文档视界 最新最全的文档下载
当前位置:文档视界 › 疲劳失效分析案例

疲劳失效分析案例

疲劳失效分析案例
疲劳失效分析案例

齿轮疲劳点蚀的特征及案例分析

齿轮疲劳点蚀的特征及相应案例分析 1 疲劳点蚀的定义及特征 点蚀又称接触疲劳磨损,是润滑良好的闭式传动的常见失效形式之一。齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀。节线靠近齿根的部位最先产生点蚀。润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。 点蚀又分为收敛性点蚀和扩展性点蚀。收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。扩展性点蚀指随着工作时间的延长而继续扩展的点蚀现象,常在软齿面轮齿经跑合后,接触应力高于接触疲劳极限时发生。硬齿面齿轮由于材料的脆性,凹坑边缘不易被碾平,而是继续碎裂成为大凹坑,所以只发生扩展性点蚀。严重的扩展性点蚀能使齿轮在很短的时间内报废[1]。 2 疲劳点蚀的实例 某重型车辆侧减速器主动齿轮发生了早期失效,失效齿轮与行星转向机相连,将全车动力传递到行动部分,是全车受载最大的齿轮,始终在大载荷、高转速、多冲击的复杂苛刻环境下工作。齿设计上采用整编为齿轮,传动比为5.9,润滑方式为油池飞溅润滑。实效齿轮材料为18Cr2Ni4W A钢。采用渗碳+淬火+低温回火热处理工艺。 失效齿轮发生严重的接触疲劳失效,使用寿命未达到规定时间。采用断口分析、金相分析、硬度测试及有限元接触应力分析等方法对齿轮进行失效分析,查找该齿轮实效的原因(由于篇幅有限以及结合自身知识面,仅列举出端口分析和金相分析两项结果)。 2.1 断口分析 通过对失效齿轮宏观观察发现.在啮合受力齿面的节线附近靠近齿根一侧,沿齿宽方向分布许多

材料失效分析

材料失效分析 ——金属的疲劳破坏 1.1材料失效简介 材料失效分析在工程上正得到日益广泛的应用和普遍的重视。失效分析对改进产品设计、选材等提供依据,并可防止或减少断裂事故的发生;可以提高机械产品的信誉,并能起到技术反馈作用,明显提高经济效益。大力开展失效分析研究,无论对工业、民生、科技发展,都具有极其重要的作用。 所谓失效——主要指机械构件由于尺寸、形状或材料的组织与性能发生变化而引起的机械构件不能完满地完成指定的功能。亦可称为故障或事故。一个机械零部件被认为是失效,应根据是否具有以下三个条件中的一个为判据: (1)零件完全破坏,不能工作; (2)严重损伤,继续工作不安全; (3)虽能暂时安全工作,但已不能满意完成指定任务。 上述情况的任何一种发生,都认为零件已经失效。 机械零部件最常见的失效形式有以下几种: 1.断裂失效:通常包括塑性(韧性)断裂失效;低应力脆性断裂失效;疲劳断裂失效; 蠕变断裂失效;应力腐蚀断裂失效。 2.表面损伤失效:通常包括磨损失效;腐蚀失效;表面疲劳失效 3.变形失效:包括塑性变形失效;弹性变形失效,同一种零件可有几种不同失效形式。一个零件失效,总是由一种形式起主导作用,很少以两种形式主导失效的。但它们可以组合为更复杂的失效形式,例如腐蚀磨损、腐蚀疲劳等。 2.1疲劳破坏 飞机、船舶、汽车、动力机械、工程机械 、冶金、石油等机械以及铁路桥梁等的主要零件和构件,大多在循环变化的载荷下工作,疲劳是其主要的失效形式。 金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。当材料和结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。 2.2疲劳断裂的特征 1、疲劳断裂应力1σ(周期载荷中的最大应力 max σ)远比静载荷下材料的抗拉强度 b σ低,甚至比屈服强度s σ也低得多。 2、不管是脆性材料或延性材料,其疲劳断裂在宏观上均表现为无明显塑性变形的脆性突然断裂,故疲劳断裂一般表现为低应力脆断。 3、疲劳破断是损伤的积累,积累到一定程度,即裂纹扩展到一定程度后才突然断裂。 断裂前要经过较长时间的应力循环次数N (=104;105;106……)才断裂,所以疲劳断 裂是与时间有关的断裂。在恒应力或恒应变下,疲劳将由三个过程组成:裂纹的形成(形核);裂纹扩展到临界尺寸;余下断面的不稳定断裂。在宏观上可清楚看到后二个过程。 4、材料抵抗疲劳载荷的抗力比一般静载荷要敏感得多。疲劳抗力不仅决定于材料本 身,而且敏感地决定于构件的形状,尺寸、表面状态、服役条件和所处环境等。

