文档视界 最新最全的文档下载
当前位置:文档视界 › 自升式钻井平台完整稳性计算方法研究

自升式钻井平台完整稳性计算方法研究

自升式钻井平台完整稳性计算方法研究
自升式钻井平台完整稳性计算方法研究

自升式海洋钻井平台升降系统的分析与研究

自升式海洋钻井平台升降系统的分析与研究 随着世界经济的飞速发展,海洋开发己经成为世界技术革新的重要内容,而海洋油气田的开发又是现今海洋资源开发利用的重中之重。自升式海洋钻井平台是海洋油气勘探和开发的主要装备。目前,国内使用的钻井平台中的控制系统基本都由国外制造,国内对其升降系统的分析相对较少。所以,探讨和研究这一方面的内容意义深远。 标签:自升式平台;升降系统;齿轮齿条式 1 概述 升降系统是自升式海洋钻井平台的关键部分。其位置位于平台的主体和桩腿的交接处,作用是让桩腿和船体作相对的上下运动,从而使得平台主体能上下移动并将其固定在桩腿的某一位置。 根据升降系统结构形式的不同,一般可分为液压油缸式升降系统和齿轮齿条式升降系统。液压油缸式的优点是:油缸的结构简单,力的传递直接,安全性高。缺点是:桩腿升降框架的结构庞大,用钢量很大,操作的工序相对更复杂。齿轮齿条式的优点是:升降运动连续性好,传动的速度快,可调速,受载均匀,操作简单,井位易对准。缺点是:齿轮齿条的制作难度大,成本高,控制相对复杂。由于海洋环境比较恶劣,平台升降所需要的时间对于平台的安全性就显得非常重要,同时运用齿轮齿条式升降平台可减少平台的就位费用,因此目前多采用此类系统。 2 齿轮齿条升降系统的设备组成 齿轮齿条式升降系统通常由升降装置、升降框架、导向装置、桩腿以及电控系统组成。 升降装置一般由电动机、减速箱、制动器、小齿轮等组成,如图1所示。电动机以前常用的是滑差式电机,后来变频技术越来越成熟,而且控制方便,于是逐渐取代了滑差式电动机。减速箱一般由平行轴轮系和行星轮系两部分构成,速比很大,有的甚至上万。制动器通常选择的是电磁圆盘式,其扭矩一般不小于1.2倍的暴风载荷。小齿轮由高强度合金钢经特殊工艺加工而成,齿数一般为7齿,模数通常为80以上,目前世界上最大的小齿轮模数已经达到了110。 图1 齿轮齿条升降装置 升降框架一般为封闭性环梁结构,如图2所示,它是连接升降装置和平台主体的框架,起承上启下的作用。一般升降框架和平台都进行一体化的设计,这样的设计有很高的结构强度,但对焊接工艺提出了极高的要求。

