、保健功能价值的资源加以开发利用,这对于提高银杏叶综合利用率有重要意义。银杏叶黄酮类化合物的提取方法目前研究的有水浸取法,成本低但浸取率低;有机溶剂浸取法中,乙醇浸取的效率高且无毒,是目前采用较多的方法;韩玉谦等采用超临界流体萃取法,在70%乙醇溶液中加热回流法和CO2 超临界流体萃取法提取银杏叶中的活性成分,银杏黄酮回收率为84 . 4 % ,是常规萃取法回收率的2倍多;乙醇超声波浸取法, 黄酮提取率可达到8 6 . 7 %。银杏黄酮含量的测定常用分光光度法和高效液相色谱法。分光光度法自20世纪9 0年代以来一直是用来测定银杏黄酮的一种重要方法, 由于其成本低、便于操作等特点, 是一种快捷有效的方法[1]。本实验采用乙醇作溶剂进行索氏提取,建立了用Al(NO3)3显色法对芦丁标准品和银杏叶提取液进行光谱扫描测定银杏叶总黄酮含量的方法[2]。 三、实验仪器和试剂 材料:银杏叶粉末50g 试剂:标准芦丁样品,无水乙醇(600ml),50mlAl(NO3)3(0.1mol/L),乙醚,5%NaNO2溶液,10%AL(NO3)3,4%NaOH溶液。

仪器:紫外分光光度计、电子分析天平、水浴锅、烘箱、烧杯、容量瓶(100ml1个、50ml1个、10ml6个)、索氏提取器、减压蒸馏装置、锥形瓶、沸石等。 四、实验步骤 1.1提取银杏叶中总黄酮 (1)将银杏叶洗净, 在103℃下烘干至恒重,用研钵捣碎制得银杏叶粉(2)准确称取10.0g,置于索氏提取器中,按下列条件加热回流提取:乙醇浓度80%,料液比1:20(g/ml),回流温度85℃,回流时间2 h,平行进行1~3次实验。 (3)将圆底烧瓶中提取液倒入烧杯,加入一倍蒸馏水,再加入相同量的乙醚,混合均匀,倒入分液漏斗中,静置20min,分层后,收集下层液体。 (4)减压蒸馏,回收乙醇,得到淡黄色黏液,干燥得到银杏叶中总黄酮提取物。 1.2银杏叶中总黄酮含量测定 (1)芦丁标准溶液的配置:称取0.0100g芦丁标准品,放入烧杯中,加入80%的乙醇溶液使其溶解,置于100ml的容量瓶中,制成0.1g/L的芦丁标准溶液。定容,摇匀备用。 (2)绘制芦丁标准曲线:分别移取0,0.4 ,0.8,1.2,1.6,2.0 ml 芦丁对照品溶液,于6个10ml 容量瓶中,标记1~6,分别加入2.0、1.6、1.2、0.8、0.4、0ml的80%乙醇溶液,加入5%NaNO2溶液0.5ml,摇匀,放置6min,加入0.5ml10%AL(NO3)3,摇匀,放置6min,加入4%NaOH