疲劳断裂行为High

超高频强度钢的疲劳断裂行为 J. Mater. Sci. Technol., Vol.24 No.5, 2008 1) 国家重点实验室的先进加工钢材和产品,北京100081,中国 2) 国家工程研究中心,北京100081钢铁技术先进,中国 3) ,燕山大学,秦皇岛,中国 ⑷对金属的中国社会,北京100711,中国 疲劳断裂行为的超高强度钢与不同熔化过程,研究了夹杂物尺寸不同通过用在旋转弯曲疲劳机上多达107循环加载。观察骨折面发射扫描电子显微镜(FESEM。当它被发现时已经尺寸的夹杂物对疲劳行为未清除。对钢在AISI 4340夹杂物尺寸小于5.5微米,所有的疲劳裂纹除的确做到了包含但不引发的地表和传统从标本的s - n曲线的存在。对65Si2MnW在100和Aermet钢平均12.2和14.9米,疲劳裂纹在较低的夹杂物引发的s - n曲线应力幅值和逐步进行观测。弯曲疲劳 强度的s - n曲线显示一个不断下降和疲劳失效的大型氧化物夹杂源于对60Si2CrVA 钢平均夹杂物的尺寸44.4米。在案件的内部骨折在周期超越约1X 106 65Si2MnWI?60Si2CrVA钢、夹杂物sh-eye经常发现里面和颗粒状明亮的方面(GBF)进行了观察附近约夹杂。GB尺寸的增加这个循环数的增加对失败的长寿命的政权。结构应力强度因子的价值范围内裂纹萌生施工现场对GBI与Nf几乎不变, 几乎是相等的表面夹杂物和内部包含在周期低于约1X 106。既不sh-eye GBF也 没有观察到100 Aermet钢在目前的研究中。 关键词:High-cycle超高强度钢疲劳,夹杂物s - n曲线,鱼眼骨折 1、介绍 High-cycle疲劳(HCF)失败是普通的实用的建筑工程项目的土石方作业。因此,广泛的研究已进行多年了令人满意的理解和解决方案尚未达成。众所周知,有一个很好的旋转弯曲疲劳强度之间的关系,如光滑的标本和抗拉强度、维氏 硬度、高压、或低或中等强度。对于低或中等强度钢如下 (T w 心 0.5Rm (T w 心 1.6HV (1) 在这种情况下,从疲劳裂纹倾向于表面,因此被称为表面的结构。然而,在较高 的拉伸强度范围或维氏硬度、线性相关性没发生,有了更多的散射或甚至星体疲劳强度值。疲劳断裂的起源的高强度钢的表面并不总是,但经常还有一定距离尤其是forhigh-cycle 疲劳,因此被称为内部断裂。断裂表面经常展现一个小光滑斑裂纹起

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

疲劳损坏案例与分析图文稿

疲劳损坏案例与分析文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

疲劳损坏案例与分析 (一) 胡讷敏 疲劳失效(或称“疲劳损坏”)是承受交变应力构件的一种失效形式。在机器设备应用中,疲劳失效可以造成小到齿轮、轴承一类的零件损坏,大到整台设备报废,甚至可能发生同时导致其他财产以致人身损害事故发生。在机器设备向大型、精密、高速、高价值发展的今天,疲劳失效以其破坏性巨大和不容易发现、预防更具风险。在保险实务中,若非对专业有所研究,一般对机器设备的疲劳损坏只是一种通俗理解,或者说只是一种概念性的了解。而仅以通俗理解或概念性的的知识分析保险责任、处理赔付案件,其道理自然不免苍白,所以在对疲劳失效导致的设备损坏的保险责任分析上一直是难题。这里将陆续介绍几个机损险项下疲劳损坏事故处理案例,同时提出个人见解,旨在抛砖引玉,希望引起注意与讨论。 案例一:压缩机曲轴断裂案 这是一座中型化肥生产企业曾发生的事故:夜班工作时,正在运转中的氮氢压缩机主轴意外断裂,造成压缩机严重损坏,被保险人要求保险人在机器损坏险保单下予以赔偿。 因本案损失较大和专业性较强,接到报案后,保险人随即委托公估公司查勘处理。经过查勘与现场了解,本案事故受损设备是一台功率为1300kw的氮氢压缩机,在夜班工作时发生巨响,随即停机,当时看到因

巨大的震动使压缩机扭转位移、曲轴箱等部分箱体发生破裂。拆开检查看到压缩机曲轴断裂,其他零件如连杆、活塞拉杆、轴瓦、瓦座、机体、曲轴箱等一大部分零件断裂或明显变形。经过对曲轴断口检查分析,确定为疲劳断裂,进而判定该机事故发生原因和过程为,运转中的压缩机曲轴疲劳断裂后,运动的断裂件对相邻零件的撞击以及强大的惯性与震动力导致其它零部件断裂或变形损坏。 在对保险责任的分析判定上,公估人依据技术分析和对保单条款的理解,在确认事故原因是疲劳损坏的基础上,认为疲劳损坏属于机器设备运行必然引起的后果,随后根据保单关于除外责任条款中关于“机器设备运行必然引起的后果,如自然磨损、氧化、腐蚀、锈蚀、孔蚀、锅垢等物理性变化或化学反应”的约定,认为不属于保险责任,建议保险人对本案事故损失拒赔处理。最终保险人没有完全采纳公估人的意见,而是与被保险人协议赔偿。 案件处理分析: 首先可以确认公估人对事故原因的分析,即判断“疲劳损坏”是正确的。简单地说,疲劳损坏是在材料受力小于其静强度极限的情况下,由于交变应力多次重复的作用,对于轴类零件会在表面或某一应力集中的点发生初始裂纹(称“疲劳源”),由于切口作用逐渐发展、扩大,则未断裂的实体连接部分承受的应力随之逐渐增加,直至超过其静强度极限后断裂。从曲轴断口的照片可以看到,A点位置是疲劳初期裂纹即疲劳源,自此裂纹逐渐向外发展;B区域可见裂纹以疲劳源为中心,波纹状向外发展;C区断面粗糙,是最后一次性断裂的表面。(如下图所示)

