文档视界 最新最全的文档下载
当前位置:文档视界 › 高二数学基本不等式

高二数学基本不等式

高二数学基本不等式

高二数学基本不等式

基本不等式

第二课时

(1)教学目标

(a)知识与技能:能够运用基本不等式解决生活中的应用问题

(b)过程与方法:本节课是基本不等式应用举例的延伸。整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。3 道例题的安排从易到难、从简单到复杂,适应学生的认知水平。教师要根据课堂情况及时提出针对性问题,同时通过学生的解题过程进一步发现学生的思维漏洞,纠正数学表达中的错误

(c)情感与价值:进一步培养学生学习数学、应用数学的意识以及思维的创新性和深刻性

(2)教学重点、教学难点

教学重点:正确运用基本不等式

教学难点:注意运用不等式求最大(小)值的条件

(3)学法与教学用具

列出函数关系式是解应用题的关键,也是本节要体现的技能之一。对例题的处理可让学生思考,然后师生共同对解题思路进行概括总结,使学生更深刻地领会和掌握解应用题的方法和步骤。

直尺和投影仪

(4)教学设想

1、设置情境

(完整版)高二数学不等式练习题及答案(经典)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B )a 1 +a ≥2 (a ≠0) (C ) a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高二数学基本不等式训练题

高二数学基本不等式训练题 数学基本不等式训练题1.若xy0,则对xy+yx说法正确的是() A.有最大值-2 B.有最小值2 C.无最大值和最小值 D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x2,则当x=____时,x+4x有最小值____. 答案:2 4 4.已知f(x)=12x+4x. (1)当x0时,求f(x)的最小值; (2)当x0 时,求f(x)的最大值. 解:(1)∵x0,12x,4x0. 12x+4x212x4x=83. 当且仅当12x=4x,即x=3时取最小值83, 当x0时,f(x)的最小值为83. (2)∵x0,-x0. 则-f(x)=12-x+(-4x)212-x-4x=83,

当且仅当12-x=-4x时,即x=-3时取等号. 当x0时,f(x)的最大值为-83. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+12x B.x2-1+1x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+6x2+1的最小值是() A.32-3 B.-3 C.62 D.62-3 解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3. 3.已知m、nR,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n22mn=200,当且仅当m=n时等号成立. 4.给出下面四个推导过程: ①∵a,b(0,+),ba+ab2ba ②∵x,y(0,+),lgx+lgy2lgx ③∵aR,a0,4a+a 24a ④∵x,yR,,xy0,xy+yx=-[(-xy)+(-yx)]-2-xy-yx=-2. 其中正确的推导过程为() A.①② B.②③

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

人教版数学高二B版必修53.2均值不等式

课后训练 1.若-4<x <1,则()22222 x x f x x -+=-( ). A .有最小值1 B .有最大值1 C .有最小值-1 D .有最大值-1 2.已知a >b >0,全集I =R ,2a b M x b x ? +?<. 证明:证法一:∵abc =1,且a ,b ,c 为互不相等的正数, 求下列各式的最值: (1)已知x >y >0,且xy =1,求22 x y x y +-的最小值及此时x ,y 的值; (2)设a ,b ∈R ,且a +b =5,求2a +2b 的最小值. 参考答案 1. 答案:D

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

人教版数学高二不等式知识点大整合

第三章 不等式 一、不等式的基本性质为: ① ;② ; ③ ;④ ; ⑤ ;⑥ ; ⑦ ;⑧ ; 注意:特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。 二、均值不等式:两个数的算术平均数不小于它们的几何平均数。 若0,>b a ,则ab b a ≥+2 (当且仅当b a =时取等号) 基本变形:①≥+b a ;≥+2)2 (b a ;②2_____________222b a b a ab +≤≤≤+ ③若R b a ∈,,则ab b a 222≥+,222)2(2b a b a +≥+;④_________)2 (_______2≤+≤b a 基本应用:①放缩,变形; ②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。 当p ab =(常数),当且仅当 时, ; 当S b a =+(常数),当且仅当 时, ; 常用的方法为:拆、凑、平方; 如:①函数)21(4294>-- =x x x y 的最小值 。 ②已知5 10<c b a ,则 33 abc c b a ≥++(当且仅当c b a ==时取等号) 基本变形:≥++c b a ;≥++3)3(c b a ; ②若0,,,21>n a a a ,则n n n a a a n a a a 2121≥+++(当且n a a a === 21时取