银杏叶黄酮类化合物的提取研究进展

银杏叶黄酮类化合物的提取研究进展 银杏树Ginkgo biloba L.又称白果树、公孙树,是我国古老的树种之一,具有“活化石”的美称。由于其生长规律特殊,抗病能力强而受到国内外的重视。有关银杏叶的有效成分及疗效的研究日益受到重视,已开发出保健品、化妆品、药品等多达100多种,形成国际市场上销售额20多亿美元的新兴产业。银杏叶的化学成分有黄酮类、萜类、内酯类、酚酸类以及生物碱、聚异戊二烯等化合物。黄酮类为银杏叶的主要有效成分之一,含量随品种、产地、树龄、不同的采摘时间而不同。黄酮类化合物优异的抗氧化、抗病毒、防治心血管疾病、增强免疫力等作用而受世人瞩目。 药学研究表明,有38种银杏黄酮类化合物从银杏叶中分离出来,其中黄酮类化合物主要有3类:黄酮(醇)及其昔28种:如槲皮黄酮等;黄烷醇类:如儿茶素等4种;双黄酮:如白果双黄酮等6种(儿茶素)。 1 银杏叶黄酮的提取分离 1.1 溶剂提取法目前国内外掀起了研究开发银杏叶热。国内银杏叶常用溶剂例如乙醇、丙酮、醋酸乙酯、水以及某些极性较大的混合溶剂浸泡银杏叶进行提取,溶剂提取方法一般有:煎煮、冷浸、回流、渗施等经典方法。 1.1.1 水提取树脂分离法有关水浸提银杏黄酮苷的文献报道不多。肖顺昌等报道了用l 6倍量沸水分3次浸提银杏叶,得到的水溶液,经冷藏、分离杂质得溶液,然后用D101型吸附树脂吸附得到浓度达38%的黄酮苷。胡敏等研究水浸提银杏叶黄酮苷并用树脂精制的工艺,探讨了影响黄酮苷浸出的主要因素以及最适的精制方法,结果表明:水为提取剂,在9 0℃水溶回流浸提银杏叶2次,4h/次,经沉淀,过滤,浓缩后,用树脂精制、冷冻干燥后,制得总黄酮苷含量高的提取物、产品得率为银杏叶干重的 1.2%-1.5%。 水提取成本低,没有任何环境污染,产品安全性高,但是水对有效成分的选择性差,提取率低。

黄酮类化合物的生理功能

黄酮类化合物的生理功能 黄酮类化合物广泛存在于植物中,实际上存在于植物的所有部分,包括根、心材、树皮、叶、果实和花中,光全作用中约有2%的碳源被转化成类黄酮。早在30年代人们就发现了黄酮类化合物具有维生素C样的活性,曾一度被视为是维生素P。至今法国与俄罗斯仍继续称黄酮类化合物为维生素P。Pratt等人研究了黄酮类化合物的抗氧化性质,认为黄酮是作为一级抗氧化剂而起作用的,它们具有显著的抗氧化性能。黄酮抗油脂过氧化的作用早在60年代就已经被证实了。80年代以来,对黄酮类化合物的研究逐渐转向其清除自由基的能力、抗衰老及对老年病的防治功效上。 黄酮类化合物中含有消炎、抑制异常的毛细血管通透性增加及阻力下降、扩张冠状动脉、增加冠脉流量、影响血压、改变体内酶活性、改善微循环、解痉、抑菌、抗肝炎病毒、抗肿瘤具有重要生物活性的化合物,有很高的药用价值。中草药含黄酮类化合物的很多,已经证明类黄酮是许多中草药的有效成份。例如满山红中的杜鹃素、小叶枇杷中的小叶枇杷素、矮地茶中的槲皮苷、铁包金中的芦丁、白毛夏枯草和青兰中的木犀草素、红管药中的槲皮素、葛根中的黄豆苷与葛根素、毛冬青与银杏叶中的黄酮醇苷、黄芩中的抗菌成分黄芩素和解热有效成分黄芩苷等。此外,还有很多中草药富含黄酮类成分,如槐米、陈皮、射干、红花、甘草、蒲黄、枳实、芫花、金银花、菊花、山楂、淫羊藿、桎木和地锦等。除了药用价值外,其中的部分黄酮类化合物(特别是来源自药食两用的中草药)显然可应用在功能性食品。 黄酮和黄酮醇是植物界分布最广的黄酮类化合物,广泛存在于食用蔬菜及水果中,在沙棘、山楂、洋葱等中含量较高,茶叶、蜂蜜、果汁、葡萄酒中含量丰富。椐估计人体每天从食物中摄入这类物质可达1g,产生有益的生理作用。黄酮类化合物无显著毒性,大鼠对槲皮素的经口LD50为10~50g/kg ,小鼠一次口服15g/kg,观察7d无一死亡。临床病人摄取芦丁2.25g持续7d或60mg/d连续5年,均无任何副反应。在其他一系列大剂量、长时间的动物试验中,均未发现有致癌性。显性致死试验、细胞姐妹染色体试验、微核试验证明槲皮素类衍生物无致突变作用。 黄酮类化合物的生理功能可概括为: ⑴调节毛细血管的脆性与渗透性。 ⑵是一种有效的自由基清除剂,其作用仅次于维生素E。 ⑶具有金属螯合的能力,可影响酶与膜的活性。 ⑷对维生素C有增效作用,似乎有稳定人体组织内维生素C的作用。 ⑸具有抑制细菌和抗生素的作用,这种作用使普通食物抵抗传染病的能力相当高。 ⑹在两方面表现有抗癌作用,一方面是对恶性细胞的抑制(即停止或抑制细胞的增长),另一方面是从生化方面保护细胞免受致癌物的损害。 尽管对黄酮类化合物的看法尚有矛盾的方面,但它目前仍被应用来防治下列一些疾病: ⑴毛细血管的脆性和出血。 ⑵牙龈出血。 ⑶眼的视网膜内出血。