疲劳断裂失效分析与表面强化预防

栏目主持李牟翔疲劳断裂失效分析与表面强化预防 北京航空材料研究院(100095)高玉魁 对于航空航天零部件而言,随着结构设计不断使用高强度结构材料来制造承力构件,越来越多的零件以疲劳断裂的方式发生失效事故。因此,总结疲劳断裂的失效特征,分析其影响凶素,探讨疲劳失效的预防措施一直是材料和力学等学科的研究工作者和工程师们所关心的课题。 对疲劳断裂失效而言,应该将疲劳裂纹的萌生与疲劳裂纹的扩展(包括疲劳小裂纹和长裂纹的扩展)结合起来,综合考虑疲劳裂纹的“裂”与“断”的过程,定量计算疲劳寿命,以便为设计提供数据支持和依据。目前的研究,材料工作者多从材料的组织结构特征方面来分析组织结构对疲劳寿命的影响,而断裂力学研究者则多从疲劳裂纹扩展寿命来计算安全的使用寿命。这两种方法都有一定的道理,并分别侧重于裂纹的萌生与扩展阶段的研究。对于疲劳断裂失效而言,疲劳断裂的过程都是先“裂”后“断”的。“疲劳断裂”不如“疲劳裂断”科学,这不仅是因为“疲劳裂断”可反映疲劳裂纹的萌生、扩展与断开的先后次序,而且“裂”还同时强调了裂纹的萌生和扩展两个阶段。一个零件要“裂”必须有裂纹的产生并使裂纹长大,要想“断”必须是零件上一定尺寸的裂纹在一定外力或环境的单独或共同作用下才能发生。因此,从“疲劳裂断”的进程来看,如何“防裂”、“止裂”、“防断”和“止断”不仅在科学理论上,而且在工程应用中都具有十分重要意义的研究课题。的强度潜力和使用性能;另一方面可提前预防失效事故并避免灾难的发生。为便于理解和使用,除了在此强凋“裂”外,下文仍采用“疲劳断裂”来描述疲劳失效。 1.结构材料的疲劳失效特征 疲劳失效是材料在循环载荷作用下发生的损伤和破坏过程。一般而言疲劳断裂包括裂纹的萌生、裂纹的扩展和最终的断裂三个过程,因此疲劳断口上有三个相对应的区域,即裂纹源区、裂纹扩展区和瞬断区。根据所受载荷的水平、材料的力学特性、试样的形状尺寸与约束条件的不同,这三个区域的大小、形状和分布特征也不尽相同,但总体而言可归纳为下列的4个宏观规律特征: (1)疲劳失效为低应力长时间无明显塑性变形的宏观脆性断裂。 (2)疲劳失效是由材料局部的组织不断发生损伤变化并且逐渐累积而成,疲劳总是从最薄弱的区域开始(见图1)。 图l疲劳裂纹萌生于内部的夹杂物缺陷 (3)疲劳断裂必须在循环应力和微观局部发生塑性 “防裂”和“止裂”是在“裂”上下功夫,通过分变形,以及拉伸应力作用下发生。前者是裂纹形成的条析裂的规律,找出裂的原因,提出防裂的措施,采用合 理的结构设计、合适的材料、适宜的热处理制度及可靠 的零件加工与适当的表面强化来改进开裂的方式,提高 开裂的抗力。“防断”和“止断”是在“断”字上做文 章,对存在一定尺寸的裂纹或缺陷,通过分析剩余寿命 /剩余强度来计算构件的安全,一方面可充分发挥材料 囵踅Q里堡箜!!塑整丝型堡旦箜蕉www.machinist.com.cn参磊卢工热lm-r 件,后者是裂纹扩展的需要。 (4)疲劳失效具有随机性,裂纹的形成与扩展都需 要一定的晶体学条件、力学条件和变形的协调条件,而 且材料本身的组织结构、成分偏析与夹杂缺陷等的不均 匀性,决定了疲劳失效具有随机性。 从疲劳失效的断口分析而言,微观上讲具有以下 万方数据

疲劳强度破坏实例

疲劳强度破坏实例 疲劳破坏在局部应力最高的部位发生,某些机械,常常由于设计、制造、装配和使用中的不合理,造成零部件过早地发生疲劳断裂。 1.锻造用水压机,特别是1600吨以下的三梁(上横梁、活动横梁及下横梁)四柱式结构的小型水压机(图1.1),由于上、下横梁与立柱形成的框架的刚度小,在锻造过程中摇晃厉害,这样,常在立柱下端应力集中处发生疲劳破坏。图1.2为1250吨锻造水压机的立柱,材料为45钢经正火处理,立柱两端的锥台分别与上、下横梁联接,立柱有内孔,通高压液体。该水压机投产后不到两年,有一根立柱疲劳断裂,焊修后继续使用。另一根立柱因超载运行断裂,更换一旧立柱。再过一年大修时,将两根立柱都换上40Cr的新立柱,三年后,一根立柱又产生疲劳裂纹(图1.2所示)。还有一台1600吨水压机投产后一年半,一根立柱在下横梁上螺母上部退刀槽处发生疲劳断裂(图1.3)。从上面的例子可以看出,水压机立柱的疲劳断裂,大都发生在下横梁上螺母(或锥台)与立柱光滑区的过渡圆角处,该处的应力集中最大。 水压机横梁的疲劳破坏,可以分为两种情况:下横梁及活动横梁的疲劳破坏,都发生在梁的中央部位。因为这种横梁各截面的面积近似相等,中央截面上的弯矩最大。例如,一台1250吨水压机投产后十年,在下横梁中央部位产生疲劳裂纹。另一台1000吨水压机投产一年后,于活动横梁中央产生疲劳裂纹,修焊后使用了两年又开裂。对于梯形的上横梁,最高的局部应力不在中央截面上,而在上横梁与柱套交界的圆弧处。因此,疲劳破坏在交界圆弧处发生。

2.轧机闭式机架用于初轧机、钢坯轧机及板轧机等。对于以强度为主要要求的轧机机架,其破坏形式是弯曲疲劳破坏。疲劳裂纹源常发生在压下螺母孔的过渡圆弧r处(图1.4中的1处),该处的峰值应力最高。但有些轧机(如1200薄板迭轧机)工作十年后,发现在上横梁与立柱过渡圆角处有30mm长的裂纹(图1.4中的2处)。 3.运锭车用于将罩式加热炉中的大钢锭运到初轧机前的受料辊道上,它经受冲击,热锭温度的周期变化与运送中车辆的振动。在一次操作后,发现机架的圆角处有300mm长的裂纹(图1.5),可看出发现裂纹时,裂纹已经历了一段扩展时期。后来,在裂纹尖端钻Φ16mm的止裂孔,从此裂纹没有发展,设备一直在使用中。

