文档视界 最新最全的文档下载
当前位置:文档视界 › 500KV,1000MVA大容量主变压器冷却方式选择

500KV,1000MVA大容量主变压器冷却方式选择

500KV,1000MVA大容量主变压器冷却方式选择
500KV,1000MVA大容量主变压器冷却方式选择

500KV,1000MVA大容量主变压器冷却方式选择

【摘要】本文对500KV,1000MVA大容量主变压器冷却方式进行了技术经济比较,从设备制

造水平、运行情况、生产业绩、占地面积、技术经济等方面对主变压器采用自然油循环风冷(ONAF)及强迫油循环油风冷(OFAF/ODAF)方式进行主变冷却方式的选择分析和探讨。

【关键词】变电站设计、大容量变压器、冷却方式

1、前言

主变压器冷却方式通常主要有强油导向风冷(ODAF)、强油风冷(OFAF)、自然油循环风冷(ONAF)及全自冷(ONAN)四种方式。对于1000MVA大容量三相一体变压器全自冷(ONAN)方式,当变压器负荷大于70%时,无法实现,因此不考虑采用该冷却方式。国内变压器行业技术实力较强的制造企业有保定天威变压器有限公司、特变电工沈阳变压器有限公司、西安西电变压器有限公司、常州东芝变压器有限公司、重庆ABB变压器有限公司等。他们生产的变压器技术性能指标目前已达到国际先进水平,性能可靠、节能环保。因此,在这主要对上述国内主要变压器制造公司的主变压器冷却方式进行分析探讨。

2、主变压器冷却方式比较

2.1 主变压器冷却方式概述

强迫油循环油风冷方式分为强油导向风冷(ODAF)冷却方式及强油风冷(OFAF)方式。强油导向风冷(ODAF)冷却方式,通过冷却器潜油泵驱动经过冷却的变压器油进入变压器油箱后,再经过密封的导油设施将油导入器身下部(绕组下方),再通过器身的内部结构将油分配导入到各绕组中。变压器线圈及铁心中热油上升后经过油箱上部的导油管进入油箱外部的冷却系统形成循环冷却。强油风冷(OFAF)方式,通过冷却器油泵驱动经过冷却的变压器油进入变压器箱体底部。再通过器身的内部结构将底部温度底的油分配导入到各绕组中。变压器线圈及铁心中热油上升后经过油箱上部的导油管进入油箱外部的冷却系统形成循环冷却。

自然油循环风冷(ONAF)方式,即由变压器线圈及铁心中热油上升,油箱壁上或散热器中冷油下降而形成循环冷却,通过配以片式散热器与相应的吹风装置进一步加强散热能力予以实现。

上述大容量主变压器不同冷却方式的优缺点如表1所示:

表1 大容量主变压器三种冷却方式优缺点比较

续表1

2.2主变压器冷却方式技术比较

2.2.1主变压器冷却方式的基本应用情况

目前国内特高压交直流变压器均采用强迫油循环风冷方式。国内700MVA以上大容量变压器冷却方式主要采用强迫油循环风冷方式。国内各主要变压器生产商大容量700MVA及以上变压器冷却方式的应用情况如表2所示:

表2 700MVA及以上大容量变压器不同冷却方式主变台数比较表(单位台)

述大容量变压器(共154台)的2.59%,其余均采用强迫油循环风冷方式。

2.2.2主变压器不同冷却方式占地面积比较

自然油循环风冷方式需采用大量的散热器,主变压器外形尺寸比强油循环风冷方式大(如图1-图2)。总平布置纵向尺寸比强迫油循环风冷方式需增加3~6米,变电站占地面积需增加6*197=1182m2,约1.7亩。按每亩12万征地费计,征地费增加约21万元。

2.2.3主变压器不同冷却方式与智能化变电站协调方面

自然油循环风冷方式的散热器风扇及强迫油循环风冷方式的冷却器均采用智能控制。自然油循环风冷方式没有冷却器,没有潜油泵,有风扇。强迫油循环风冷方式有冷却器,有潜油泵,有风扇,如长春南为无人值班智能变电站,采用自然油循环风冷方式没有潜油泵,变压器运行维护工作量比强迫油循环风冷方式小。

智能化变电站对变压器二次设备智能化要求高,智能控制柜、在线监测装置的集成采购等对变压器厂的配合需求高。采用强迫油循环风冷方式,各制造厂均有大容量变压器采用强迫油循环风冷方式制造业绩,设备招标时较易评选出理想的智能化变压器生产企业。

图1 1000MVA/500kV强油循环风冷主变压器

图2 1000MVA/500kV自然油循环风冷主变压器

2.2.4主变压器不同冷却方式用电负荷比较

经调研,冷却方式采用自然油循环风冷,各制造厂提供的片式散热器数量在54至72组之间,风扇数量在18至60组之间。而强迫油循环风冷方式所需冷却器仅在(5+1)至(6+1)组之间。采用自然油循环风冷方式在70%负荷以下时可不开启风扇,满负荷时需开启60组风扇,每个功率需0.4KW,共24KW。强迫油循环风冷方式在0~30%、31~50%、51~70%负荷时需对应主变不同负荷分别开启1、2、3组冷却器。在低负荷时最少要开1组,在满负荷时需开启6组冷却器,每组冷却器功率(含潜油泵)需7.5 KW,共45KW。两种冷却方式主变压器满负荷运行时冷却系统功率相差21 KW。

