文档视界 最新最全的文档下载
当前位置:文档视界 › 甲醇合成催化剂反应机理及应用1

甲醇合成催化剂反应机理及应用1

甲醇合成催化剂反应机理及应用1
甲醇合成催化剂反应机理及应用1

甲醇合成催化剂的反应机理及应用

新疆广汇新能源有限公司新疆哈密839000 杨林君

摘要:本文介绍了甲醇合成反应的机理,合成催化剂的制备;对XNC-98催化剂的使用情况做了介绍。

关键词:甲醇合成催化剂

甲醇是重要的有机化工原料,碳一化学的母体,广泛用于生产塑料、纤维、橡胶、染料、香料、医药和农药等,还是重要的有机溶剂。甲醇在发达国家其产量仅次于乙烯、丙烯和苯,居第四位。甲醇用作汽车发动机燃料,所谓甲醇汽油,今后随着石油不断开采资源日渐减少,直至枯竭,特别在我国少油多煤的资源下,甲醇用作汽车燃料将达亿吨/年以上,跃升化工产品的首位。研究开发应用推广近代甲醇合成工艺与合成塔技术和建设大型化生产装置,成为我国甲醇工业大发展的必由之路[1]。

随着甲醇工业的发展,以低压法铜基催化剂为代表的甲醇合成技术得到了很大的发展。国内近年来在合成催化剂的反应机理、性能及应用等方面研究不断深入,开发出具有世界先进水平的合成催化剂。

一甲醇合成反应的机理

甲醇合成反应机理与活性中心的研究一直是甲醇合成反应过程的研究重点,其对高效催化剂的开发、实验现象本质特征的解释和反应结果的预测都具有重要意义。一个合理的甲醇合成反应历程能够为反应条件的优化以及催化剂制备过程等催化体系的改进提供理论依据,为工业化生产提供理论支撑。按合成甲醇直接碳源的不同,将机理划分为以下3种:CO与CO2共同作为直接碳源机理、CO作为直接碳源机理以及CO2作为直接碳源机理[2]。

1.1 CO直接作为碳源机理

长期已来,在铜基催化剂上加氢合成甲醇的碳源问题都是研究者争论的焦点问题。Herman 等研究了CO/H2体系在Cu/ZnO/Al2O3催化剂上的反应,认为反应的活性中心是Cu+,H2的解离吸附发生在ZnO上,并提出以下反应机理:

CO+*(Cu2O)→CO*(Cu2O)

H2+2*(ZnO)→2H*(ZnO)

CO*(Cu2O)+H*(ZnO)→HCO*(Cu2O)+*(ZnO)

H*(ZnO)+HCO*(Cu2O)→CH2O*(Cu2O)+*(ZnO)

2H*(ZnO)+CH2O*(Cu2O)→CH3OH*(Cu2O)+2*(ZnO)

CH3OH*(Cu2O)→CH3OH+*(Cu2O)

式中:*指催化剂的活性吸附位。

1.2 CO2直接作为碳源机理

Graeme等[3]研究了Cu/ZnO/SiO2催化剂上CO2加氢合成甲醇反应机理,认为CO2在反应中首先与吸附在Cu上的表面氧负离子反应生成碳酸根离子,碳酸根离子再通过加氢脱氧反应生成甲酸盐,其中甲酸盐加氢生成甲氧基的反应为反应的控速步骤。反应机理见图1:

1.3 CO 和CO 2

作为碳源机理

殷永泉等[2]采用原位红外表征手段,考察了Cu/ZnO/Al2O3催化剂上的CO/CO2加氢反应,推断出如下反应机理,见图2。CO/CO2的加氢反应可能从不同的物种开始。CO 加氢时,CO 首先吸附在催化剂上,然后通过加氢依次生成甲酰基、甲酸基、甲氧基和甲醇;还有一部分CO 与表面氧结合生成CO2,或与表面羟基结合,直接生成甲酸盐。而CO2加氢时,CO2首先吸附于催化剂表面,然后加氢,依次生成碳酸盐、甲酸盐、甲氧基和甲醇。

二 甲醇合成催化剂

2.1 合成催化剂的制备

合成催化剂的制备方法主要有:浸渍法、浸渍沉淀法、溶胶-凝胶法、微乳液法、共沉淀法和酸-碱交替法等,其中以共沉淀法、浸渍法和溶胶-凝胶法较为常用。

2.2 甲醇合成催化剂发展

图1 CO 2直接作为碳源反应机理

图2 CO 和CO 2作为碳源反应机理

国内近些年对甲醇催化剂的研究相当多。如:南化院自主开发的NC307型甲醇合成催化剂具有机械强度好、还原温度低、反应活性和甲醇选择性高等特点;西南院开发的C302-2型和XNC-98型甲醇催化剂,稳定性非常好,同时CO2转化率也比较高;齐鲁石化研究院开发的QCM-01型甲醇催化剂,完成了1000h立升级侧流试验。