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

自升式钻井平台建造过程中的电气检验

自升式钻井平台建造过程中的电气检验 发表时间:2019-01-15T15:27:55.847Z 来源:《建筑学研究前沿》2018年第30期作者:孙凯 [导读] 近年来,随着经济和科学技术的飞速发展,世界范围内天然气、石油等能源的需求量由于自身的发展而不断增加。 太重(天津)滨海重型机械有限公司天津 300450 摘要:近年来,随着经济和科学技术的飞速发展,世界范围内天然气、石油等能源的需求量由于自身的发展而不断增加。由于自升式钻井平台稳定性高、定位能力强,在大陆的实际勘探开发中得到应用。钻井平台是海上移动平台,与传统的海洋平台相比,它具有巨大的操作优势。本文主要研究了自升式钻井平台建造过程中的电气检验。 关键词:自升式钻井平台;电气设备;检验 前言 加强自升式钻井平台建造过程中的电气检验分析,有利于优化该平台应用中的电气性能,给予能源勘探作业计划实施必要的支持,使得我国市场经济发展中的资源需求量得以满足。因此,需要从不同的方面入手,结合自升式钻井平台的功能特性,将其建造过程中的电气检验工作落到实处,并对其检验效果进行科学评估,以便实现对自升式钻井平台的高效利用。 1海洋石油钻井平台电气设备的要求 1.1耐震性 由于近海领域时常会有海浪,同时还伴有规律的潮汐活动,电气设备在使用中必须具备耐震性,避免电气设备的零部件受海浪影响,出现松动,影响设备的正常运行,避免由此带来的海上作业风险。此外,具有良好耐震性的电气设备还能够抵抗船舶航行带来的不利影响,能够有效的保证海上作业人员的安全。因此,企业在选择海洋石油钻井平台电气设备时,必须重视设备的耐震性,避免海洋事故的发生。 1.2耐腐蚀性 由于海洋钻井平台长期处于海水中,而海水中的盐分与油,会对电气设备产生一定的腐蚀。因此,在选择海洋石油钻井平台电气设备时,还应确保设备具备耐腐蚀性,以便确保海上钻井平台作业的安全。同时在海洋钻井平台进行工作时,还应采取必要的防护措施,尽量降低海水对电气设备的腐蚀,尽可能地延长电气设备的使用年限,避免不必要的经济损失。 1.3特殊频率电压性 通常海洋钻井平台中的电力系统与陆地电网相比,存在一定差异性,特别是在频率与电压方面。因此,企业应针对海洋钻井平台的实际情况,建立专门的局域电网,以满足海洋平台电气设备的用电安全需要,确保海上作业的安全,尽量降低事故的发生率。 2自升式钻井平台电缆敷设的检验 作为自升式钻井平台电气检验中的重要组成部分,电缆敷设检验效果是否良好,体现着该钻井平台的电气检验水平。因此,需要注自升式钻井平台的电缆敷设检验,且在有效的敷设工艺支持下,实现电缆敷设的有效检验。在其敷设工艺应用过程中,应明确这些方面的注意事项: 冷藏舱内避免使用聚氯己烯制成的电缆,主要在于低温环境条件下会使这种材料制成的电缆绝缘性能下降。同时,电缆敷设工艺支持下完成锅炉舱电缆敷设作业时,需要在明线敷设方式的作用下予以处理;为了确保电缆敷设状况良好性,保持其良好的功能特性,应控制好电缆与蒸汽管、加热器、发热设备等热源之间的距离,必要时应及时采取隔热措施进行处理;避免将电缆敷设在隔热绝缘层上,以便保持该绝缘层良好的性能;避免将隔材料喷涂于电缆上,确保电缆应用中有着良好的运行工况;结合防火分割要求,需要在自升式钻井平台电缆敷设检验中对防火贯通件的设置情况进行深入分析,避免其应用过程中存在安全隐患。同时,应在电缆与筒壁之间预留一定的间隙,增强其敷设效果,满足自升式钻井平台电气检验要求。 3自升式钻井平台电气设备安装的检验 在自升式钻井平台电气检验工作落实中,为了确保其中的电气设备安装质量可靠性,则需要加强其安装检验分析。具体表现为: 避免将电气设备安装于靠近油舱、油柜等构件的表面,使得电气设备实践应用中有着良好的运行工况;同时,对运行过程中会具有高温特性的电气设备应在行业技术规范要求下进行合理安装,控制好相应的安装距离;在落实自升式钻井平台电气设备安装作业前,应对其安装区域的防护等级进行检查,避免电气设备安装质量受到影响;实践中应加强危险区域内电气设备安装检验分析,落实好相应的检验工作,确保这类设备的安装质量能够满足防爆要求,确保电气设备防爆等级与危险区域等级的一致性,实现自升式钻井平台电气设备的安全使用,并使其安装检验水平在长期的实践过程中得以不断提升,从而为该钻井平台电气检验工作落实积累更多的实践经验。 4舾装件检验 4.1T梁检验 此结构是上层建筑结构中最重要的结构构件,应严格按照详细设计图纸检查其连续性。 4.2围壁 检查其板厚和材质是否和详细设计图纸一致,并且上下层围壁如果连续的话板厚方向一定要保持一致。 4.3球扁钢 检查其球头方向上下层是否保持方向一致。 4.4小筋板 该结构强度不够会影响整体强度。另外对于密闭舱室,烧焊之后工艺孔要另焊补板,使房间达到使用要求。 5电缆密封装置的总体性能要求 5.1密性 要求穿舱密封装置具有主隔壁相同的密性,包括水密、气密性能,根据国军标船体密性试验,可采用灌水、冲水、充气、冲气和涂刷煤