Ncode案例

虚拟疲劳分析软件DesignLife应用案例 传统的汽车整车和零部件开发通常都通过产品在试验室中的台架耐久性试验,或试车场道路试验,以验证产品是否满足其设计目标,这一过程周期很长,成本很高,发现问题较晚。在当今的产品开发中,汽车企业越来越多地应用虚拟模拟分析技术,在实物样机出来之前就对其进行疲劳耐久性预测,在设计的早期消除不合格的设计,并通过设计比较,挑选出好的设计。实践证明,进行虚拟寿命分析,能大大加快产品的开发,减少试验的工作量,节省成本。 新一代CAE疲劳分析软件ICE-flow DesignLife是nCode公司的旗舰产品之一。它不仅继承了已经在工程上得到广泛应用的FE-Fatigue的功能特点,而且在软件的使用方便性方面也有了极大的改进。本文首先介绍虚拟寿命分析的一般步骤,然后将重点介绍在汽车零部件疲劳分析中应用DesignLife的几个案例,以帮助读者深入了解并把握虚拟疲劳分析中的一些要点和难点。 典型步骤 疲劳分析是一项较为复杂的工作,通常需要分析者对所分析的问题,以及需要从分析中获得什么样的结果有一个深刻的理解。通常所说的虚拟疲劳分析,指的是基于有限元分析结果的疲劳分析,就是将有限元分析结果,通常是应力应变结果,作为疲劳分析的一个主要输入。通过一个疲劳分析模型,计算出零部件或结构表面的疲劳寿命分布,以帮助判断设计寿命是否达到,或进行寿命优化设计。步骤如下: 1. 选择一个合适的疲劳分析模型 汽车疲劳分析中常用的分析模型有局部应力法、局部应变法、焊点疲劳分析法和焊缝疲劳分析法,另外还有较为复杂的Dang Van多轴安全因子法、振动疲劳分析和高温疲劳分析等。不同的分析方法需要不同的有限元分析结果和材料性能输入。 2. 准备有限元分析结果 一旦疲劳分析模型已经选择,那么需要什么有限元分析结果也将明确。比如,局部应力或应变法通常需要应力结果,而焊点分析法则需要焊点单元的力和力矩。有限元分析通常对每一个作用在零部件或结构中的力和力矩做单位静力线性计算,应力输出结果可以是未平均的,或已平均的节点值,或者单元值。 3. 准备载荷输入数据 使用什么载荷数据对于疲劳分析至关重要,载荷定义了汽车的使用环境,也决定了疲劳分析的结果。比如,载荷输入如果是试车场中采集的信号,那么疲劳分析结果将会是汽车在试验场中行驶的寿命,而不是在公共路面行驶的寿命。特别需要指出的是,对于汽车零部件或结构的疲劳分析,通常需要相对真实的时域载荷数据,以保证疲劳分析结果的合理性。如果无法测得实际的数据,那么多体动力学是分析载荷传递的强有力的工具。

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

交通事故12个典型案例综合分析模板

违法行为与交通事故十二个典型案例综合分析道路交通事故归根结底是人、车、路、环境四个方面的因素失去平衡所造成。一般情况下,汽车驾驶人违法是造成交通事故的主要原因,据有关资料统计,道路交通事故中,由于驾驶人违法负有直接责任的约占70%,而行人和乘车人的责任只占20%。下面结合事故案例,综合分析发生交通事故的原因。 一、违反机动车驾驶人规定的违法行为. 违反机动车驾驶人规定并导致交通事故的违法行为,常见的有疲劳驾驶车辆;酒后或服用影响安全驾驶的药物驾驶车辆;驾驶与准驾车型不相符合的车辆;驾驶车辆时吸烟、接打手机、饮食、攀谈(精力不集中)或做其他有碍安全行车的动作;将车辆交给没有驾驶证的人驾驶等。 1.违法酒后驾驶 (1)酒后驾驶是造成交通事故的首要因素2008年世界卫生组织的事故调查结果显示,约50%-60%的交通事故是由于酒后驾驶造成的;有20%的交通事故是由驾驶人服用药物不当造成嗜睡引起的。 (2)酒后和醉酒后驾驶机动车发生交通事故的生理及心理因素酒的主要成分是酒精(化学名称为乙醇)。而酒精对人体各种器官都有损害,是一种原生质毒物麻醉剂。它作用于高级神经中枢,当人脑及其他神经组织内酒精浓度达到一定程度后,中枢神经活动便逐渐迟钝并延及脊髓神经,先使人的判断力发生障碍,而后四肢活动变得迟缓。具体影响如下: ①反应能力降低。驾驶人饮酒后对外界刺激反应迟缓。例如,驾驶人在没饮酒的情况下发现前方出现危情况,从视觉感知(眼看到)到采取紧急制动的反应时间约为0.7s,饮酒后反应时间则要延制至1.4-2.1s,同速下的制动距离随之延长,肇事的可能性大大增加。另据报导,驾驶人醉酒状开车,则发生事故的可能性为没有饮酒情况下开车的16倍。 ②视觉机能降低。当驾驶人血液中的酒精浓度高于50mg/100mL时,其色觉和视野等视觉机能大幅度下降;当酒精浓度为200mg/l00mL时,颜色感觉能力降到不能正确发现和感知交通信号、标志与标线;同时由于视野范围减小,很多危险信息看不到,因而极易发生事故。 ③触觉和操作能力降低。驾驶人饮酒后由于酒精的麻醉作用,其手、脚的触觉能力降低,当血液中酒精浓度为30mg/100mL时,操作能力开始受影响,