等号) 三、绝对值不等式: ≤ ≤ ≤ 注意:?+<+||||||b a b a ; ?+=+||||||b a b a ; ?+<-||||||b a b a ;?+=-||||||b a b a ; ?+<-||||||b a b a ;?+=-||||||b a b a ; ?-<-||||||b a b a ;?-=-||||||b a b a ; 四、常用的基本不等式: (1)设R b a ∈,,则0)(,022≥-≥b a a (当且仅当 时取等号) (2)a a ≥||(当且仅当 时取等号);a a -≥||(当且仅当 时取等号) (3)若0,0>>b a ,则2233ab b a b a +≥+; (4)若R c b a ∈,,,则ca bc ab c b a ++≥++222 (5)若R c b a ∈,,,则)(3)()(32222c b a c b a ca bc ab ++≤++≤++ (6)柯西不等式:设R b b a a ∈2121,,,,则))(()(2 221222122211b b a a b a b a ++≤+ 注意:可从向量的角度理解:设),(),,(2121b b b a a a ==,则222)(b a b a ≤? (7)b a ab b a 110,>;?R m b a ,0,,若1a b ,则m a m b a b ++>; 五、证明不等式常用方法: (1)比较法:①作差比较:B A B A ≤?≤-0;②作商比较: B A B B A ≥?>≥)0(1 作差比较的步骤: (1)作差:对要比较大小的两个数(或式)作差。 (2)变形:对差进行因式分解或配方成几个数(或式)的完全平方和。 (3)判断差的符号:结合变形的结果及题设条件判断差的符号。 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。 (2)综合法:由因导果。

6540高二数学解不等式

解不等式 一. 选择题: 1. 使不等式x x 1> 成立的x 取值范围是( ) A. )1(∞, B. )1(--∞, C. )1()01(∞-,, D. )1()1(∞--∞,, 2. 不等式11 <-x ax 的解集为}21|{>a B. 2 1>b a ,,则不等式b x a ->>1的解是( ) A. 01<<-x b 或a x 10<< B. 01<<-x a 或b x 10<< C. b x 1-<或a x 1> D. b x a 11<<- 4. 设命题甲为“04<<-k ”;命题乙为“函数12--=kx kx y 恒为负值”,那么( ) A. 甲是乙的充分而非必要的条件 B. 甲是乙的必要而非充分条件 C. 甲是乙的充要条件 D. 甲既不是乙的充分条件,又不是乙的必要条件 二. 填空: 1. 0)2)(1)(12)(3(≤++--x x x x 的解集是 。 2. 若不等式022>++bx ax 的解为3 121<<-x ,则=a =b 。 3. ≥-+-+x x x x x 872232的解集是 。 4. 0--a ax x 的解集是 。 5. 5|23|1<-

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学常见的10类基本不等式问题汇总

高中数学常见的 10类基本不等式问题汇总 一、基本不等式的基础形式1.2 2 2a b ab ,其中,a b R ,当且仅当a b 时等号成立。 2.2a b ab ,其中,0,a b ,当且仅当a b 时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b ab a b ,其中,0, a b ,当且仅当a b 时等号成 立。 二、常见问题及其处理办法问题1:基本不等式与最值解题思路: (1)积定和最小:若 ab 是定值,那么当且仅当a b 时,min 2a b ab 。其中,0, a b (2)和定积最大:若 a b 是定值,那么当且仅当a b 时,2 max 2 a b ab ,其中,a b R 。 例题1:若实数,a b 满足2 21a b ,则a b 的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得: 2 2 2 22 22 122 2 4 a b a b a b a b , 当且仅当1a b 时取等号。 变式:函数1 (0,1)x y a a a 的图象恒过定点A , 若点在直线1mx ny 上,则mn 的最大值为______。 解析:由题意可得函数图像恒过定点 1,1A ,将点1,1A 代入直线方程1mx ny 中可得1m n ,明 显,和为定,根据和定积最大法则可得: 2 124 m n mn ,当且仅当 1 2 m n 时取等号。例题2:已知函数2 12 2 x x f x ,则 f x 取最小值时对应的 x 的值为 __________. 解析:很明显,积为定,根据积定和最小法则可得: 2 2 112 22 12 2 x x x x ,当且仅当 2 12 12 x x x 时取等号。 变式:已知2x ,则12 x x 的最小值为。

高中数学不等式经典题型(精)

概念、方法、题型、易误点及应试技巧总结 不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>, 则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或 > 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______ (答:12,2? ?-- ?? ?) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较2 1 log log 21+t t a a 和的大小

2019-2020年高二数学 第六章 不等式: 6.1不等式的性质(一)优秀教案

2019-2020年高二数学第六章不等式: 6.1不等式的性质(一) 优秀教案 教学目的: 1了解不等式的实际应用及不等式的重要地位和作用; 2掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小. 教学重点:比较两实数大小. 教学难点:差值比较法:作差→变形→判断差值的符号 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、引入: 复习初中学过的不等式的性质 ①正数的相反数是负数 ②任意实数的平方不小于0。 ③不等式的两边都加上(或减去)同一个数或同一个整式, 不等号的方向不变。 ④不等式的两边都乘以(或除以)同一个正数,不等号的

方向不变。 ⑤不等式的两边都乘以(或除以)同一个负数,不等号的 方向改变。 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系 生活中为什么糖水中加的糖越多越甜呢? 转化为数学问题:a克糖水中含有b克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为,加入m克糖后的糖水浓度为,只要证>即可怎么证呢?引人课题 二、讲解新课: 1.不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式.