自升式海洋钻井平台浅谈

自升式海洋钻井平台浅谈 自升式平台顾名思义是具备自升能力的功能性平台,通过一定长度可以自行升降的桩腿来实现操作高度的变化以适应不同作业水深的要求,有槽口式和悬臂梁式的,现今新建平台基本都是悬臂梁式,一些平台配置有DP(dynamic position)系统从而实现自航和自定位功能,本文仅对不带有DP系统的自升式具备钻井操作能力的平台布置的简析。 自升式平台目前主要有两种形式,独立桩腿式和沉垫式,作业水深范围从12/14 英尺直至550 英尺。大多数自升式钻井平台的作业水深在250至300 英尺范围内,较浅水深则由一些固定式平台覆盖,比如模块钻机等。目前主流自升式平台多采用独立桩腿式,主要船型有新加坡吉宝船厂的Keppel Fels B Class , 美国F&G 公司的Super M2 以及JU2000/JU2000E ,荷兰MSC公司的Gusto CJ系列(CJ46/CJ50/CJ70,设计作业水深不同),美国Letourneau公司的Letourneau 116 系列等。各类型平台各具特色,根据不同的可变载荷(后面会提到其影响)和设备功能配置会有不同的租金差别,但其主要差别目前仍是从作业水深来大致区分,从各自平台造价来说,设备配置占据整个平台的较大部分,再加之一些设计费用和专利费,各类型平台取决于客户的想法和习惯以及使用区域的实际情况等因素。 自升式平台目前主要入级的船级社有ABS(美国船级社),DNV(挪威船级社,目前改为DNV-GL,同德国劳氏合并后简称),CCS(中国船级社)以及较少的BV(法国船级社),目前最主要的是ABS和DNV,原因是其关于钻井平台的要求较为详细完整,并且出台的相应的专门入级的规范,如MODU等,其网站提供相关规范的免费下载,同时每年会有相应的更新,在进行平台设计时应注意该平台入级的是哪一年的规范,同时按照对应规范进行相关设计,有些更改会对相关系统和设备由额外的要求,将会直接的提高建造成本。其中DNV的规范相对来说更加详细和严格一些,对北海区域的针对性比较强,所以我们会发现大部分入级平台如果作业区不是北海区域,多数选择入级ABS,也有部分平台入级双船级社,这里简单的讲就是为了将来船东的运营方便,比如我国的海洋石油981(半潜式钻井平台)同时入级CCS和ABS船级社,这里还要针对双船级和双重船级说明一下,前者船级社分主次。