黄酮类化合物的提取分离方法

一.黄酮类化合物的提取分离方法 按所用溶剂不同分类 (1)热水提取法(以水作溶剂)---------- 灵芝多糖热水提取 (2)有机溶剂萃取法-----------生产茶多酚工业试验、乳酸 (3)碱提取酸沉淀法.---------- 橙皮苷、黄芩苷、芦丁等都可用此法提取. 2.按提取条件不同分类 (1)回流提取法----------从苦楝树皮中提取苦楝素 (2)索式提取法----------柑橘属类黄酮 (3)微波辅助提取法----------采用微波辅助法从黎蒿中提取黄酮类化合物 (4)超声提取法----------提取山楂中黄酮类物质 (5)超滤法----------黄岑甙 (6)酶提取法----------采用纤维素酶对红景天进行酶解处理,可提高黄酮类物质的浸出率 (7)超临界流体提取法----------竹叶黄酮、从干姜片中提取挥发油 PH 梯度萃取法:石榴果皮褐变产物、葛花总异黄酮 高效液相色谱分析法:五味子、葛根 高速逆流色谱分离法:甘草、分离蜜环菌发酵液乙醇提取部位 柱色谱法 (1)硅胶柱色谱:姜黄素 (2)聚酰胺柱色谱:紫锥菊 (3)葡聚糖凝胶柱色谱:回心草、茵陈蒿 (4)大孔吸附树脂分离法:川草乌、三七总皂甙 二. 槐米中芸香苷(芦丁)的提取方法有哪些(设计) 方法:渗漉法、煎煮法、回流提取法 (1) 槐米粗粉20g 加约120ml 的%硼砂水溶液, 搅拌下加入石灰乳至pH8-9, 并保持该pH 值煮沸20分钟,四层纱布 趁热滤过,反复2次 提取液 药渣 浓盐酸调pH2~3 搅拌,静置放冷,滤过。 滤液 沉淀 热水或乙醇重结晶 芸香苷结晶 碱溶酸沉法提取分离槐米中芸香苷的流程图 (2)取30g 槐花米,置于250mL 烧杯中,加入%硼砂沸水200ml ,在搅拌下缓缓加入石灰乳调节pH=8~9,在此pH 下保持微沸20~30min ,趁热用棉花滤过,残渣再加水,同上法再煎一次,趁热抽滤。合并滤液,在60~70℃下用浓盐酸调至pH=4—5,静置。 提 碱 取 溶 分 酸 离 沉