2.3 助剂的影响

目前,铜基催化剂是CO或CO2加氢合成甲醇的通用催化剂,其中CuO/ZnO2催化剂活性和选择性都比较好,但此催化剂寿命短,稳定性也不高。在铜基催化剂中引入助剂可在很大程度上改善催化剂的反应性能,进而提高甲醇收率。这是因为金属氧化物助剂的加入提高了催化剂比表面积,表面积增大了CuO分散的就更好,反应活性中心就多,从而提高了催化剂的反应性能。虽然已有研究者对助剂引入甲醇催化剂做了很多研究,但系统完整的研究助剂作用仍是非常必需的,可为进一步优化甲醇催化剂提供更好的理论指导。目前研究的助剂主要有Ce、Zr、Ti、Mn、La、B、Ga和Pd等。

三甲醇合成催化剂的应用

甲醇合成气(主要成分是H2、CO和CO2)在催化剂的作用下,反应生成甲醇,其反应式如下:

CO+2H2→ CH3OH+90.73kJ/mol

CO2+3H2→ CH3OH+H2O+48.02kJ/mol

反应是放热而且可逆的。从动力学角度看,升高温度对反应速度有利;而从热力学角度看,则希望反应在较低温度下进行。所以,甲醇合成一直致力于开发低温活性高的甲醇合成催化剂。另一方面,甲醇合成反应是分子减少的反应,升高反应压力有利于反应向生成甲醇的方向进行,但随反应压力的升高,甲醇合成动力消耗随之增大,而且有机杂质生成量增加。因此,甲醇合成催化剂的研究不仅要考虑怎样降低反应温度,而且要考虑怎样使其在较低压力下也有较高的活性。

在甲醇生产过程中新疆广汇新能源有限公司不断探索工程应用技术,积极采用新产品和新技术,取得了工业应用好成绩。我公司使用的XNC-98合成催化剂甲醇合成催化剂在25000t/a甲醇系统中连续生产12个月,共产精甲醇234090.94t,目前甲醇产量和质量稳定,催化剂活性良好。

3.1 XNC-98的性能指标

表1 催化剂的性能指标

3.2 催化剂的特点

3.2.1 活性高

可在进口温度190℃左右的条件下,较长时期运行;在床层温度240~300℃条件下长期运行三年以上。

3.2.2 催化剂的选择性好

甲醇合成的生产过程中副产物的生成与反应温度、合成气组成有密切关系;而结蜡与操作条件以及催化剂本身有关,即:杂质生成量随着温度升高而增加。杂质生成量随着CO 含量的升高而增加。杂质生成量随着CO2含量的升高而降低。杂质生成量随空速增加而降低。

石蜡的生成:较低的温度、较低的空速、设备管道带来的杂质、催化剂本身杂质较高。在所有使用XNC-98的33套甲醇装置中除一套以外,均未发现明显结蜡现象,这点远远优于其他催化剂(这主要得益于Fe和S等杂质含量比使用其他催化剂低一倍以上)。

3.2.3 升温还原时间短

最快的40小时,一般要求约50小时,节约了开车时间。

3.2. 4 催化剂堆密度合理

国内外甲醇催化剂的外形大同小异,其外表面积差别不大,因此催化剂有效内表面积的大小是决定催化剂活性好坏的一个重要因素。XNC-98的堆密度1.30kg/L,与目前世界最先进催化剂如:ICI51-8和MK-121相近。

3.3使用情况及评价

我公司使用XNC-98催化剂一年多,在年产25000T/a的装置中共生产了234090.94吨精甲醇,目前催化剂活性很好。

XNC-98催化剂还原结束后,低负荷生产时合成引气58000~60000Km3左右,合成塔压在4.8~5.0Mpa之间,合成塔温控制在225℃,合成汽包的压力在1.6Mpa左右,此时能生产粗甲醇20T左右,此时合成塔入口及出口气体组份如下表

从上表中可以看出入口CO与出口之差2.44,而CO2入口与出口之差0.23,H2入口与出口之差7.53,环路的醇净值是1.64

XNC-98催化剂用了一年多了,现在生产合成引气58000~60000Km3左右,合成塔压在6.5~7.0Mpa之间,合成塔温控制在238℃,合成汽包的压力在2.1Mpa左右,此时能生产粗甲醇29T左右,合万塔入口及出口气体组份如下表:

差3.99,环路的醇净值是3.27。

XNC-98催化剂运行一年多从分析数据及产量上看,催化剂活性仍处于活性中期,并没有明显的下降趋势。

四结论

1、随着国内对甲醇合成反应机理的研究不断深入,合成催化剂结构、制备方法的不断进

步,合成催化剂的性能以达到或超过世界先进水平。

2、XNC-98合成催化剂具有活性高,选择性好,可有效抑制副反应等特点。

参考文献:

[1] 2007-2008年中国甲醇行业分析及投资咨询报告(上下卷).中国投资咨询网,2007年7月.