以通用条分法进行边坡稳定分析

科技信息 1.引言 条分法是一种基于极限平衡原理的稳定性分析方法,其可分为非严格条分法与严格条分法两种。目前大多数常用的极限平衡条分法均 采用垂直条分法计算安全系数……, 较为完备的是M orgenstern 和Price 提出的方法以及陈祖煜在此基础上发展的通用条分法。早期的一些方 法,如Bishop 法、 Spencer 法等,可以看作是它在一定假设条件下的简化。在众多的条分法中,其核心问题就是如何对条间力进行假设,从而使问题封闭可解。由于垂直条分法仅考虑了力(和力矩)的平衡,不涉及材料的变形,因而,要得到封闭的解答须对滑体的受力特征进行一定的 假设。 一般是从力和力矩平衡条件出发,以一种新的方式给出一般情况下安全系数所应满足的关系。 2.平衡方程 严格法要求土条满足所有的静力平衡条件,即2个力平衡条件及1个力矩平衡条件。以土条为隔离体,其受力分析如图所示。 图1土条受力图 图中符号含义: F 为安全系数;S a 为条底可获得的抗剪力,S a =c l i +N i tg φ,c,φ,l 分别为条底粘聚力、摩擦角、长度;S m 为条底已发挥的抗剪力,U αi 为孔隙水压力;W i 为土条重力;N i 为条底有效法向力;α为 条底倾角; P 左i ,P 右i 分别为土条左、右端条间力;h i ,h i+1分别表征条间力的作用位置;θ2i ,θ1i 分别为土条左、右条间力的水平倾角。 (1)由图可以分别建立水平竖直两个方向的平衡方程:水平方向合力为零,即: P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi -P 右i cos θ1i =0(1)竖直方向合力为零,即: P 右i sin θ1i -S m sin αi -(N i +U αi )cos αi -P 左i sin θ2i +W i =0(2)又由M ohr ———Coulom b 强度准则:S a =c l i +(N i +U αi )tg φ,S m =S a F =c l i +(N i +U αi )tg φF (3) 通常我们易知P 左i 和P 右i 之间存在一定的关系,即:P 右i -P 左i =ΔP i 现以P 右i >P 左i 为例P 右i =P 左i +ΔP i (4) 将(4 )式分别代入(1)(2)式可得P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi -(P 左i +ΔP i )cos θ1i =0(5)(P 左i +ΔP i )sin θ1i -S m sin αi -(N i +U αi )cos αi -P 左i sin θ2i +W i =0(6) 由式(5 )(6)分别可求得ΔP i =P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi 1i -P 左i (7) ΔP i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i 1i -P 左i (8) 二者相等可得: P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi cos θ1i -P 左i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i sin θ1i -P 左i 即: tg θ1i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i i 2i m i i αi i (9) 从而得到θ1i 与θ2i 的关系,即θ1i 可以用θ2i 表示出来。又因为所有的土条满足整体的力平衡状态,即有:∑ΔP i =0 即:∑[P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi ]∑cos θ1i -∑P 左i =0(10)从而可得: ∑S m =∑[P 左i cos θ1i +(N i +U αi )sin αi -P 左i cos θ2i ]i =c l i +(N i +U αi )tg φ(11) 故F= ∑[c l i +(N i +U αi )tg φ]cos αi 左i 1i i αi i 左i 2i (12)其中P 左i ,θ1i ,θ2i 为未知。(2)土条的力矩平衡方程: P 左i cos θ2i (h i '-b tg α)+P 左i b sin θ2i -P 右i cos θ1i (h i +b tg α)+P 右i b sin θ1i =0 (13)h i =P 左i (P 左i +ΔP i )cos θ1i h i 'cos θ2i -b 2(cos θ2i tg α-sin θ2i ∑∑ )+b 2 (tg θ1i -tg α)(14) 将(7)中的ΔP i 代入上式 h i = P 左i cos θ1i P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi h i 'cos θ2i -b 2(cos θ2i tg α-sin θ2i ∑∑ )+b 2 (tg θ1i -tg α)(15)其中P 左i ,θ1i ,θ2i ,S m 中的F 为未知,又由式(9)可以得到θ1i ,θ2i 的关 系,即θ1i 可以用θ2i 表示出来,故h i 是关于h i ' ,P 左i ,θ2i ,F 的函数。 我们可以假设初始植h i ' ,P 左i 均为0则可以通过(7)和(15)假设不 同的θ2i ,F 迭代求h i 直到满足其最后的边界值为零为止。3.结论(1)本文在理论推导过程中采用了与经典公式不同的方法,即将条 间合力的大小,方向P 左i , θ1i ,θ2i ,S m 作为未知数。(2)此方法在计算过程中不需要对方程进行求导,因而通过编程求得其安全系数。 (3)在通用条分法中,不同条块界面上剪切强度和滑动面上剪切强度应该具有不同的折减系数,这有待于今后进一步研究 (4)影响边坡稳定的条件有很多,仅仅通过条间的剪切力确定是远远不够的,比如说条块的形状,大小等都会对滑动趋势产生很大的影响,因此在实际的工程运用中应该充分予以考虑。 参考文献[1]Lee W A ,Lee T ,Sharma S ,et a1.Slope Stability an d Stabilization Methods [M ].New York :Wiley —Interscience Publication ,1996 [2]Fmdlund D C State of the art :analytical methods for slope stability analysis [A ].In :Proceedings of the 4International Symposium on Landslides [C ].Toronto :Ont ,1984.229-250 [3]张鲁渝.一个用于边坡稳定分析的通用条分法.岩石力学与工程学报,2005.2 [4]丁桦,张均锋,郑哲敏.关于边坡稳定分析的通用条分法的探讨.岩石力学与工程学报,2004.11 [5]朱大勇,钱七虎.严格极限平衡条分法框架下的边坡临界滑动 场.土木工程学报, 2000,33[6]杨明成.基于力平衡求解安全系数的一般条分法.岩石力学与工程学报,2005.4 以通用条分法进行边坡稳定分析 山东交通学院 曹丽娜 王日升 [摘要]本文首先介绍了通用条分法的基本方程。它直接将条间力合力的大小和方向作为未知数,并通过一系列的转化求得土条间合力方向间的关系,从而易通过编程求得其安全系数。[关键词]通用条分法边坡稳定 极限平衡 高校理科研究 526——