说明:(1)不等号的种类:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等) (3)不等式研究的范围是实数集R. 2.判断两个实数大小的充要条件 对于任意两个实数a、b,在a>b,a= b,a<b三种关系中有且仅有一种成立.判断两个实数大小的充要条件是: 由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了,这好比站在同一水平面上的两个人,只要看一下他们的差距,就可以判断他们的高矮了. 三、讲解范例: 例1比较(a+3)(a-5)与(a+2)(a-4)的大小分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)并根据实数运算的符号法则来得出两个代数

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

人教新课标版数学高二-人教B版必修5练习 3.2 均值不等式(一)

§3.2 均值不等式(一) 一、基础过关 1.已知a >0,b >0,则1a +1b +2ab 的最小值是 ( ) A .2 B .2 2 C .4 D .5 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是 ( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2 ab D.b a +a b ≥2 3.已知m =a +1 a -2 (a >2),n =????1 2x 2-2 (x <0),则m 、n 之间的大小关系是( ) A .m >n B .m 2 5.已知a ,b ∈(0,+∞),则下列不等式中不成立的是 ( ) A .a +b +1ab ≥2 2 B .(a +b )????1a +1 b ≥4 C.a 2+b 2 ab ≥2ab D.2ab a + b >ab 6.若a <1,则a +1 a -1有最______(填“大”或“小”)值,为________. 7.若lg x +lg y =1,则2x +5 y 的最小值为________. 8.设a 、b 、c 都是正数,求证:bc a +ca b +ab c ≥a +b +c . 二、能力提升 9.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1 y 的最大值为( ) A .2 B.32 C .1 D.1 2 10.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围为________. 11.已知x >y >0,xy =1,求证:x 2+y 2 x -y ≥2 2. 12.已知a ,b ,c 为不等正实数,且abc =1. 求证:a +b +c <1a +1b +1 c .

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

中职数学2.2.1不等式的基本性质

2.2.1不等式的基本性质 【学习目标】: 1.复习归纳不等式的基本性质; 2.学会证明这些性质; 3.并会利用不等式的性质解决一些简单的比较大小的问题。 【学习重点】:不等式性质的证明 【课前自主学习】: 1、数轴上右边的点表示的数总左边的点所表示的数,可知: ? a- > b b a a- = b ? a b ? < a- a b b 结论:要比较两个实数的大小,只要考察它们的差的符号即可。2、不等式的基本性质: (1)对称性:b a>?; (2)传递性:? b a,; b > >c (3)同加性:? a; >b 推论:同加性:? > a,; b c >d (4)同乘性:? b ,c a, >0 > ,c a; b ? < >0 推论1:同乘性:? ,0d c b a; >0 > > > 推论2:乘方性:? n N a,0; b ∈ > >+ 推论3:开方性:? b n a,0; > ∈ >+ N 【问题发现】:

【问题导学,练习跟踪】: 例1. 用符号“>”或“<”填空,并说出应用了不等式的哪条性质. (1) 设a b >,3a - 3b -; (2) 设a b >,6a 6b ; (3) 设a b <,4a - 4b -; (4) 设a b <,52a - 52b -. 变式练习(1)设36x >,则 x > ; (2)设151x -<-,则 x > . 例2. 已知0a b >>,0c d >>,求证ac bd >. 变式练习:已知a b >,c d >,求证a c b d +>+. 当堂检测: 1.如果b a >,则下列不等式成立的是( ) A.b a 55-<- B.b a > C.bc ac > D.22bc ac > 2.如果0< B.b a > C.b b a 1 1 >- D.22b a > 3.已知b a ,为任意实数,那么( ) A.b a >是的22b a >必要条件 B.b a >是b a -<-11的充要条件 C.b a >是b a >的充分条件 D.b a >是22b a >的必要条件 归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么?