黄酮类化合物提取分离纯化及其活性的研究进展

黄酮类化合物提取分离纯化及其活性的研究进展姓名常姣专业微生物学 摘要文章综述了黄酮类化合物的结构特征及提取、分离纯化技术介绍了黄酮类化合物的生物活性,并对其开发利用进行了展望。旨在为黄酮类化合物的研究、开发以及应用提供参考。 关键词黄酮;提取;分离纯化;生物活性 民以黄酮类化合物也称黄碱素, 是广泛存在于自然界的一大类化合物, 在植物体内大多与糖结合成甙的形式存在, 也有部分以游离状态的甙元存在。由于最先发现的黄酮类化合物都具有一个酮式羰基 结构, 又呈黄色或淡黄色, 故称黄酮[ 1]。 目前对天然黄酮类化合物的提取方法较多,如溶剂提取法、微波提取法、超声波提取法、酶解法、超临界流体萃取法、双水相萃取分离法及半仿生提取法等, 每种方法都有它各自的优点和点。用上述方法提取的黄酮类化合物仍然是一个混合物, 不仅是含有其它杂质的粗品, 而且是几种黄酮类成分的混合物, 需进一步分离纯化, 常用的方法有柱层析法、重结晶法、铅盐沉淀法和高效液相色谱法等。 黄酮类化合物具有降低血管脆性及异常的通透性、降血脂、降血压、抑制血小板聚集及血栓形成、抗肝脏病毒、抗炎、抗菌、解栓、抗氧化、清除自由基、抗衰老、抗癌、防癌、降血糖、镇痛和免疫等生理活性[ 2-5]。这些生理活性已被关注,对该类化合物的研究成为医药界的热门课题。人体自身不能合成黄酮类化合物而只能从食物中摄取,因此多年来科学家都在积极研究探讨从植物体中分离 纯度高、活性强的黄酮类化合物[6]。 1黄酮类化合物的理化性质 黄酮类化合物是以2-苯基色原酮为母核而衍生的一类通过三碳链相互连接而成的大多具有基本碳 架的一系列化合物,且母核上常有羟基、甲氧基、甲基、异戊烯基等助色取代基团。黄酮类化合物多为晶体固体,多数具有颜色,少数(如黄酮苷类)为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,其余则无旋光性) 黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有很大差异) 一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂) 其中,黄酮、黄酮醇、查儿酮等平面型分子,因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等,因系非平面型分子,故排列不紧密,分子间引力降低,有利于水分子进入,水中溶解度稍大。 2黄酮类化合物的提取分离及纯化 黄酮类化合物在花、叶、果等组织中多以苷元的形式存在,而在根部坚硬组织中,则多以游离苷元形式存在。因此,不同来源、部位、种类黄酮提取所采取的方法不同[6]。分离黄酮类化合物的方法很多,根据黄酮类化合物与混入其他化合物的极性不同可采用溶剂萃取法,根据黄酮化合物在酸性水中难溶、碱性水中易溶的特点可采用碱提酸沉法等。 2.1溶剂法 2.1.1 热水提取法

黄酮类化合物的提取

一、溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机溶剂易残留。溶剂系统主要有乙醇,水溶液、丙酮-水溶液、NaOH-水溶液、NaOH-乙醇等。精提物常在粗提物制备基础上精制,常用液-液提取法、沉淀法和吸附.洗脱法。以60%丙酮为起始溶剂粗提取,再脱脂、去银杏酚酸等15道工艺制成提取物。NaOH-水溶液提取效果最好,NaOH-乙醇溶液次之,正丁醇萃取水溶液中银杏黄酮苷,获得最佳萃取条件为萃取5 min温度60℃4次,萃取物中黄酮苷含量为57%。V水:V正丙醇=1:25最佳。银杏叶精提物树脂吸附纯化法以石油醚回流提取,再以80%乙醇回流提取,减压浓缩,新型澄清剂沉降,树脂分级吸附,pH值为3—4酸水和酸性25%乙醇洗涤,75%乙醇洗脱,喷雾干燥将银杏叶洗净,于60℃烘干至恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中加入60%乙醇至250.0 ml,80℃下回流提取3.0 h,蒸馏回收乙醇,并用活性炭脱色,得银杏叶黄酮提取物。乙醇浓度为50%一70%时,提取率随浓度增加提高,当浓度70%时提取率达最大。随水浴温度升高总黄酮提取率快速增加。当温度80℃时提取率达最大。提取时间为三小时为佳。 黄酮类化合物(英语:Flavonoid,又称类黄酮[1])是指基本母核为2-苯基色原酮类化合物,现在则泛指两个具有酚羟基的苯环通过中央三碳原子相互连接的一系列化合物。他们来自于水果、蔬菜、茶、葡萄酒、种子或是植物根。虽然他们不被认为是维生素,但是在生物体内的反应里,被认为有营养功能,曾被称为“维生素P”: 黄酮类(英语:Flavones)是一类基于2-苯基色原酮-4-酮(2-苯基-1-苯并吡喃-4-酮)骨架的黄酮类化合物,如右图所示。 银杏叶黄酮的研究程序 溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机

相关文档
相关文档 最新文档