自升式钻井平台

自升式钻井平台由平台、桩腿和升降机构组成,平台能沿桩腿升降,一般无自航能力。工作时桩腿下放插入海底,平台被抬起到离开海面的安全工作高度,并对桩腿进行预压,以保证平台遇到风暴时桩腿不致下陷。完井后平台降到海面,拔出桩腿并全部提起,整个平台浮于海面,由拖轮拖到新的井位 中海油63号自升式钻井平台 2008年全球共有自升式钻井平台(Jackup)446座,分布在南美、北美、亚洲、非洲、欧洲、澳洲各地。设计水深一般为10米(30英尺)到250米(750英尺)以内,属近海海域。它们主要集中建造于1980~1983年,之后的建造数量特别少,使用年限基本上在20~30年,而在役的自升式钻井平台船龄大多数超过25年。因此,该类钻井平台未来更新换代的需求比较大。 1. 主要建造国家及制造厂 截止到2008年8月底,在役的自升式钻井平台为428座,其中美国建造了150座,新加坡建造了110座,居世界前两位(见表1)。无论是从在役还是新订单来看,美国和新加坡都是Jackup的主要建造商。美国的建造公司主要有:Bethlehem Beaumont, Marathon Vicksburg, Marathon Brownsville, Marathon LeTourneau, Ingalls Shipbuilding, Baker Marine, Levingston Shipbuilding等;新加坡的建造公司主要有:Keppel FELS, Marathon LeTourneau, SembCorp, Bethlehem, Promet等。 表1主要建造国家及其数量(已建和拟建) 2. 主要运营商[1] 2008年8月底统计数据,世界上自升式钻井平台的运营商大部分在美国,比例达60%以上。主要营运公司有:美国Transocean有限公司、美国ENSCO国际公司、美国诺布尔钻井公司(Noble Drilling)等(见表2)。 表2 在役的自升式钻井平台主要运营商

边坡稳定性计算方法.doc

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图9 -1 为一砂性边坡示意图,坡高H ,坡角β,土的容重为γ,抗剪 度指标为 c 、φ。如果倾角α的平面AC 面为土坡破坏时的滑动面,则可分析该滑 动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图 已知滑体ABC重W ,滑面的倾角为α,显然,滑面AC 上由滑体的重量W= γ(ΔABC)产生的下滑力T 和由土的抗剪强度产生的 抗滑力Tˊ分别为: T=W ·sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数 F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系 数表达式则变为 从上式可以看出,当α=β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当F s =1 时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于0.1 时,可以把它当作一个无限边坡进行分析。 图9-2 表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条进 行分析,作用在滑动面上的剪应力为, 在极限平衡状态时,破坏面上的剪应 力等于土的抗剪强度,即 得 式中N s = c/ γH称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无 粘性土。α=φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强 度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘 这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动 法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O 为圆心,R 为半径。 假定边坡破坏时,滑体ABC 在自重W 作用下,沿AC 绕O 点整体转动。滑动面AC 上的力系有:促使边坡滑动的滑动力矩M s =W ·d ;抵抗边坡滑动的抗滑力矩,它应该 包括由粘聚力产生的抗滑力矩M r =c ·AC ·R ,此外还应有由摩擦力所产生的抗滑力矩, 这里假定φ=0 。边坡沿AC 的安全系数F s 用作用在AC 面上的抗滑力矩和下滑力 矩之比表示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ=0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