2.2.5主变压器不同冷却方式设备费用比较

经调研,散热器每组费用需1.1万元、风扇每个费用需0.2万元、冷却器每组费用需7.2万元,如按片式散热器72组,风扇60个,冷却器7组进行比较,采用自然油循环风冷的冷却系统设备费为:1.1×72+0.2×60=91.2万元,采用强油循环风冷的冷却系统设备费为:7.2×7=50.4万元。采用自然油循环风冷方式要高约40.8万元/台。

3主变压器不同冷却方式技术经济比较

采用自然油循环风冷方式的优点是没有潜油泵、运行维护工作量较小,与智能化变电站少维护的理念较一致。冷却系统用电负荷低。不足之处是大容量变压器需要安装散热器组多、散热效率较低、热点温升水平比强迫油循环风冷方式高、运行业绩少、占地面积大、冷却系统设备费用高,散热器组多,渗漏点多,如果出现漏油更换困难。

采用强迫油循环风冷方式的优点是技术成熟、运行业绩多(占大容量变压器的97.41%,占特高压变压器的100%),占地面积小、散热效率较高、冷却系统设备费用低。低压及中压绕组热点温升水平分别比自然油循环风冷方式低7k及3k。可以延长变压器的寿命以及提高运行可靠性。该冷却方式有备用冷却器,某一台冷却器故障时可以启动备用冷却器,潜油泵在冷却器下部更换方便。不足之处是有潜油泵、冷却系统用电负荷高。潜油泵需定期检修,检修周期与变压器相同。潜油泵轴承约5年需更换一次,运行维护工作比自然油循环风冷方式稍多一些。如果用户担心潜油泵的质量,可以通过订购高质量潜油泵(如进口泵)来减少潜油泵故障的可能性。

另外,对智能化变压器生产企业选择方面,各制造厂均有大容量变压器采用强迫油循环风冷方式制造业绩,只有个别厂家有大容量变压器采用自然油循环风冷方式制造业绩,采用强迫油循环风冷方式设备招标时较易评选出理想的智能化变压器生产企业。

两种冷却方式技术经济比较表详见表3:

表3 700MVA及以上大容量变压器冷却方式比较表

续表3

虽然变压器强迫油循环风冷方式采用了潜油泵,会增加一些维护工作量,但是该方式技术成熟、运行业绩多,占大容量变压器的97.41%,占特高压变压器的100%,且占地面积小、散热效率高、冷却系统设备费用低;更重要的,采用该方式后变压器绕组热点温升水平比自然油循环风冷方式降低许多,大大降低了绝缘老化的速度,可以延长变压器的寿命以及提高运行可靠性。该冷却方式设有备用冷却器,当某一台冷却器故障时还可以启动备用冷却器、不会影响变压器的正常运行,而且潜油泵独立布置于冷却器下部、即使损坏更换也十分方便。目前,无论是国内还是国外的潜油泵质量均较为可靠,如果用户担心潜油泵的可靠性,也可以通过订购高质量的潜油泵(如进口泵)来减少潜油泵故障的可能性。各制造厂均有大容量变压器采用强迫油循环风冷方式制造业绩,设备招标时较易评选出理想的智能化变压器生产企业。

自然油循环风冷方式虽然维护工作量略少,且各变压器制造公司均表示可以生产该冷却方式的变压器,但是存在采用该方式运行的大容量主变压器运行业绩极少、运行经验少;变压器散热效率较低、绕组热点温升水平比强迫油循环风冷方式稍高、散热器组多、漏油概率高,占地面积大等缺点。只有个别厂家有大容量变压器采用自然油循环风冷方式制造业绩,设备招标时不易选择理想的智能化变压器生产企业。

综上所述,主变压器冷却方式推荐采用强迫油循环风冷方式。为避免强油导向风冷(ODAF)冷却方式可能出现的油流带电现象,推荐采用强油风冷(OFAF)冷却方式。

变压器容量的选择与计算

变压器容量的选择与计 算 Revised by Petrel at 2021

变压器容量的选择与计算电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 一、台数选择 变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。当符合下列条件之一时,宜装设两台及以上变压器: 1.有大量一级或二级负荷在变压器出现故障或检修时,多台变压器可保证一、二级负荷的供电可靠性。当仅有少量二级负荷时,也可装设一台变压器,但变电所低压侧必须有足够容量的联络电源作为备用。 2.季节性负荷变化较大根据实际负荷的大小,相应投入变压器的台数,可做到经济运行、节约电能。 3.集中负荷容量较大虽为三级负荷,但一台变压器供电容量不够,这时也应装设两台及以上变压器。 当备用电源容量受到限制时,宜将重要负荷集中并且与非重要负荷分别由不同的变压器供电,以方便备用电源的切换。 二、容量选择