疲劳断裂失效分析

1 5.1疲劳断裂失效的基本形式和特征 5.2疲劳断口形貌及其特征 5.3疲劳断裂失效类型与鉴别 5.4疲劳断裂失效的原因与预防 第5章疲劳断裂失效分析 2?按应力循环次数 当Nf>105时为低应力高周疲劳(通常所指) 当Nf<10 4时为高应力低周疲劳?按服役的温度及介质条件 机械疲劳、高温疲劳、低温疲劳 冷热疲劳、腐蚀疲劳?基本形式 切断疲劳:面心立方在单向压缩、拉伸及扭转条件下多以切断形式破坏 正断疲劳:大多数的金属构件的疲劳失效都是以此形式进行的,特别是体心立方金属 3 ?疲劳断裂的突发性?疲劳断裂应力很低 ?疲劳断裂是一个损伤积累的过程?疲劳断裂对材料缺陷的敏感性?疲劳断裂对腐蚀介质的敏感性 4 典型的疲劳断口一般有三个区,即疲劳源区、疲劳裂纹扩展区和瞬时破断区。疲劳断口的宏观特征与静载破坏的脆性断口相似,无明显的宏观塑性变形。 5 ?疲劳核心是疲劳破坏的起点,它总是位于零件强度最低或应力最高的地方。 ?零件承受弯曲、扭转疲劳负荷时,最大应力区是在零件的表面。 ?零件表面的加工刀痕、凹槽、尖角、台肩等处由于应力集中往往成为疲劳源。 ?如果零件内部存在缺陷,如脆性夹杂物、白点、空洞、化学成分的偏析等,则可能在零件内部产生疲劳源。 1、疲劳核心(或称疲劳源) 6 ù疲劳源的数目可以不止一个,在名义应力较高或是应力集中较为严重时,在高应力区域就可能产生几个疲劳源。 ù疲劳源的位置用肉眼或低倍放大镜就能判断,一般在疲劳区中磨得最光亮的地方。 ù在断口表面同时存在几个疲劳源的情况下,可按疲劳线的密度来确定疲劳源产生的次序,疲劳线的密度越大,表示起源的时间越早。

7 疲劳断口上最重要的特征区域 该区域上常有疲劳断裂独特的宏观标志,如贝纹状、蛤壳状、海滩波纹等。 贝纹线以疲劳源为中心,向四周推进呈弧形线条,垂直于 裂纹扩展方向。 对于光滑试样,疲劳弧线的圆心一般指向疲劳源区。扩展到一定程度时,也可能出现疲劳弧线的转向现象 当试样表面有尖锐缺口时,疲劳弧线的圆心指向疲劳源区的相反方向。 在低周疲劳断口上一般也不常能观察到贝壳状条纹线。 8 $疲劳裂纹达到临界尺寸后发生的快速破断,它的特征与 静拉伸断口中快速破坏的放射区及剪切唇相同,但有时仅出现剪切唇而无放射区。$对于非常脆的材料,此区为结晶状断口,即使是塑性良好的合金钢或铝合金,疲劳断件断口附近通常也观察不到宏观的塑性变形。 9 10 6与静载拉伸断裂时不同,拉压疲劳断裂的疲劳核心多源于表面而不是内部。缺口试样由于缺口根部有应力集中故靠近表面裂纹扩展快,结果形成波浪形的疲劳弧线。高应力导致疲劳稳定扩展区较小,而最终断裂区所占比例较大。 6旋转弯曲的疲劳源区一般出现在表面,但无固定地点,疲劳源可 以为多个。疲劳源区和最后断裂区相对位置一般总是相对于轴的旋转方向而逆转一个角度。而高应力集中时,最终撕裂面移向中心,呈现棘轮花样。交变扭转载荷也出现这种花样 6双向弯曲的疲劳源区可能在零件的两侧表面,最后断裂区在截面内部。在高名义应力下,光滑的和有缺口的零件瞬断区的面积都大于扩展区,且位于中心部位,形状似腰鼓形。随着载荷和应力程度的提高,瞬断区的形状逐渐变形成为椭圆形。在低名义应力下,两个疲劳核心并非同时产生,扩展速度也不一样,所以断口上的疲劳断裂区一般不完全对称,瞬断区偏离中心位置。 11 D第一阶段为切向扩展阶段。在交变应力作用下,使滑移形成的裂纹源扩展形成可观察的裂纹,裂纹尖端将沿着与拉伸轴呈45°角方向的滑移面扩展。该阶段中裂纹扩展范围较 小,一般在2~5个晶粒之内。 D第二阶段为正向扩展阶段。裂纹从原来与拉伸轴呈45 °的滑移面,发展到与拉伸轴呈90 °,该阶段的断口具有引人注目的独特形态-疲劳辉纹。 D第三阶段是由于裂纹扩展到一定长度后,使构件的有效截面减少而造成的一次性快速断裂,断口特征常为韧窝型撕裂。 12疲劳辉纹的一般特点 (1)疲劳裂纹是一系列基本上相平行的条纹,略带弯曲呈波浪形,并与裂纹局部扩展方向相垂直,其凸弧面指向裂纹扩展方向。 (2)在疲劳裂纹稳定扩展阶段,所形成的每一条辉纹相当于一次载荷循环。辉纹确定了裂纹前沿线在前进时的位置。(3)疲劳辉纹的间距随应力场强度因子而变化,应力越大,间距越宽;反之应力越小,则间距越窄。 (4)疲劳断口的微观范围内,通常由许多大小不同、高低不一的小断块组成,每一小断块上的疲劳辉纹连续且平行,而相邻小断块上的疲劳辉纹不一定连续和平行。(5)断口的两匹配面上的辉纹基本对应。