我国自升式钻井平台的发展与前景

第23卷第4期2008年8月 中国海洋平台 CHINA OFFSHORE PL A TFORM Vol.23No.4Aug.,2008 收稿日期:2008-01-17 作者简介:汪张棠(19372),男,高级工程师,主要从事船舶及海洋工程特种机械设计研究。 文章编号:100124500(2008)042008206 我国自升式钻井平台的发展与前景 汪张棠, 赵建亭 (中国船舶工业集团公司第七○八研究所,上海200011) 摘 要:自升式钻井平台属于海上移动式平台,由于定位能力强和作业稳定性好,在大陆架的勘探开发中居主力军地位。阐述自升式钻井平台的组成和作业范围,以及在我国海洋油气勘探开发中的发展与前景。 关键词:自升式钻井平台;发展;前景中图分类号:P75 文献标识码:A THE DEVE LOPMENT AN D FOREGROUN D OF THE SE LF 2E L EVATION D RILL ING PLATFORM IN OUR COUNTR Y WAN G Zhang 2tang , ZHAO Jian 2ting (Marine Design &Research Instit ute of China ,Shanghai 200011,China ) Abstract :As the maritime moving platform ,the self 2elevation drilling platform is the main force in the exploration of the continental shelf as the result of good fixing and reliable working.This paper expatiates the composing and working scope of self 2elevation drilling platform ,as well as its development and foreground in the oil and gas exploration of our country. K ey w ords :self 2elevation drilling platform ;develop ment ;forground 世界经济的高速发展必然带来对能源的大量需求,石油天然气仍是当前的主要能源。我国已成为世界第二大石油进口国,油气供求矛盾非常突出。 我国陆地油气资源勘探开发程度现已很高,油气资源正迅速减少。向海洋进军,开发新的油气资源已成必然趋势。我国拥有漫长的海岸线和广阔的海域,油气资源十分丰富。在渤海、南黄海、东海、南海已有发现并进入早期开采。 自升式钻井平台属于海上移动式平台,由于其定位能力强和作业稳定性好,在大陆架海域的油气勘探开发中居重要地位。 1 自升式钻井平台组成和作业范围 自升式钻井平台主要由平台结构、桩腿、升降机构、钻井装置(包括动力设备和起重设备)以及生活楼(包括直升飞机平台)等组成。平台在工作时用升降机构将平台举升到海面以上,使之免受海浪冲击,依靠桩腿的支撑站立在海底进行钻井作业。完成任务后,降下平台到海面,拔起桩腿并将其升至拖航位置,即可拖航到下一个井位作业。 桩腿是自升式钻井平台的关键。当作业水深加大时,桩腿的长度、尺寸和质量迅速增加,作业和拖航状态的稳性则变差。所以,自升式钻井平台最大的作业水深受到制约,作业范围限于大陆架200m 水深以内。桩腿结构形式有柱体式(图1)和桁架式(图2)两大类。柱体式桩腿由钢板焊接成封闭式结构,其断面有圆柱

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

边坡稳定性分析方法

第二节边坡稳定性分析方法 力学验算法和工程地质法是路基边坡稳定性分析和验算方法常用的两种方法。 1.力学验算法 (1)数解法假定几个不同的滑动面,按力学平衡原理对每个滑动面进行验算,从中找出最危险滑动面,按此最危险滑动面的稳定程度来判断边坡的稳定性。此方法计算较精确,但计算繁琐。(2)图解或表解法在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。以简化计算工作。 2.工程地质法 根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究,通过工程地质条件相对比,拟定出与路基边坡条件相类似的稳定值的参考数据,作为确定路基边坡值的依据。 一般土质边坡的设计常用力学验算法进行验算,用工程地质法进行校核;岩石或碎石土类边坡则主要采用工程地质法进行设计。 3.力学验算法的基本假定 滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。 一、直线滑动面法 松散的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。失稳土体的滑动面近似直线状态,故直线滑动面法适用于砂类土:

如图2-2-4所示,验算时,先通过坡脚或变坡点假设一直线滑动面,将路提斜上方分割出下滑土楔体ABD,沿假设的滑动面AD滑动,其稳定系数K按下式计算(按边坡纵向单位长度计): 验算的边坡是否稳定,取决于最小稳定系数Kmin的值。当Kmin=时,边坡处于极限平 衡状态。由于计算的假定,计算参数(r,Ψ,c)的取值都与实际情况存在一定的差异,为了保证边坡有足够的稳定性,通常以最小稳定系数Kmin≥来判别边坡的稳定性。但Kmin过大,则设计偏于保守,在工程上不经济。 当路堤填料为纯净的粗砂、中砂、砾石、碎石时,其粘聚力很小,可忽略不计,则式(2-2-3)变为: 式(2-2-3)也适用于均质砂类土路堑边坡的稳定性验算。