[2] 殷永泉,肖天存,苏继新,等.CO和CO2在CuO/ZnO/Al2O3催化剂上加氢反应机理的原

位红外研究[J].燃料化学学报,1999,27(6):565-571.

[3] Graeme J Millar,Rochester C H.An in situ high pressure FT-IR study of CO2/H2 interactions

with model ZnO/SiO2,Cu/SiO2and Cu/ZnO/SiO2methanol synthesis catalysts[J].Catalysis Letters,1992(07):289-295.

催化原理

一、催化剂的定义与催化作用的特征 1.定义:凡能加速化学反应趋向平衡,而在反应前后其化学组成和数量不发生变化的物质。2.特征:①加快反应速率;②反应前后催化剂不发生化学变化(催化剂的化学组成--不变化物理状态---变化(晶体、颗粒、孔道、分散))③不改变化学平衡④同时催化正、逆反应。⑤对化学反应有定向选择性。 二、催化剂的评价指标 工业催化剂的四个基本指标:选择性、稳定性、活性、成本。 对工业催化剂的性能要求:活性、选择性、生产能力、稳定性、寿命、机械强度、导热性能、形貌和粒度、再生性。 1.活性催化剂使原料转化的速率:a=-(1/w)d(nA)/dt 2.生产能力--时空收率:单位体积(或单位质量)催化剂在单位时间内所生产的目的产物量Y v,t=n p/v.t or Y W,t=n p/w.t 3.选择性:目的产物在总产物中的比例S=Δn A→P/Δn A=(p/a).(n P/Δn A) =r P/Σr i 4.稳定性:指催化剂的活性随时间变化 5.寿命:是指催化剂从运行至不适合继续使用所经历的时间 三、固体催化剂催化剂的组成部分 主催化剂---活性组份:起催化作用的根本性物质,即催化剂的活性组分,如合成氨催化剂中的Fe。其作用是:化学活性,参与中间反应。 共催化剂:和主催化剂同时起作用的组分,如脱氢催化剂Cr2O3-Al2O3中的Al2O3。甲醇氧化的Mo-Fe催化剂。 助催化剂:它本身对某一反应无活性,但加入催化剂后(一般小于催化剂总量10%)能使催化剂的活性或选择性或稳定性增加。加助催化剂的目的:助活性组份或助载体。 载体:提高活性组份分散度,对活性分支多作用,满足工业反应器操作要求,满足传热传质要求。 四、固体催化剂的层次结构 初级粒子:内部具有紧密结构的原始粒子; 次级粒子:初级粒子以较弱的附着力聚集而成-----造成固体催化剂的细孔; 催化剂颗粒:次级粒子聚集而成-----造成固体催化剂的粗孔; 多孔催化剂的效率因子:η=K多孔/K消除内扩散=内表面利用率<1 五、催化剂的孔内扩散模型 物理吸附:分子靠范德华力吸附,类似于凝聚,分子结构变化不大,不发生电子转移与化学键破坏。 努森扩散(微孔扩散):当气体浓度很低或催化剂孔径很小时,分子与孔壁的碰撞远比分子间的碰撞频繁,扩散阻力主要来自分子与孔壁的碰撞。散系数D K=9700R(T/M)0.5 式中:R是孔半径,cm; T是温度,K;M是吸附质相对分子量。 体相扩散(容积扩散):固体孔径足够大,扩散阻力与孔道无关,扩散阻力是由于分子间的碰撞,又称分子扩散。体相扩散系数D K=νγθ/(3τ)式中ν、γ 分别是气体分子的平均速率和平均自由程;θ 固体孔隙率;τ 孔道弯曲因子,一般在2~7。 过渡区扩散:介于Knudsen扩散与体相扩散间的过渡区。分子间的碰撞及分之与孔道的碰撞都不可忽略 构型扩散:催化剂孔径尺寸与反应物分子大小接近,处于同一数量级时,分子大小发生微小变化就会引起扩散系数发生很大变化。例如:分子筛择形催化 六、催化过程的分类 均相催化:反应物和催化剂处于同一相