人教新课标版数学高二B必修5学案 3.2 均值不等式(二)

明目标、知重点 1.熟练掌握均值不等式及变形的应用.2.会用均值不等式解决简单的最大(小)值问题.3.能够运用均值不等式解决生活中的应用问题. 1.用均值不等式求最值的结论 (1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值为s 2 4. (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值为2p . 2.均值不等式求最值的条件 (1)x ,y 必须是正数; (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 前一节课我们已经学习了均值不等式,我们常把a +b 2叫做正数a 、b 的算术平均数,把ab 叫 做正数a 、b 的几何平均数.本节我们就最值问题及生活中的实际例子研究它的重要作用. 探究点一 均值不等式与最值 思考1 已知x ,y 都是正数,若x +y =s (和为定值),那么xy 有最大值还是最小值?如何求? 答 xy 有最大值.由均值不等式,得s =x +y ≥2xy ,所以xy ≤s 2 4,当x =y 时,积xy 取得最 大值s 2 4 . 思考2 已知x ,y 都是正数,若xy =p (积为定值),那么x +y 有最大值还是最小值?如何求? 答 x +y 有最小值.由均值不等式,得x +y ≥2xy =2p .当x =y 时,x +y 取得最小值2p .

例1 求函数f (x )=-2x 2+x -3 x (x >0)的最大值,及此时x 的值. 解 f (x )=1-(2x +3 x ). 因为x >0,所以2x +3 x ≥2 2x ·3 x =26, 得-(2x +3 x )≤-2 6.因此f (x )≤1-2 6. 当且仅当2x =3x ,即x 2=3 2时,式中等号成立. 由于x >0,因而x = 6 2 时,式中等号成立. 因此f (x )max =1-26,此时x = 62 . 反思与感悟 在利用均值不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1 (1)若x >0,求函数y =x +4 x 的最小值,并求此时x 的值; (2)设02,求x +4 x -2 的最小值; (4)已知x >0,y >0,且 1x +9 y =1,求x +y 的最小值. 解 (1)当x >0时,x +4 x ≥2 x ·4 x =4, 当且仅当x =4 x ,即x 2=4,x =2时取等号. ∴函数y =x +4 x (x >0)在x =2时取得最小值4. (2)∵00, ∴y =4x (3-2x )=2 ≤2?? ?? ??2x +(3-2x )22=9 2. 当且仅当2x =3-2x ,即x =3 4 时,等号成立.

高中数学基本不等式练习题

一.选择题 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A. B.2C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2 B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2 D.若a<b<0,则> 5.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于 () A.2 B.3 C.4 D.5 7.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 8.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线 mx+ny+1=0上,其中mn>0,则的最小值为() A.B.8 C.9 D.12 9.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.(2015?湖南模拟)已知x+3y=2,则3x+27y的最小值为() A.B.4 C.D.6 11.(2015?衡阳县校级模拟)若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.(2015春?哈尔滨校级期中)已知a,b,c,是正实数,且a+b+c=1,则的最小值 为() A.3 B.6 C.9 D.12 二.填空题 1.(2016?吉林三模)已知正数x,y满足x+y=1,则的最小值为. 2.(2016?抚顺一模)已知a>0,b>0,且a+b=2,则的最小值为. 3.(2016?丰台区一模)已知x>1,则函数的最小值为.4.(2016春?临沂校级月考)设2<x<5,则函数的最大值 是. 5.(2015?陕西校级二模)函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为.

人教A版新课标高中数学必修一教案-《等式性质与不等式性质》

《 等式性质与不等式性质》 1、知识与技能 (1)能用不等式 (组)表示实际问题的不等关系; (2)初步学会作差法比较两实数的大小; (3)掌握不等式的基本性质,并能运用这些性质解决有关问题. 2、过程与方法 使学生感受到在现实世界和日常生活中存在着大量的不等关系;以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系. 3、情感态度与价值观 通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量. 【教学重点】 能用不等式(组)表示实际问题的不等关系, 会作差法比较两实数的大小 ,通过类比法,掌握不等式的基本性质. 【教学难点】 运用不等式性质解决有关问题. (一)新课导入 用不等式(组)表示不等关系

中国"神舟七号”宇宙飞船飞天取得了最圆满的成功.我们知道,它的飞行速度(v )不小于第一宇宙速度(记作2v ),且小于第二宇宙速度(记 1v ). 12v v v ≤< (二)新课讲授 问题1:你能用不等式或不等式组表示下列问题中的不等关系吗 (1)某路段限速40km /h ; (2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%; (3)三角形两边之和大于第三边、两边之差小于第三边; (4)连接直线外一点与直线上各点的所有线段中,垂线段最短. 对于(1),设在该路段行驶的汽车的速度为vkm /h ,“限速40km /h ”就是v 的大小不能超过40,于是0<v ≤40. 对于(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%. 2.5%2.3% f p ≥??≥? 对于(3),设△ABC 的三条边为a ,b ,c ,则a +b >c ,a -b <c . 对于(4),如图,设C 是线段AB 外的任意一点,CD 垂直于AB ,垂足 为D ,E 是线段AB 上不同于D 的任意一点,则CD <CE . 以上我们根据实际问题所蕴含的不等关系抽象出了不等式图接着, 就可以用不等式研究相应的问题了 问题2:某种杂志原以每本元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元 解:提价后销售的总收入为错误!x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式

相关文档 最新文档