NAPA软件在起重船完整稳性计算中的应用

万方数据

?38?船舶设计通讯JoURNAL0FSHIPDEsIGN2004年第2期(总第1lO期) 表2高度修正系数C; Z.(m)O~1515~3030~4545~60C.1.OO1.161.321.44Z.(m)60~7575~9090~105105~120C,1.531.611.681.74 其中P和Cj查表可得。A^和Zj可以根据用户自己在NAPA中定义的Profile,由软件自动来计算。因为计算起重船受风面积时,不同类型的面积要取不同的满实系数,所以用户可以分别定义几个Profile,然后可以用PARA命令来对不同的Profile进行求和。而高度修正系数也可用表格来定义。下面就一条起重船在作业状态时按风压倾侧力矩的定义举例作更详细的说明。 MOM,CRANE—WoRKING TYPE,WIND PARA,C=0.018,PROF一(PRo—Ship,1.O,PRO—Load,1.O,PRO—Crane,O.5),WL CH,CCS—CH OK 风压倾侧力矩的定义中PARA所定义的公式为MOM=C?A?Z,其中C为风压,t/m2;A为水线以上侧投影面积m2;z为受风面积A中心到水线、吃水的一半或水下侧投影面积的中心的垂直距离。上面的定义中彬L就是表示z为受风面积A中心到水线的垂直距离。另外要注意的是PARA所定义的公式中C的单位为t/m2,为了要计算出海规中所要求的晰,所以在上面的定义中C=177×1.o/9800一o.018(该数值仅对作业状态适用);另外海规中对起吊荷重的受风面积和受风面积中心也有详细的规定。作者在实际计算中事先计算出起吊荷重的受风面积,又因为已知起吊荷重的受风面积中心距甲板高度,所以可以把起吊荷重的受风面积和受风面积中心等效定义到Profile中。上面的风压倾侧力矩的定义中PRO—Ship为船体的Profile,PRO—Load为起吊荷重等效的Profile,PR0一Crane为起重机的Pro— file。而海规中的高度修正系数C,可以定义到表格中。上面的风压倾侧力矩定义中的叫的作用就是指定随高度变化的系数,该命令即可直接指定不同的高度和系数,也可以指定一个存有高度和系数的表格。cC‘S—cH即为高度修正系数C,的定义表格,具体形式如图1。 图1 当所有定义都做好后,用户可以用下面的命令来输出和检查所定义的风压倾侧力矩。 LISTWMOMMOM—CRANE—WORKING 下面以起重船在作业状态下的初稳性高度GM衡准为例来说明如何把定义好的风压倾侧力矩引用到衡准中。 起重船在作业状态下的稳性应满足初稳性高度GM:伽≥%措m 上式中GM为初稳性高度,并考虑自由液面的影响,m;以为起重船允许的极限静倾角,度;△为所核算装载情况下的排水量,t;在下面的例子中假定以已事先求出为3。。 CRIT,CCS.MINGM.WORKING,‘CheckingMin—imumGM’ TYPE。MINGM REQ,CCSGMWORKING MET,IF,ATT>REQ UNIT。M MOM。CRANE—WORKING OK CCSGMWORKING的内容如下: @@CraneStabilityRules @globalattreqmomfmoma @onerrstepmode @csheel=3.O @heel==cr.value(’HEEL’)  万方数据

图解自升式钻井平台升降系统(原创)

图解自升式钻井平台 升降系统(原创) 海洋石油平台分类: 采油模块 自升式钻井平台 半潜式钻井式平台 储油船(FPSO) 目前,我从事的工作是以自升式钻井平台建造工程,以平台电气系统设备调试为主要工作,下面介绍自升式钻井平台的概况及重要系统:升降系统。 我曾经参与制造的自升式钻井平台有:JU2000E系列:1~6号;中油海L780-1、L780-2;中海油937(CJ46);中油海胜利十号。

自升式钻井平台组成: 主船体:主甲板面主要承载起重设备;钻井作业配套设备;通风设备;锚机设备;救生筏及悬臂梁液压滑移设备等; 机舱机械甲板主要承载主发电、供电系统;暖通空调设备;海水、淡水设备;泥浆、钻井辅助设备;消防系统等; 生活区:应急发电、应急供电系统;钻井办公、休息区;餐饮服务间;无线电通讯室;升降控制台;中央DC S系统控制室;救生艇;飞行甲板区; 钻井作业区(悬臂梁及钻台):井架设备;钻台设备;防喷器设备;高压泥浆管线设备悬臂梁设备等; 升降系统组成:

一升降控制台:CENTRAL CON TROL CONSOLE 二升降MCC:JACKING MCC 三桩腿单元:LEG UNIT 升降马达:JACKING MOTOR 桩腿单元: 桩腿单元是升降系统的重要组成部分,大部分钻井平台有三条桩腿, 它起到将船体支撑在水面上,以便于进行水上钻井作业,同时,根据 不同地域水深情况调整适合平台作业的水深高度,使悬臂梁移出达到 钻井工位进行钻井工作。 平台的桩腿位于平台主船体的承重端点位置上,一般有三个桩腿,呈 花架结构; 它的升降移动是靠齿轮齿条传动,齿条间距:319.186mm;升降移动速度:0.45m/min;

相关文档