变压器容量的选择,要根据它所带设备的计算负荷,还有所带负荷的种类和特点来确定。首先要准确求计算负荷,计算负荷是供电设备计算的基本依据。确定计算负荷目前最常用的一种方法是需要系数法,按需要系数法确定三相用电设备组计算负荷的基本公式为: 有功计算负荷(kw )c m d e P P K P == 无功计算负荷(kvar )tan c c Q P ?= 视在计算负荷(kvA )cos c c P S ?= 计算电流(A )c I = 式中N U ——用电设备所在电网的额定电压(kv ); d K ——需要系数; Pe ——设备额定功率; K Σq ——无功功率同期系数; K Σp ——有功功率同期系数; tan φ设备功率因数角的正切值。 例如:某380V 线路上,接有水泵电动机5台,共200kW ,另有通风机5台共55kW ,确定线路上总的计算负荷的步骤为 (1)水泵电动机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=, tan 0.75?=,因此 (2)通风机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=, tan 0.75?=,因此

变压器容量计算

变压器: 变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。 变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器试验变压器、转角变压器、大电流变压器、励磁变压器等。 容量: 常指一个物体的容积的大小,容量的公制单位是升。容量也指物体或者空间所能够容纳的单位物体的数量。 变压器额定容量: 变压器额定容量是指主分接下视在功率的惯用值。在变压器铭牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定满载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定总容量容量等于=3根号额定线电压×线电流,额定容量一般以kVA 或MVA表示。额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压、额定电流与相应系数的乘积。 概念: 额定容量是指主分接下视在功率的惯用值。在变压器铭牌上规定

的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于=根号3×额定相电压×相电流,额定容量一般以kVA或MVA表示。 计算: 额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。

关于变压器的冷却方式有几种

变压器的冷却方式有几种?各种冷却方式的特点是什么? 电力变压器常用的冷却方式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。 油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。加装风冷后可使变压器的容量增加30%~35%。强迫油循环冷却方式,又分强油风冷和强油水冷两种。它是把变压器中的油,利用油泵打入油冷却器后再复回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。这种方式若把油的循环速度比自然对流时提高3倍,则变压器可增加容量30%。 什么叫变压器? 变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能。 变压器的主要部件有: (1)器身:包括铁芯,线圈、绝缘部件及引线。 (2)调压装置:即分接开关,分为无载调压和有载调压装置。 (3)油箱及冷却装置。 (4)保护装置:包括储油柜、油枕、防爆管、吸湿器、气体继电器、净油器和测温装置。 (5)绝缘套管。 变压器铭牌上的额定值表示什么含义? 变压器的额定值是制造厂对变压器正常使用所作的规定,变压器在规定的额定值状态下运行,可以保证长期可靠的工作,并且有良好的性能。其额定值包括以下几方面:

(1)额定容量:是变压器在额定状态下的输出能力的保证值,单位用伏安(VA)、千伏安(kVA)或兆伏安(MVA)表示,由于变压器有很高运行效率,通常原、副绕组的额定容量设计值相等。 (2)额定电压:是指变压器空载时端电压的保证值,单位用伏(V)、千伏(kV)表示。如不作特殊说明,额定电压系指线电压。 (3)额定电流:是指额定容量和额定电压计算出来的线电流,单位用安(A)表示。 (4)空载电流:变压器空载运行时激磁电流占额定电流的百分数。 (5)短路损耗:一侧绕组短路,另一侧绕组施以电压使两侧绕组都达到额定电流时的有功损耗,单位以瓦(W)或千瓦(kW)表示。 (6)空载损耗:是指变压器在空载运行时的有功功率损失,单位以瓦(W)或千瓦(kW)表示。 (7)短路电压:也称阻抗电压,系指一侧绕组短路,另一侧绕组达到额定电流时所施加的电压与额定电压的百分比。 (8)连接组别:表示原、副绕组的连接方式及线电压之间的相位差,以时钟表示。 常用变压器有哪些种类?各有什么特点? 一般常用变压器的分类可归纳如下: (1)按相数分: 1)单相变压器:用于单相负荷和三相变压器组。 2)三相变压器:用于三相系统的升、降电压。 (2)按冷却方式分: 1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。

变压器容量的选择与计算

变压器容量的选择与计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 一、台数选择 变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。当符合下列条件之一时,宜装设两台及以上变压器: 1.有大量一级或二级负荷在变压器出现故障或检修时,多台变压器可保证一、二级负荷的供电可靠性。当仅有少量二级负荷时,也可装设一台变压器,但变电所低压侧必须有足够容量的联络电源作为备用。 2.季节性负荷变化较大根据实际负荷的大小,相应投入变压器的台数,可做到经济运行、节约电能。 3.集中负荷容量较大虽为三级负荷,但一台变压器供电容量不够,这时也应装设两台及以上变压器。 当备用电源容量受到限制时,宜将重要负荷集中并且与非重要负荷分别由不同的变压器供电,以方便备用电源的切换。 二、容量选择 变压器容量的选择,要根据它所带设备的计算负荷,还有所带负荷的种类和特点来确定。首先要准确求计算负荷,计算负荷是供电设备计算的基本依据。确定计算负荷目前最常用的一种方法是需要系数法,按需要系数法确定三相用电设备组计算负荷的基本公式为:

有功计算负荷(kw ) c m d e P P K P == 无功计算负荷(kvar ) tan c c Q P ?= 视在计算负荷(kvA ) cos c c P S ?= 计算电流(A ) c I = 式中 N U ——用电设备所在电网的额定电压(kv ); d K ——需要系数; Pe ——设备额定功率; K Σq ——无功功率同期系数; K Σp ——有功功率同期系数; tan φ设备功率因数角的正切值。 例如:某380V 线路上,接有水泵电动机5台,共200kW ,另有通风机5台共55kW ,确定线路上总的计算负荷的步骤为 (1)水泵电动机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 (2)通风机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 考虑各组用电设备的同时系数,取有功负荷的为0.95P K =∑,无功负荷的为 0.97q K =∑,总计算负荷为

如何选择变压器:容量计算方法

电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 如何选择变压器? 选用配电变压器时,如果把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。 如果变压器容量选择过小,将会使变压器长期处与过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。 配电变压器的负载率在0.5~0.6之间效率最高,此时变压器的容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。 对于仅向排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的1.2倍选用变压器的容量。 一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击,直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30%左右。 应当指出的是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。 对于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实际可能出现的最大负荷的1.25倍选用变压器的容量。 根据农村电网用户分散、负荷密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。 对于变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。 针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。 变压器的容量是个功率单位(视在功率),用AV(伏安)或KVA(千伏安)表示。 它是交流电压和交流电流有效值的乘积,计算公式S=UI。变压器额定容量的大小会在其的铭牌上标明。

变压器的冷却方式有几种

变压器的冷却式有几种?各种冷却式的特点是什么? 电力变压器常用的冷却式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。 油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。加装风冷后可使变压器的容量增加30%~35%。强迫油循环冷却式,又分强油风冷和强油水冷两种。它是把变压器中的油,利用油泵打入油冷却器后再复回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。这种式若把油的循环速度比自然对流时提高3倍,则变压器可增加容量30%。 什么叫变压器? 变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能。 变压器的主要部件有: (1)器身:包括铁芯,线圈、绝缘部件及引线。 (2)调压装置:即分接开关,分为无载调压和有载调压装置。 (3)油箱及冷却装置。 (4)保护装置:包括储油柜、油枕、防爆管、吸湿器、气体继电器、净油器和测温装置。 (5)绝缘套管。 变压器铭牌上的额定值表示什么含义? 变压器的额定值是制造厂对变压器正常使用所作的规定,变压器在规定的额定值状态下运行,可以保证长期可靠的工作,并且有良好的性能。其额定值包括以下几面:

(1)额定容量:是变压器在额定状态下的输出能力的保证值,单位用伏安(VA)、千伏安(kVA)或兆伏安(MVA)表示,由于变压器有很高运行效率,通常原、副绕组的额定容量设计值相等。 (2)额定电压:是指变压器空载时端电压的保证值,单位用伏(V)、千伏(kV)表示。如不作特殊说明,额定电压系指线电压。 (3)额定电流:是指额定容量和额定电压计算出来的线电流,单位用安(A)表示。 (4)空载电流:变压器空载运行时激磁电流占额定电流的百分数。 (5)短路损耗:一侧绕组短路,另一侧绕组施以电压使两侧绕组都达到额定电流时的有功损耗,单位以瓦(W)或千瓦(kW)表示。 (6)空载损耗:是指变压器在空载运行时的有功功率损失,单位以瓦(W)或千瓦(kW)表示。 (7)短路电压:也称阻抗电压,系指一侧绕组短路,另一侧绕组达到额定电流时所施加的电压与额定电压的百分比。 (8)连接组别:表示原、副绕组的连接式及线电压之间的相位差,以时钟表示。 常用变压器有哪些种类?各有什么特点? 一般常用变压器的分类可归纳如下: (1)按相数分: 1)单相变压器:用于单相负荷和三相变压器组。 2)三相变压器:用于三相系统的升、降电压。 (2)按冷却式分: 1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。

主变压器容量的选择

主变压器容量的选择 2.1 主变压器的选择 主变压器是主接线的中心环节,其台数、容量和型式的初步选择是构成各种 主接线的基础,并对发电厂和变电所的技术经济性有很大影响。 2.1.1 主变容台数的选择 (1)对大城市郊区的一次变,在中、低压侧构成环网情况下,装两台主变为宜。 (2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。 (3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。 变压器的容量、台数直接影响到变电站的电气主接线形式和配电装置的结构。它的确定除了依据传递容量基本原始资料外,还要根据电力系统5—10 年的远景 发展计划,输送功率的大小、馈线回路数、电压等级以及接入电力系统中的紧密 程度等因素,进行综合分析与合理的选择。 (4)在有一级,二级负荷的变电站中,应该装设两台主变电压器。当技术经济比较合理时主变压器的台数也可以多于两台。如果变电站可由中、低压侧电力网中取得足够能量的备用电源时,可以装设一台主变压器。 (5)装设两台及其以上主变压器的变电站中,当断开一台时,其余主变压器的容量应保证用户一级负荷和部分二级负荷(一般不应小于主变压器容量的60%)。具有三种电压等级的变电站中,如果通过主变压器各侧绕组的功率均达到主变压器容量的15%时,主变电压器宜采用三绕组变压器。 2.1.2 主变容量选择 根据“ 35?110KV变电所设计规范”主要变压器的台数和容量,应根据地区 供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。在有一、二级负荷变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器的15%以上,主要变 压器宜采用三线圈变压器。 由于我国电力不足、缺电严重、电网电压波动较大。变压器的有载调压是改善电压质量、减少电压波动的有效手段。对电力系统,一般要求110KV及以下变电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。 2.1.3 主变容量选择原则 1)主变容量选择一般应按变电所建成后5-10年的规划负荷选择,并适当