合金催化剂及其催化作用和机理

合金催化剂及其催化作用 金属的特性会因为加入别的金属形成合金而改变,它们对化学吸附的强度、催化活性和选择性等效应,都会改变。 (1)合金催化剂的重要性及其类型 炼油工业中Pt-Re及Pt-Ir重整催化剂的应用,开创了无铅汽油的主要来源。汽车废气催化燃烧所用的Pt-Rh及Pt-Pd催化剂,为防止空气污染作出了重要贡献。这两类催化剂的应用,对改善人类生活环境起着极为重要的作用。 双金属系中作为合金催化剂主要有三大类。第一类为第VIII族和IB族元素所组成的双金属系,如Ni-Cu、Pd-Au等;第二类为两种第IB族元素所组成的,如Au-Ag、Cu-Au等;第三类为两种第VIII族元素所组成的,如Pt-Ir、Pt-Fe等。第一类催化剂用于烃的氢解、加氢和脱氢等反应;第二类曾用来改善部分氧化反应的选择性;第三类曾用于增加催化剂的活性和稳定性。 (2)合金催化剂的特征及其理论解释 由于较单金属催化剂性质复杂得多,对合金催化剂的催化特征了解甚少。这主要来自组合成分间的协同效应(Synergetic effect),不能用加和的原则由单组分推测合金催化剂的催化性能。例如Ni-Cu催化剂可用于乙烷的氢解,也可用于环己烷脱氢。只要加入5%的Cu,该催化剂对乙烷的氢解活性,较纯Ni的约小1000倍。继续加入Cu,活性继续下降,但速率较缓慢。这现象说明了Ni与Cu之间发生了合金化相互作用,如若不然,两种金属的微晶粒独立存在而彼此不影响,则加入少量Cu后,催化剂的活性与Ni的单独活性相近。 由此可以看出,金属催化剂对反应的选择性,可通过合金化加以调变。以环己烷转化为例,用Ni催化剂可使之脱氢生成苯(目的产物);也可以经由副反应生成甲烷等低碳烃。当加入Cu后,氢解活性大幅度下降,而脱氢影响甚少,因此造成良好的脱氢选择性。 合金化不仅能改善催化剂的选择性,也能促进稳定性。例如,轻油重整的Pt-Ir催化剂,较之Pt催化剂稳定性大为提高。其主要原因是Pt-Ir形成合金,避免或减少了表面烧结。Ir有很强的氢解活性,抑制了表面积炭的生成,维持和促进了活性。

催化剂及其作用机理

1基本概念 金属氧化物催化剂常为复合氧化物(Complex oxides),即多组分氧化物。如VO5-MoO3,Bi2O3-MoO3,TiO2-V2O5-P2O5,V2O5-MoO3-Al2O3,MoO3-Bi2O3-Fe2O3-CoO-K2O-P2O5-SiO2(即7组分的代号为C14的第三代生产丙烯腈催化剂)。组分中至少有一种是过渡金属氧化物。组分与组分之间可能相互作用,作用的情况常因条件而异。复合氧化物系常是多相共存,如Bi2O3-MoO3,就有α、β和γ相。有所谓活性相概念。它们的结构十分复杂,有固溶体,有杂多酸,有混晶等。 就催化剂作用和功能来说,有的组分是主催化剂,有的为助催化剂或者载体。主催化剂单独存在时就有活性,如MoO3-Bi2O3中的MoO3;助催化剂单独存在时无活性或很少活性,但能使主催化剂活性增强,如Bi2O3就是。助催化剂可以调变生成新相,或调控电子迁移速率,或促进活性相的形成等。依其对催化剂性能改善的不同,有结构助剂,抗烧结助剂,有增强机械强度和促进分散等不同的助催功能。调变的目的总是放在对活性、选择性或稳定性的促进上。 金属氧化物主要催化烃类的选择性氧化。其特点是:反应系高放热的,有效的传热、传质十分重要,要考虑催化剂的飞温;有反应爆炸区存在,故在条件上有所谓“燃料过剩型”或“空气过剩型”两种;这类反应的产物,相对于原料或中间物要稳定,故有所谓“急冷措施”,以防止进一步反应或分解;为了保持高选择性,常在低转化率下操作,用第二反应器或原料循环等。 这类作为氧化用的氧化物催化剂,可分为三类:①过渡金属氧化物,易从其晶格中传递出氧给反应物分子,组成含2种以上且价态可变的阳离子,属非计量化合物,晶格中阳离子常能交叉互溶,形成相当复杂的结构。②金属氧化物,用于氧化的活性组分为化学吸附型氧物种,吸附态可以是分子态、原子态乃至间隙氧(Interstitial Oxygen)。③原态不是氧化物,而是金属,但其表面吸附氧形成氧化层,如Ag对乙烯的氧化,对甲醇的氧化,Pt对氨的氧化等即是。 金属硫化物催化剂也有单组分和复合体系。主要用于重油的加氢精制,加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。金属氧化物和金属硫化物都是半导体型催化剂。因此由必要了解有关半导体的一些基本概念和术语。 2半导体的能带结构及其催化活性 催化中重要的半导体是过渡金属氧化物或硫化物。半导体分为三类:本征半导体、n-型半导体和p型半导体。具有电子和空穴两种载流子传导的半导体,叫本征半导体。这类半导体在催化并不重要,因为化学变化过程的温度,一般在300~700℃,不足以产生这种电子跃迁。靠与金属原子结合的电子导电,叫n-型(Negative Type)半导体。靠晶格中正离子空穴传递而导电,叫p-型(Positive Type)半导体。 属n-型半导体的有ZnO、Fe2O3、TiO2、CdO、V2O5、CrO3、CuO等,在空气中受热时失去氧,阳离子氧化数降低,直至变成原子态。属于p-型半导体的有NiO、CoO、Cu2O、PbO、Cr2O3等,在空气中