失效案例分析

工程材料失效分析 姓名:丁静 学号:2

案例一乙烯裂解炉炉管破裂原因分析某石化公司化工一厂裂解车间CBL一Ⅲ型乙烯裂解炉于1998年9月投入运行,1 999年4月检查发现一根裂解炉管发生泄漏。为查明炉管泄漏原因,对失效炉管进行了综合分析。CBL一Ⅲ型乙烯裂解炉炉管工作温度为1050~llOO℃,材质化学成分(质量分数)为0.35~0.60%C;1.0%~2.0%Si;1.O%~1.50%Mn;33%~38%Ni;23%~28%Cr 及微量Nb.Ti.Zr等。宏观观察失效炉管表面可以看出,泄漏部位炉管内、外壁均有两个孔坑,两个孔坑在内、外表面相互对应,孔坑边缘金属略有凸起,呈火山口状。仔细观察发现,在内壁两个孔坑附近表面有一约3 mm xl mm凸棱,凸棱略高于附近炉管表面(图11-1、图11-2)。

化学成分分析结果表明,失效炉管化学成分符合厂家技术要求。金相检查结果表明,失效炉管显微组织基体为奥氏体,晶界分布有骨架状碳化物,晶内和晶界分布有一定数量的颗粒状碳化物(图11-3)。 能谱分析结果表明,这些颗粒状碳化物为Nb.Zr.Ti或Cr的

碳化物。晶界分布的骨架状碳化物系以铬为主的碳化物。首先,采用扫描电镜观察了泄漏部位炉管内、外表面的放大形貌,观察发现,所有孔坑均存在白亮色块状物。通常,不导电的非金属氧化物或金属氧化物在电子束作用下因积累电荷而呈白亮色。能谱分析结果表明,白亮色块状物含有很高的稀土铈。分析认为,白亮色块状物为稀土氧化物。在泄漏部位,分别在内壁凸棱和孔坑两处,垂直于内表面制备了炉管横截面金相试样。可以看出,不论是凸棱对应部位,还是炉管内、外表面两个孔坑之间,炉管横截面均分布有宏观深灰色金属夹杂物,夹杂物在内、外表面两个孔坑之间连续贯通(图11-4)。 在扫描电镜下进一步观察、分析结果表明,两个横截面深灰色区域同样是稀土铈的氧化物(图11-5)。采用微型拉伸试样,对失效炉管进行了1100℃短时高温拉伸试验,其结果如表11-1所示。可以看出,失效炉管1100℃高温短时拉伸性能低于厂家相关技术要求。

ansys实例命令流-疲劳分析命令流

/FILNAME,Structure ,1 !定义工作文件名。/TITLE, Fatigue Analysis !定义工作文件标题。!进入前处理。 /PREP7 ET,1,PLANE82 !定义单元。 !定义材料属性。 MPTEMP,,,,,,,, !定义材料属性。MPTEMP,1,0 MPDATA,EX,1,,2.06e5 MPDATA,PRXY,1,,0.3 !建立几何模型。 K,1,,,, K,2,,-100,, K,3,150,-60,, K,4,150,-45,, K,5,300,-30,, K,6,300,,, FLST,2,6,3 FITEM,2,1 FITEM,2,2 FITEM,2,3 FITEM,2,4 FITEM,2,5 FITEM,2,6 A,P51X !以上几何模型完成。 !网格划分。 FLST,5,6,4,ORDE,2 FITEM,5,1 FITEM,5,-6 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1,5, , , , , , ,1 !网格控制完成。!网格单元分配划分完成。 MSHAPE,0,2D MSHKEY,0 CM,_Y,AREA ASEL, , , , 1 CM,_Y1,AREA CHKMSH,'AREA' CMSEL,S,_Y AMESH,_Y1

CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 !以上网格单元分配划分完成。 !施加约束。 FLST,2,1,4,ORDE,1 FITEM,2,1 /GO DL,P51X, ,ALL, FLST,2,1,4,ORDE,1 FITEM,2,6 /GO SFL,P51X,PRES,2, !施加均布载荷。FINISH /SOL /STATUS,SOLU SOLVE !求解。 /POST1 !输入S-N曲线。 FP,1,100,200,500,1000,1500,2000 FP,7,10000,15000,30000,60000,100000,150000 FP,13,200000,250000,300000,350000,400000,450000 FP,19,480000,500000 FP,21,250,240,230,220,210,200 FP,27,195,190,170,150,130,100 FP,33, 90, 80,60,50,30,25 FP,39,18,12 !定义节点号(参数化)。 *SET,node_num,node(150,-45,0) !指定第一个应力位置。 FL,1,node_num,,,, !从数据库中提取应力值。 FSNODE,node_num,1,1, FS,node_num,1,2,1,0,0,0,0,0,0, !存储节点应力。FE,1,100000,2,even1 !指定事件循环次数。FTCALC,1

疲劳损坏案例与分析

疲劳损坏案例与分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

疲劳损坏案例与分析 (一) 胡讷敏 疲劳失效(或称“疲劳损坏”)是承受交变应力构件的一种失效形式。在机器设备应用中,疲劳失效可以造成小到齿轮、轴承一类的零件损坏,大到整台设备报废,甚至可能发生同时导致其他财产以致人身损害事故发生。在机器设备向大型、精密、高速、高价值发展的今天,疲劳失效以其破坏性巨大和不容易发现、预防更具风险。在保险实务中,若非对专业有所研究,一般对机器设备的疲劳损坏只是一种通俗理解,或者说只是一种概念性的了解。而仅以通俗理解或概念性的的知识分析保险责任、处理赔付案件,其道理自然不免苍白,所以在对疲劳失效导致的设备损坏的保险责任分析上一直是难题。这里将陆续介绍几个机损险项下疲劳损坏事故处理案例,同时提出个人见解,旨在抛砖引玉,希望引起注意与讨论。 案例一:压缩机曲轴断裂案 这是一座中型化肥生产企业曾发生的事故:夜班工作时,正在运转中的氮氢压缩机主轴意外断裂,造成压缩机严重损坏,被保险人要求保险人在机器损坏险保单下予以赔偿。 因本案损失较大和专业性较强,接到报案后,保险人随即委托公估公司查勘处理。经过查勘与现场了解,本案事故受损设备是一台功率为1300kw的氮氢压缩机,在夜班工作时发生巨响,随即停机,当时看到因巨大的震动使压缩机扭转位移、曲轴箱等部分箱体发生破裂。拆开检查看到压缩机曲轴断裂,其他零件如