住宅小区负荷与变压器容量的选择含实例

住宅小区负荷与变压器容量的选择含实例 标准化管理部编码-[99968T-6889628-J68568-1689N]

住宅小区负荷与变压器容量的选择(含实例) 2013-05-2714:31???系统分类:工程实例???专业分类:建筑电气???浏览数:1549 目前住宅小区基本上分两种类型:一种是经济适用型,一种是小康型(豪华型),尽管这两种住宅小区用电水平不同,但选择配变容量的方法大致相同。 1 负荷计算 1.1 单位指标法 应用单位指标法确定计算负荷Pjs(适用于照明及家用电负荷),即: Pjs=∑Pei×Ni÷1000(kW) 式中Pei——单位用电指标,如:W/户(不同户型的用电指标不同),由于地区用电水平的差异,各地区应根据当地的实际情况取用 Ni——单位数量,如户数(对应不同面积户型的户数)邯郸市居民住宅负荷计算参考值见表1。 表1 居民住宅负荷表 户建筑面积(m2)??<80?80~100?>100 计算负荷(W)?3000~4000?4000~6000?7000~8000 计算电流(A)?14~18?18~27?32~36 内线截面(mm2)?4?6?10 电能表规格(A)?5(20)?5(20)?10(40) 应用以上方法计算负荷应乘以同时系数,即实际最大负荷(PM)。 PM=Pjs×η(式中η——同时系数,不同的住户η值不同:一般情况下,25~100户的小区取0.4;101~200户的小区取0.33;200户以上的小区取0.26。) 1.2 单位面积法 按单位面积法计算负荷,在一定的面积区有一个标准,面积越大的区其负荷密度越小,其表达式如下: PM=Ped×S×η 式中PM——实际最大负荷,kW Ped——单位面积计算负荷,W/m2 S——小区总面积,m2 η——同时系数,取值范围同上 根据以上两种方法求出照明及家用负荷后,结合小区的实际情况,看是否还有其它负荷,如有其它负荷则应考虑进去。一般的成规模的小区会有路灯、公用照明、物业楼(物业办公及商场联用)用电负荷;如果是小高层(9层以 上)(小康型)还应考虑电梯负荷;二次加压泵房负荷(供生活及消防用水),以上诸负荷在计算住宅小区负荷中占比重较大的是照明及家用电负荷,而照明及家用电负荷出现最大值的时段为每天19:00~22:00,因而在计算小区的最大负荷时就以19:00~22:00时段的照明及家用电负荷为基础,然后再叠加其它负荷。其它负荷计算方法为: (1) 电梯: PD=∑PDi×ηD。 式中PD——电梯实际最大总负荷,kW PDi——单部电梯负荷,kW

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

怎么计算变压器的容量

怎么计算变压器的容量, 变压器是用来变换交流电压、电流而传输交流电能的一种静止的电器设备,电力变压器是发电厂和变电所的主要设备之一。变压器的作用是多方面的不仅能升高电压把电能送到用电地区,还能把电压降低为各级使用电压,以满足用电的需要。我们都知道变压器在不同的环境下,它的用途也有所不同。今天就来给大家来讲讲关于变压器容量的计算方式,看看是怎样计算的。 1.常规方法:根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷 供电的单台变压器,负荷率一般取85%左右。即:β=S/Se 式中:S———计算负荷容量(kV A);Se———变压器容量(kV A);β———负荷率(通常取80%~90%)。 2.计算负载的每相最大功率:将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。)例如:C相负载总功率 = (电脑300W X 10台)+(空调2KW X 4台)= 11KW 3..计算三相总功率:11KW X 3相 = 33KW(变压器三相总功率) 三相总功率 / 0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW / 0.8 = 41.25KW(变压器总功率) 41.25KW / 0.85 = 48.529KW(需要购买的变压器功率) ,那么在购买时选择50KV A的变压器就可以了。 注意问题:首先变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率;然后这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 并且变压器额定运行时,变压器的输出视在功率等于额定容量;变压器额定运行时,变压器的输入视在功率大于额定容量。 在变压器铭牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于=√3×额定空载相电压×额定相电流,额定容量一般以kV A或MV A表示。额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。 变压器容量的选择对综合投资效益有很大影响。变压器容量选得过大,出现"大马拉小车"现象,不仅一次性投资大,空载损耗也大。变压器容量选得过小,变压器负载损耗增大,经济上不合理,技术上也不可行。 变压器的最佳负载率(即效率最高时的负载率),不是在额定状态下,而是在40%~70%之间,负载率过高,损耗明显增大;另一方面,由于变压器容量裕度小,负荷稍有增加,便需更换大容量箱变,频繁增容势必会增加投资,影响供电。 选择变压器容量,要以现有的负荷为依据,适当考虑负荷发展,选择变压器容量可以按照5年电力发展计划确定。