催化剂及其基本特征

催化剂及其基本特征 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1、催化剂及其基本特征 催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性 指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。 5、何谓B酸和L酸,及其简便的鉴定方法 能够给出质子的都是酸,能够接受质子的都是碱,Brnsted 定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。 6、如何利用红外光谱法鉴定B酸和L酸 7、如何利用碱滴定法测定固体酸的酸量 就是把固体酸催化剂粉末悬浮于苯溶液中,其中加入指示剂,用正丁胺进行滴定,使用不同pKa值的各种指示剂,就可通过胺滴定来测定各种酸强度的酸量,这样测得的酸量为B酸和L酸的总和。对于有颜色的样品,可用分光光度计法或掺入已知酸强度的白色固体予以稀释,也可用胺量热滴定法来测定有色或黑色固体酸样品的酸量。 8、如何利用CO2吸附法测定固体碱的碱量 就是在TPD装置上将预先吸附了CO2的固体碱在等速升温,并通入稳定流速的载气条件下,检测一定温度下脱附出的酸性气体,得到TPD曲线。这种曲线的形状、大小及出现最高峰的温度值,都与固体碱的表面碱性有关,从而确定碱量。 9、简述固体酸催化剂的催化作用机理。 固体酸、碱催化剂,如硅铝胶、分子筛、MgO-SiO2等在烃类转化,包括裂解、异构化、烷基化、聚合反应中都有极好的活性。现普遍认为,固体酸催化反应与均相酸催化反应一样,都是按正碳离子机理进行的,与此相对应,烃类在固体碱催化剂作用下,反应按负碳离子机理进行的。所谓正碳离子和负碳离子相理,简单地说就在反应中,通过反应分子的质子化生成碳正离子,或从反应分子除去一个质子生成负碳离子,从而使反应分子得以活化的过程,并且是反应的控制步骤。 10、催化裂化反应有哪些规律 (1)新生成的伯正碳离子极不稳定,并迅速转化为仲正碳离子,然后再β处断裂,反应继续下去,直至成为不能再断裂的小正碳离子为止,并在反应过程中将H+ 传给催化剂变成烯烃。 (2)烯烃裂化时也首先形成正碳离子,并遵循β处断裂原则,生成一个较小的烯烃和一个伯正碳离子,伯正碳离子再重排,裂化为较小的烯烃。 (3)环烷烃裂化时形成的正碳离子的机理与烷烃一体,但由于存在大量仲碳离子和叔碳离子,所以环烷烃的反应能力很高,并能生成各种与烯烃裂化类似的产品,同时还存在一定的芳烃。