连杆、活塞拉杆、轴瓦、瓦座、机体、曲轴箱等一大部分零件断裂或明显变形。经过对曲轴断口检查分析,确定为疲劳断裂,进而判定该机事故发生原因和过程为,运转中的压缩机曲轴疲劳断裂后,运动的断裂件对相邻零件的撞击以及强大的惯性与震动力导致其它零部件断裂或变形损坏。 在对保险责任的分析判定上,公估人依据技术分析和对保单条款的理解,在确认事故原因是疲劳损坏的基础上,认为疲劳损坏属于机器设备运行必然引起的后果,随后根据保单关于除外责任条款中关于“机器设备运行必然引起的后果,如自然磨损、氧化、腐蚀、锈蚀、孔蚀、锅垢等物理性变化或化学反应”的约定,认为不属于保险责任,建议保险人对本案事故损失拒赔处理。最终保险人没有完全采纳公估人的意见,而是与被保险人协议赔偿。 案件处理分析: 首先可以确认公估人对事故原因的分析,即判断“疲劳损坏”是正确的。简单地说,疲劳损坏是在材料受力小于其静强度极限的情况下,由于交变应力多次重复的作用,对于轴类零件会在表面或某一应力集中的点发生初始裂纹(称“疲劳源”),由于切口作用逐渐发展、扩大,则未断裂的实体连接部分承受的应力随之逐渐增加,直至超过其静强度极限后断裂。从曲轴断口的照片可以看到,A 点位置是疲劳初期裂纹即疲劳源,自此裂纹逐渐向外发展;B区域可见裂纹以疲劳源为中心,波纹状向外发展;C区断面粗糙,是最后一次性断裂的表面。(如下图所示) 疲劳损坏无疑是一种渐变的过程,但是疲劳损坏可否认为是“机器设备运行必然引起的后果”则是需要慎重考虑的。根据对疲劳失效的研究,其形成条件很复杂,除交变应力频率因素外,疲劳强度与材料性能、强度、表面质量以及设计

汽轮机轴系损坏事故案例分析

汽轮机轴系损坏事故案 例分析 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

汽轮机轴系损坏事故案例分析【事故机组概况】 阜新电厂01号汽轮机CCl140/N200一12.7/535/535型超高压一次中间再热两段抽汽凝汽式机组,由哈尔滨汽轮机厂制造,出厂日期96年,出厂编号72N9;发电机型号.QFSN一200—2,出厂编号3—60237,出厂日期为95年10月,由哈尔滨电机厂制造;锅炉型号为HG 一670/13.7一YMl6,出厂编号2339,出厂日期1995年3月,由哈尔滨锅炉厂制造。 该机组1996年3月安装,96年11月2日首次并网发电,同年12月18日正式移交生产;到8月19日事故时止,累计运行15151小时,发电量27.06亿千瓦时。 【事故经过】 1999年8月19日0时20分,运行五值接班,机组负荷为155MW运行;零时30分,值长令加负荷到165MW;1时整,值长令加负荷到170MW,主蒸汽压力为12.6Mpa,主蒸汽温度535℃,蒸汽流量536.9吨/时。

47分30秒,“高、中压主汽门关闭”、“抽汽逆止门关闭“光字牌报警,监盘司机喊“机跳了”。47分32秒,交流、直流润滑油泵联动良好。47分37秒,发电机出口开关5532跳闸,有功负荷到“0”,6KV厂用电备用电源联动成功。 值长来电话向单元长询问情况,单元长告:“01号机、发电机跳闸”。值长当即告:“立即查明保护动作情况,对设备详细检查;有问题向我汇报“。单元长令:“汽机、电气人员检查保护及设备情况。”司机助手到保护盘检查本特利保护,回来后向单元长汇报:“没有发现异常。”汽机班长检查完设备汇报单元长说:“设备检查没问题。”电气班长确认后汇报:“发电机跳,6KV厂用正常联动备用电源,电气保护无动作,只有‘热工保护动作’光字牌来信号。” 单元长向值长汇报:“检查保护和设备都没发现问题。”值长告:“如无异常,可以恢复。”随即单元长告汽机班长:“汽机挂闸,保持机3000转/分。”汽机班长到就地机头处操作,手摇同步器由30mm退至到“0’’位,同时令司机助手去检查设备情况,助手回来后汇报:“机组检查正常,主轴在转动中。”这时班长操作同步器增加行程时发现高、中压主汽门未开,告助手去复归“热工保护动作自保持复归按钮”,当检查就地压力表立盘时发现调速油压很低,对从控制室返回来的助手说:“把调速油泵转起来。”