变压器常用的冷却方式有以下几种修订稿

变压器常用的冷却方式 有以下几种 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

变压器常用的冷却方式有以下几种: 1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF)。按变压器选用导则的要求,冷却方式的选择推荐如下: 1、油浸自冷 31500kVA及以下、35kV及以下的产品; 50000kVA及以下、产品。 2 、油浸风冷 12500kVA~63000kVA、35kV~110kV产品; 75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。 3、强迫油循环风冷50000~90000kVA、220kV产品。 4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、 60MVA及以上产品采用。 5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品; 120000kVA及以上、220kV产品; 330kV级及500kV级产品。选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。即使空载也不能长时间运行。因此,应选择两个独立电源供使用。选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。电源应选择两个独立电源。 冷却方式的标志 对于,冷却方式的标志按GB6450的规定。 对于,用四个字母顺序代号标志其冷却方式。 第一个字母表示与绕组接触的内部冷却介质: O矿物油或燃点不大于300。C的合成绝缘液体; K燃点大于300。C的绝缘液体; 1燃点不可测出的绝缘液体。 注:燃点用“克利夫兰开口杯法”试验。 第二个字母表示内部冷却介质的循环方式: N流经冷却设备和绕组内部的油流是自然的热对流循环; F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环; D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。 第三个字母表示外部冷却介质: A空气; W水。 第四个字母表示外部冷却介质的循环方式: N自然对流; F强迫循环(风扇、泵等)。 注:1在强迫导向油循环的变压器中(第二字母代号为D),流经主要绕组的油流量取决于泵,原则上不由负载决定;从冷却设备流出的油流,也可能有一小部分有控制地导向流过铁心和主要绕组以外的其他部分;调压绕组和(或)其他容量较小的绕组也可为非导向油循环。 2在强迫非导向冷却的变压器中(第二个字母的代号为F),通过所有绕组的油流量是随负载变化的,与流经冷却设备的用泵抽出的油流没有直接关系。 一台变压器规定有几种不同的冷却方式时,在说明书中和铭牌上,应给出不同冷却方式下的容量值(见第条m项),以便在某一冷却方式及所规定的容量下运行时,能保证温升不超过规定的限值。在最大冷却能力下的相应容量便是变压器的(或多绕组变压器中某一绕组的)额定容量。不同的冷却方式一般是按冷却能力增大的次序进行排列。 例1:ONAN/ONAF变压器装有一组风扇,在大负载时,风扇可投入运行,在这两种冷却方式下,油流均按热对流方式循环。

变压器的选择与容量计算

变压器的选择与容量计算

电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。选用配电变压器时,如果把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。配电变压器的负载率在0.5~0.6之间效率最高,此时变压器的容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。对于仅向排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的1.2倍选用变压器的容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击,直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30%左右。应当指出的是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。对于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实际可能出现的最大负荷的1.25倍选用变压器的容量。根据农村电网用户分散、负荷密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。对于变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配