络合催化剂及其催化作用机理

络合催化剂及其催化作用机理 1 基本知识 络合催化剂,是指催化剂在反应过程中对反应物起络合作用,并且使之在配位空间进行催化的过程。催化剂可以是溶解状态,也可以是固态;可以是普通化合物,也可以是络合物,包括均相络合催化和非均相络合催化。 络合催化的一个重要特征,是在反应过程中催化剂活性中心与反应体系,始终保持着化学结合(配位络合)。能够通过在配位空间内的空间效应和电子因素以及其他因素对其过程、速率和产物分布等,起选择性调变作用。故络合催化又称为配位催化。 络合催化已广泛地用于工业生产。有名的实例有: ①Wacker工艺过程: C2H4 + O2 CH3?CHO C2H4 + O2 + CH3?COOH CH3?COO C2H4 + H2O R?CH? (CHO) ?CH3R?CH2?CH2?CHO②OXO工艺过程: R?CH=CH2 + CO/H2 催化剂:HCo(CO)4,150℃,250×105Pa;RhCl(CO)(PPh3)2,100℃,15×105Pa ③Monsanto甲醇羰化工艺过程: CH3OH + CO CH3?COOH 催化剂:RhCl(CO)(PPh3)2/CH3I 从以上的几例可以清楚地看到,络合催化反应条件较温和,反应温度一般在100~200℃左右,反应压力为常压到20×105Pa上下。反应分子体系都涉及一些小分子的活化,如CO、H2、O2、C2H4、C3H6等,便于研究反应机理。主要的缺点是均相催化剂回收不易,因此均相催化剂的固相化,是催化科学领域较重要的课题之一。 2 过渡金属离子的化学键合 (1)络合催化中重要的过渡金属离子与络合物 过渡金属元素(.)的价电子层有5个(n - 1)d,1个ns和3个np,共有9个能量相近的原子轨道,容易组成d、s、p杂化轨道。这些杂化轨道可以与配体以配键的方式结合而形成络合物。凡是含有两个或两个以上的孤对电子或π键的分子或离子都可以作配体。过渡金属有很强的络合能力,能生成多种类型的络合物,其催化活性都与过渡金属原子或离子的化学特性有关,也就是和过渡金属原子(或离子)的电子结构、成键结构有关。同一类催化剂,有时既可在溶液中起均相催化作用,也可以使之成为固体催化剂在多相催化中起作用。 空的(n - 1)d轨道,可以与配体L(CO、C2H4…等)形成配键(M←:L),可以与H、R-Φ-基形成M-H、M-C型σ键,具有这种键的中间物的生成与分解对络合催化十分重要。由于(n - 1)d轨道或nd外轨道参与成键,故.可以有不同的配位数和价态,且容易改变,这对络合催化的循环十分重要。 大体趋势是:①可溶性的Rh、Ir、Ru、Co的络合物对单烯烃的加氢特别重要;②可溶性的Rh、Co的络合物对低分子烯烃的羰基合成最重要;③Ni络合物对于共轭烯烃的齐聚较重要;④Ti、V、Cr络合物催化剂适合于α-烯烃的齐聚和聚合;⑤第VIII族.元素的络合催化剂适合于烯烃的齐聚。这些可作为研究开发工作的参考。 (2)配位键合与络合活化 各种不同的配体与.相互作用时,根据各自的电子结构特征形成不同的配位键合,配位体本身得到活化,具有孤对电子的中性分子与金属相互作用时,利用自身的孤对电子与金属形成给予型配位键,记之为L→M,如:NH3、H2就是。给予电子对的L:称为L碱,接受电子对的M称为L酸。M要求具有空的d或p空轨道。H?,R?等自由基配体,与.相互作用,形成电子配对型σ键,记以L-M。金属利用半填充的d、p轨道电子,

催化剂与催化作用试题---副本

名词解释(10~15分,4~6题)填空(10~15分,5~10题)简要回答问题(45~55分,6~8题)论述题(25~35,2~3题) 第1、2章复习思考题 1、催化剂是如何定义的? 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂在工业上的作用功能或者效果有哪些? 1)使得原来难以在工业上实现的过程得以实现。 2)由过去常常使用的一种原料,可以改变为多种原料。 3)原来无法生产的过程,可以实现生产。 4)原来需要多步完成的,变为一步完成。 5)由原来产品质量低,能耗大,变为生产成本低,质量高 6)由原来转化率低,副产物多,污染严重,变为转化率高,产物单一,污染减少 3、载体具有哪些功能和作用?8 ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性; ⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 4、代表催化剂性能的重要指标是什么? 催化剂的反应性能是评价催化剂好坏的主要指标,它主要包括催化剂的活性、选择性和稳定性。(1)催化剂的活性:指催化剂能加快化学反应的反应速度的程度 (2)催化剂的选择性:使反应向生成某一特定产物的方向进行。 (3)催化剂的稳定性:是指在使用条件下,催化剂具有稳定活性的周期 5、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 6、吸附是如何定义的? 气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 7、物理吸附与化学吸附的本质不同是什么? 本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。 不同的表现形式为:(后面) 8、为何说Langmuir吸附为理想吸附?基本假设是什么? 模型假设:①吸附表面均匀,各吸附中心能量相同;②吸附分子间无相互作用;③单分子层吸附,吸附分子与吸附中心碰撞进行吸附,一个分子只占据一个吸附中心;④在一定条件下,吸附与脱附可建立动态平衡。 9、催化剂的比表面测定有哪些实验方法? (1)BET法测比表面积 1)测定原理和计算方法 依据BET提出的多层吸附理论以及BET吸附等温曲线进行测定和计算的。利用BET方程进行作图,采用试验采集数据并利用图解法进行计算。 2)实验方法 测定表面积的实验方法通常有,低温氮吸附容量法、重量法和色谱法等,当表面积比较小时,采用氮吸附法。 (2)色谱法测定比表面积 色谱法测定比表面积时载气一般采用He或H2,用N2做吸附质,吸附在液氮温度下进行。 10、何为扩散?催化剂颗粒内部存在几种扩散形式? (1)扩散:分子通过随机运动,从高浓度向低浓度进行传播的现象。 (2)1)普通扩散(分子扩散):分子扩散的阻力来自分子间的碰撞,通常在大孔(孔径大于100nm)或者压力较高的条件下发生的扩散多为分子扩散。 2)微孔扩散(努森扩散Kundsen):微孔扩散的阻力重要来自分子与孔壁的碰撞