职业倦怠案例分析

[分享]实务社会工作者职业倦怠研究——以深圳为例 (二)职业倦怠的典型案例 1.受访者J的职业倦怠历程分析 (l)受访者J的工作历程介绍 作为应届毕业生,受访者J自2008年2月任职于深圳某社工机构,目前担任两个社工点的督导助理,从事社会工作职业近三年时间,一直留在目前团队中。J职业倦怠历程的源头来自工作理想与现实环境的巨大落差。上岗之初,和同事L被分派到区民政局的某个科室,J整天都要帮助科室工作人员做一些端茶倒水、打字复印传真等杂事,而L天天没有事情做,就一个人呆在会议室里面,科室开会时就被赶出去。J觉得社工身份不被认同和尊重,自己是外派人员,科室也不会关心你的感受,每天的工作觉得很没有意义,还要面对服务指标的压力,行政的压力。 香港督导也很无奈,说来到你们深圳,听你们说的最多的就是郁闷这个词。直到有一次科室要做一个邻里互助的项目,科室工作人员不知道怎么做项目,这时候J和L就主动提出可以帮忙做个计划书,后来市里开会,J就帮科长给其他各区的作解释,市民政局领导表示社工很有用,科长也很高兴,觉得社工还是有用的,J等自此才开始做一些专业上的工作。 2008年底时,J怀着现在做公务员的杂事,不如自己去做公务员的想法,去参加了公务员考试,并通过了面试环节。恰在此时,在香港督导等的努力下,区民政局同意J等五名社工作为一个小组被派往

该区的S街道成立社工服务点,直接为街道辖区老人、青少年和外来工提供服务,2009年3月时经过考虑J还是选择留下来。 2009年4月成立了社工服务点后,J被同组的社工推选为小组长,承担了与机构,民政局,街道等各方的协调与沟通,随着角色的转变,但是机构并没有明确小组长的权利和职责,考虑到要承担可能的后果J在做决定时往往很有压力,待他习惯了以后,大家也逐渐认同了他,这种压力才逐渐消除。因为条件的限制,J等社工在社区开展活动和小组较多,个案很有限,活动做多了之后感到厌倦,感觉工作只是完成指标,最需要帮助的人得不到帮助,也没有能力和资源去帮助,不需要帮助的反而又要去帮助,觉得没意思,年底J又有离开的打算。于是联系了汉川的一家机构,谈好了过去以后的打算,适逢春节期间,家里出了点事情,考虑到过去坟川后,工资要低很多,J觉得无法跟父母开口,刚好年底参加了督导助理选拔,恰好又选上了,认为可以在这边争取一些发展,就留了下来。 2010年年底,J遇到一个私人的问题,写好了离职报告,考虑到自己的职业自己的理想,还有一起呆了近三年的团队,仍然留了下来,想去改变一些东西,也主动与机构各个部门、见习督导去沟通,去开拓一些工作。 (2)受访者J的职业倦怠历程分析 从以上论述不难看出,在个案J工作经历中,随着工作环境的不断变化,J对工作的认同不断变化,存在一些关键事件让J陷入职业倦怠,J也根据具体情况,做出应对,尝试从倦怠状态中脱离出来。

高周疲劳失效分析

发动机叶片高周疲劳失效分析 090605 鲍海滨 摘要:为了降低航空发动机叶片的高循环疲劳失效。分析了导致高循环疲劳失效的原因、失效准则,以及一种研究材料多轴高周疲劳的新途径。 关键词:航空发动机叶片高循环疲劳失效 1 引言 航空发动机结构完整性和可靠性设计,对满足现代高性能航空发动机高推重比(高功质比)、高适用性、高可靠性、耐久性和低成本的要求起着至关重要的作用。采用先进的气动设计和先进结构、新材料、新工艺是现代高性能航空发动机最重要的特征,而无论是先进的气动设计,还是先进的结构、材料和工艺,都必须建立在结构完整性和可靠性的基础上。 航空发动机结构完整性和可靠性方面的不足严重地制约着在研发动机的研制目标和周期。在中国航空发动机研制过程中,科研人员最深刻的体会是,相对而言实现发动机性能指标的周期要短一些,也有一些有效的办法,而大量的结构完整性和可靠性问题特别是叶片断裂故障却显著地影响着发动机的质量和设计定型的周期。 导致叶片断裂失效的原因是多方面的[1,2],根据不同的参考标准和参量,疲劳断裂二级失效模式如图1所示[3] 据统计,在燃气涡轮发动机中,由高循环疲劳引发的事故约占总事故的25%。因此,最大限度地降低航空发动机叶片高循环疲劳失效是最现实、亟待解决的任务。

根据频率 根据应力大小 根据温度 穿晶型疲劳断裂 沿晶型疲劳断裂 剪切型疲劳断裂 正断型疲劳断裂 晶格型 非晶格型 机械疲劳断裂 热疲劳断裂 拉—压疲劳断裂 弯曲疲劳断裂 扭转疲劳断裂 接触疲劳断裂 低温疲劳断裂 高温疲劳断裂 机械疲劳断裂 腐蚀疲劳断裂 应力疲劳断裂 应变疲劳断裂 高周疲劳断裂 低周疲劳断裂 高频疲劳断裂 低频疲劳断裂 室温疲劳断裂 图1 疲劳二级失效模式分类 2 高周疲劳失效的影响因素 2.1名义应力的影响 很早的时候就确认名义应力会引起失效。125年前Wohler[4]发现随着名义拉应力的增加引起失效的交变应力幅将随之减少。后来Gerber[5]提出抛物线关系理论,即应力幅与名义应力间存在着抛物线关系,相应于零幅值交变应力的名义应力极限等于材料的拉伸极限。Goodmen用对称交变应力和名义应力的线性关系代替抛物线关系增加了设计的安全裕度。事实上,设计中很多有疲劳极限低于此直线值,Goodmen曲线实为一种保守设计。Miller用循环应力代替但相对屈服应力对这一理论作了另一种解释。 令人惊讶的是,这些理论中的关系式没有一条被试验验证。而我们却已把这些理论广泛用于工程实际,因此使用诸如Goodmen这些保守理论并非有什么不合理。还有一种情况我们引起注意,即压应力并不减少改变许用的交变载荷。事实上,平均压应力常会增加疲劳强度,所以对于设计计算,疲劳强度考虑成与零平均应力的疲劳强度相一致。

相关文档