论述高压变压器冷却方式OFAF和ODAF的比较

摘要:从冷却系统的结构、工作方式以及稳态、暂态下工作要求方面,对当前应用最为广泛的两种高压变压器冷却方式强迫油循环风冷(OFAF)、迫油循环导向风冷(ODAF)进行详尽的分析比较。 关键词:冷却方式强迫油循环风冷(OFAF) 强迫油循环导向风冷(ODAF) 众所周知:电力变压器常用的冷却方式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。而高压变压器冷却方式一般为强迫油循环风冷(OFAF)和强迫油循环导向风冷(ODAF)两种冷却方式。 强迫油循环冷却方式(OFAF):如果单纯想法降低油的温度而不增加油流的速度,那是达不到所希望的冷却效果的。因油温降到一定程度时,其粘度增加,粘度大会使散热效果变差。而人为地加快油流速度,就会使散热加快。强迫油循环冷却方式就是在油路中加入了使油的流速加快的动力—油泵。强迫油循环风冷的变压器则是将风冷却器装于变压器油箱壁上或独立的支架上。经冷却器内的油采用风扇冷却。为了防止油泵的漏油和漏气,目前广泛采用潜油泵和潜油电动机。潜油泵安装在冷却器的下面,泵的吸入端直接装在第一个油回路(冷却器为多回路的)上,吐出端通过装有流动继电器的联管接至第二回路。流动继电器的作用是,当潜油泵发生故障,油流停止时,发出信号和投入备用冷却器。 强迫油循环导向冷却方式(ODAF):这种冷却方式基本上还属于上述强迫油循环类型的,其主要区别在于变压器器身部分的油路不同。普通的油冷却变压器油箱内油路较乱,油沿着线圈和铁芯、线圈和线圈间的纵向油道逐渐上升,而线圈段间(或叫饼间)油的流速不大,局部地方还可能没有冷却到,线圈的某些线段和线匝局部温度很高。采用导向冷却后,可以改善这些状况。变压器中线圈的发热比铁芯发热占的比例大,改善线圈的散热情况还是很有必要的。导向冷却的变压器,在结构上采用了一定的措施(如加挡油纸板、纸筒)后使油按一定的路径流动。采用了导向冷却后,泵口的冷油在一定压力下被送入线圈间、线饼间的油道和铁芯的油道中,能冷却线圈的各个部分,这样可以提高冷却效能。 简单扼要的说:OFAF和ODAF是冷却方式的符号。AF是指风冷,OF和OD都指强迫油冷却,所不同的是,OD是把油直接导入线圈。 在线圈内部,油的流动路径,可以有多种方式,主要的两种如下所示: 特别要指出的是,这不是ODAF和OFAF的差别。也就是说,OFAF也可有导油隔板。 从原理上说,ODAF和OFAF的差别是:ODAF线圈中油的流动靠泵的压力,与负载基本无关;而OFAF线圈中油的流动是线圈本身发热引起的,与负载直接相关。 稳态下的比较 ODAF的线圈冷却作用强烈,上下温差小,理论上说,热点温度与线圈平均温度之差也小,因此用线圈平均温度表示的允许温升可以增加。IEC标准规定,ODAF的线圈温升限值70K,OFAF是65K。我国国家标准没有采用这个做法,而把两种方式的温升限值都定为65K。原因是用户担心制造厂没有足够把握保证在ODAF下,线圈各部位都得到均匀冷却,万一出现冷却的“死角”,对绝缘会很不利。因此,为给用户留有更大的余度,不许制造厂用ODAF 来提高温升限值。用户的这种担心是有一定道理的。变压器线圈内部的油流,并不象图上画的那么简单,流速越高越不易控制。现有的计算软件实际上是建立在简化的、理想化的模型上,有较大的不确定性。 变压器的温升限值实际上是由热点温度决定的。不幸的是,热点温度是不能直接测量到的。因此,变压器热性能的优劣,不可能完全靠温升试验结果来判断,更重要的是看设计使用的计算软件。一个好的软件,能对变压器的漏磁场和温度场进行详尽的计算,能准确得出热点的位置及温升值。软件计算结果是否可靠,必须经过模型或实体的测量来验证。 因此,不论OFAF或ODAF,只要能有足够的经验证明热点的温度是控制在许可值内,变压器的热寿命是不会有问题的。

变压器容量选择的计算

变压器容量选择的计算 方法一 变压器容量选择的计算,按照常规的计算方法;是小区住宅用户的设计总容量,就是一户一户的容量的总和,又因为住宅用电是单相,我们需要将这个数转换成三相四线用电,那么,相电流跟线电流的关系就是根号3的问题,也就是就这个单相功率的总和除于1.732,变换为三相四线的功率,比如现在有一个小区,200 户住宅,每户6-8KW用电量,一户一户的总和是1400÷1.732 ≈ 808KW,这个数是小区所有电器同时使用时的最大功率,那么,实际使用时,这种情况是不会发生的,那么,就产生了一个叫同时用电率,一般选择70-80%,这是根据小区的用户结构特征,决定的。但是,根据变压器的经济运行值为75%,那么,我们可以将这二个值抵消,就按照这个功率求变压器的容量,那么,这个变压器的容量就是合计的总功率1400÷1.732≈ 808KW,根据居民用电的情况,现在0.85-0.9,视在功率Sp = P÷0.85 = 808/0.85 ≈951KVA 。还可以怎么计算,先把总1400功率分成三条线的使用功率,就是单相功率,1400÷3=467KW,然后,把这个单相用电转换成三相用电,467×1.732 ≈ 808KW, 再除于功率因数0.85也≈ 951KVA。 ??? 按照这个数据套变压器的标准容量,建议选择二台变压器,总容量为945KVA,一台630KVA的,另一台315KVA的,在实际施工过程中还可以分批投入使用,如果考虑到今后的发展,也可以选择二台500KVA的变压器,或者直接选择一台1000KVA。 ??? 10KV/0.4KV的电压,1KVA 变压器容量,额定输入输出电流如何计算;我们知道变压器的功率KVA 是表示视在功率,计算三相交流电流时无需再计算功率因数,因此,Sp=√3×U×I 那么,I低=Sp/√3/0.4=1/0.6928≈1.4434? 也就是说1KVA变压器容量的额定输出电流为1.4434A,根据变压器的有效率,和能耗比的不同而选择大概范围。高压10KV输入到变压器的满载时的额定电流大约为;I 高=Sp/√3/10=1/17.32≈0.057737? 也就是说1KVA容量的变压器高压额定输入电流为0.05774A。 方法二 1 城镇住宅小区用电负荷的特点: 与大、中城市的居民小区相比,目前城镇住宅小区没有高楼大厦,无需设置电梯,也没有集中空调。一般来讲,房地产开发商只考虑盖房子,不考虑开发公共事业,如学校、商场等。所以,城镇住宅小区仅有住宅用电,负荷预测较为简单。 2 住宅用电的预测 (1)需用系数法: 小区内的住宅面积可分为三类:60m2以下的为小型,60~100m2为中型,100m2以上为大型。随着人们生活水平的提高,家用电器逐渐增多,特别是空调、热水器、电磁灶或微波炉等大功率家用电器进入普通家庭,家庭用电由原来纯照明向多功能方向发展。一般小型住宅的设备容量为:照明用电容量300W;娱乐用电容量(包括电视机、VCD或DVD、音响、电脑等)900W;卫生间用电容量(包括洗衣机、热水器、排风扇等)3500W;厨房用电容量(包括电饭煲、电热开水器、电冰箱、排风扇等)3500W;空调用电容量为1500W ,合计用电容量8400W。中型住宅的居民,除照明用电容量外,还要增加空调、电视机,用电容量将增加1950W,总容量为10350W,约为小型住宅的1.25倍。大型住宅的居民因为经济条件宽裕,一般为双卫生间,用电容量将大幅增加,约为小型住宅的2.5倍。据统计,居民用电的最大负荷出现在夏季19~22时间段,这时用电负荷约3800W,是用电设备容量的45%,所以取需用系数为0.45。小型住宅的计算负荷取3800W,中型住宅取4750W,大型住宅取9500W。 (2)单位面积法: 据有关资料介绍,新建住宅内居民用电按建筑面积40W/m2负荷密度选择,大城市为60~80W/m2。本文取50W/m2,即小型住宅的计算负荷为3000W;中型住宅5000W;大型住宅10000W。 3 变压器的选择 (1)同时系数:住宅小区内居民由于作息时间不同,同时系数小些。取同时系数一般为:50户以下0.55,