催化剂作用原理

催化剂如何降低反应活化能,加快化学反应速度 活化能是指化学反应中,由反应物分子到达活化分子所需的最小能量。以酶和底物为例,二者自由状态下的势能与二者相结合形成的活化分子的势能之差就是反应所需的活化能,因此不是说活化能存在于细胞中,而是细胞中的某些能量为反应提供了所需的活化能。 化学反应速率与其活化能的大小密切相关,活化能越低,反应速率越快,因此降低活化能会有效地促进反应的进行。酶通过降低活化能(实际上是通过改变反应途径的方式降低活化能)来促进一些原本很慢的生化反应得以快速进行。 催化剂是一种改变反应速率但不改变反应总标准吉布斯自由能的物质。催化剂在化学反应中引起的作用叫催化作用。催化剂在工业上也称为触媒。 催化剂加快反应是由于它的参与降低了反应过程的活化能,这里以乙烯加氢反应为例来说明。 乙烯加氢生成乙烷要断裂一个C-C键和一个H-H键,同时形成两个新的C-H键。在无催化剂时,假设此反应为基元反应,其活化能的粗约估值为要断裂键能总和的28%~30%,即大约46kcal/mol (1cal = 4.1840J,下同)。 电子从氢转移到乙烯或从乙烯转移到轻都是对称禁阻的,即通过四中心过渡态的协同反应是对称性不允许的。 但是在均相催化反应中,例如Wikimson催化剂RhCl(PPh3)3存在下,可通过δ-π配合,削弱一直断裂H-H键,形成两个配合在铑上

的带部分负电荷的氢基。这类M-H键的键能大约只有H-H键能的一半。同时乙烯分子再通过δ-π配合,以侧基形式配位与铑上,使乙烯分子活化,这样就使得H-H键的断裂和C-H键的形成变得容易进行了。由此可见,催化剂的作用是对化学反应中的化学键断裂和新的化学键形成的促进作用,它降低了反应过程的活化能,并使对称禁阻的反应转化为对称允许的反应。 归纳起来,催化剂之所以能促使反应加速是因为:①通过与反应物的相互作用,使反应按新的活化能降低的,或空间上有利的途径进行的结果;②催化剂能消除量子力学规则所产生的限制,引进有效反应途径。 参考文献 [1]李贤均,陈华,付海燕.均相催化原理及应用.北京:化学工业出版社,2011.