变压器常用的冷却方式有以下几种

变压器常用的冷却方式有以下几种:1、油浸自冷(ONAN);2、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。按变压器选用导则的要求,冷却方式的选择推荐如下:1、油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。2 、油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。3、强迫油循环风冷50000~90000kVA、220kV产品。4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。即使空载也不能长时间运行。因此,应选择两个独立电源供冷却器使用。选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。电源应选择两个独立电源。冷却方式的标志 对于干式变压器,冷却方式的标志按GB6450的规定。 对于油浸式变压器,用四个字母顺序代号标志其冷却方式。 第一个字母表示与绕组接触的内部冷却介质: O矿物油或燃点不大于300。C的合成绝缘液体; K燃点大于300。C的绝缘液体; 1燃点不可测出的绝缘液体。 注:燃点用“克利夫兰开口杯法”试验。 第二个字母表示内部冷却介质的循环方式: N流经冷却设备和绕组内部的油流是自然的热对流循环; F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环; D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。 第三个字母表示外部冷却介质: A空气; W水。 第四个字母表示外部冷却介质的循环方式: N自然对流; F强迫循环(风扇、泵等)。 注:1在强迫导向油循环的变压器中(第二字母代号为D),流经主要绕组的油流量取决于泵,原则上不由负载决定;从冷却设备流出的油流,也可能有一小部分有控制地导向流过铁心和主要绕组以外的其他部分;调压绕组和(或)其他容量较小的绕组也可为非导向油循环。 2在强迫非导向冷却的变压器中(第二个字母的代号为F),通过所有绕组的油流量是随负载变化的,与流经冷却设备的用泵抽出的油流没有直接关系。 一台变压器规定有几种不同的冷却方式时,在说明书中和铭牌上,应给出不同冷却方式下的容量值(见GB1094.1第7.1条m项),以便在某一冷却方式及所规定的容量下运行时,能保证温升不超过规定的限值。在最大冷却能力下的相应容量便是变压器的(或多绕组变压器中某一绕组的)额定容量。不同的冷却方式一般是按冷却能力增大的次序进行排列。 例1:ONAN/ONAF变压器装有一组风扇,在大负载时,风扇可投入运行,在这两种冷却方式下,油流均按热对流方式循环。 例2:ONAN/OFAF变压器带有油泵和风扇的冷却设备。也规定了在自然冷却方式(例如,辅助电源出现故障的情况下),降低负载后的冷却能力。

变压器容量选择算步骤

变压器容量选择计算步骤 当我们提到变压器容量的时候,很多人不知道变压器容量计算公式是什么。那么变压器容量怎么计算呢?下面就跟电工学习网一起来看看吧。 一、变压器容量计算公式 1、计算负载的每相最大功率 将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。) 例如:C相负载总功率=(电脑300WX10台)+(空调2KWX4台)=11KW

2、计算三相总功率 11KWX3相=33KW(变压器三相总功率) 三相总功率/0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW/0.8=41.25KW(变压器总功率) 变压器总功率/0.85,根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷供电的单台变压器,负荷率一般取85%左右。 41.25KW/0.85=48.529KW(需要购买的变压器功率),那么在购买时选择50KVA的变压器就可以了。

二、关于变压器容量计算的一些问题 1、变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率; 2、这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 3、变压器额定运行时,变压器的输出视在功率等于额定容量; 4、变压器额定运行时,变压器的输入视在功率大于额定容量;

5、由于变压器的效率很高,一般认为变压器额定运行时,变压器的输入视在功率等于额定容量,由此进行的运算及结果也是基本准确的; 6、所以在使用变压器时,你只要观察变压器输出的电流、电压、功率因数及其视在功率等于或小于额定容量就是安全的(使用条件满足时); 7、有人认为变压器有损耗,必须在额定容量90%以下运行是错误的! 8、变压器在设计选用容量时,根据计算负荷要乘以安全系数是对的。

相关文档