催化剂机理

对聚氨酯,尤其是聚氨酯泡沫体合成中的一NCO与水和一NCO与端羟基聚酯、聚醚多元酵的两个主要反应,叔胺类催化剂都有很强的催化作用,尤其是对一NCO与一OH反应的催化作用更加明显。前者能促进聚合物分子链迅速增长.粘度快速增加,泡沫网络骨架强度迅速提高。后者能促进-NCO与水反应,迅速产生二氧化碳气体,使聚合物体积迅速增大、膨胀。 作为聚氨酯催化制的叔胺类化合物品种根多,根据其化学结构,基本可分为脂肪胺类、脂环胺类和芳香胺类三大类,其中在聚氨酯工业中使用最多的是三亚乙基二胺、N烷基吗啡玛啉、双(2一甲基氧基乙基)醚等 叔胺化合物中氨基的3个氢原子被斥电子基及空间位阻效应较大的烷基所取代,在多种因素的影响下,虽然叔胺表现的碱性不知伯胺、仲胺强,但氮原子上特殊取代基结构,使它们成为聚氨酯合成中优秀的催化剂品种、 叔胺类化合物对聚氨酯反应催化活性的大小主要取决于以下几个因素:第一,从表观上讲是叔胺的碱性。其碱性越大,催化活性越高。当胺分子带有斥电子取代基时,会使氮原子的电子云密度增加,碱性提高,催化话性增加;而当连接吸电子取代基团时,则会使氮原子的电子云密度下降,碱性降低,催化活性下降。第二,从分子结构上讲,氮原子上所带取代基的空间障碍越小,催化活性越高。第三,催化剂的浓度增加,催化活性增加。作为胺类催化剂的碱度,它是电子效应的结果,即受氨原子上取代基电子效应影响,供电子取代基将会使胺的pKa值增加,会使催化活性提高。但同时也必须考虑取代基的位阻效应,取代基位阻效应大,则会使催化活性下降,四乙基亚甲基二胺,虽然pKa值较高,但出于氮原子上4个体积庞大的乙基取代基的空间障碍作用,使它的催化活性大大下降b 。相比之下,三乙胺不但碱性强,而且空间位阻效应小,显示出强烈的催化活性。三亚乙基二胺是具有特殊化学结构的叔胺,它的2个氮原子连接在三个亚乙基基上,形成结构非常紧密且又十分对称的双环分子的笼式构造,同时,在氮原子上没有连接任何取代基,使完全暴露的氮原子上的一对空电子更容易接近一NCO基团,生成极不稳定的络合物,对异氰酸酯的反应起到强烈的催化作用,它是目前聚氨酯工业中最重要的催化剂之一。 在聚氢酯工业中,使用最广泛的叔胺类催化剂是三亚乙基二胺。其纯化学品的熔点为154℃,沸点174℃,易升华,易溶于水和多种有机溶剂,极易吸潮,含6个结晶水。作为催化剂使用和贮存都不方便,为此,通常是将它溶于低分子醇,如丙二醇、一缩二乙二醇等溶液中,配制成一定浓度的催化剂溶液,方便使用和贮存,并有利于它在反应物料中的互溶和分散。 美国气体产品( Air Products)公司50年代初即涉足三亚乙基二胺的研制,并配合聚氨酯工业的发展,推出了该类催化剂,注册商标为Dabco,奠定了叔胺催化剂在聚氨酯工业应用的基础。在其对该类催化剂系统深入的研究、开发的基础上,推出了几十种以Dabco商标注册的叔胺类催化剂,在对众多的叔胺催化剂的研究过程中,人们发现:三亚乙基二胺与某些有机酸反应可生成铵盐,使用这些铵盐制备聚氨酯泡沫体时,出现了乳白时间明显延长,而对最终凝胶时间却无明显影响的“延迟现象”。在对这种现象进行深入研究的基础上,开发出新的“延迟性催化剂”。利用这种催化剂的延迟催化特性,可以使反应物料具有充裕的混合时间,较长的起发期,并赋予混合浆料优良的流动性,具有足够的时间来充满结构复杂、体积庞大的模腔,而又不会影响产品的熟化周期。该公司开发的Dabco WT. Dabco R-595等延迟性催化剂,极其适应于聚氨酯大型、复杂制品的模制生产和RIM(Reaction Injection Moulding类工艺成型技术。 关于延迟性催化剂的报道,近年来十分活跃。 延迟性催化剂的制备比较简单,使用1mol的胺和1~2mol的一元酸或二元酸在,30~50℃之间溶于溶剂中进行反应,即可合成出铵盐。可使用的溶剂包括乙醇、乙醚、丙酮等,但以丙酮为最好。根据原料选择不同,铵盐如为固体,可采用离心过滤或其他适当手段将其分离出来,若铵盐产物为液体时,则可通过减压蒸发等方法将溶剂脱除。例如,100mL三亚乙基二胺的丙酮溶液与含0.2mL氰基乙酸的100mL丙酮溶液在30-- 50℃范围内混合反应、即可生成三亚乙基二胺-双氰基乙酸酯的固体沉淀,将沉淀过滤后放入60℃烘箱中干燥,即可获得熔点为124℃的延迟性催化剂——三亚乙基二胺双氰基乙酸脂。 我国合肥工业大学等单位在延迟性催化剂的研究方面做了大量工作,考查了不同有机酸类和胺络合催化剂对聚氨酯硬泡发泡工艺性能的影响,合成了具有能适用于高粘度原料体系,如芳香族聚酯多元醇和松香脂多元醇类流动较差的原料体系使用的延迟性催化剂。该催化剂能显著改善泡沫在模腔中的流动性能,并能缩短固化时间。在发泡的物理和化学反应变化的过程中,羧酸-叔胺络合物会逐渐被离解。离解的酸、胺会同时促进聚合物的链增长反应:羧酸也可以与异氰酸酯反应,进行链的增长并放出二氧化碳,初期的链增长,分子量相对较-低,流动性较好,当大量叔胺催化剂发挥作用时,体系粘度会急骤增加,凝胶的出现将会使物料流动性急速变差。羧酸-叔胺络合物在逐渐离解的过程中.促进分子链的增长,而当羧酸完全离解出来后,叔胺催化制将会充分发挥作用,促使反应体系迅速凝胶、固化,现据考查发现,当凝胶时间相同时,不同络合催化剂对泡沫流动性好坏的顺序为:复合盐催化剂(TD-MF)和二甲基环己胺(DMCHA)的甲酸盐的流动性要优于DMCHA的苯酚盐和异辛酸盐;在凝胶时间相同时,复合盐TD-ME的同化速度要高于DMCHA的异辛酸盐,苯酚盐和甲酸盐。它们在考查中发现:以强羧酸和叔胺络合的催化剂具有早发性催化剂特性,能显著改善发泡流动性,并对后固化有一定的催化作用:以弱羧酸和叔胺络台形成的催化剂,具有明显的延迟性催化剂特性,对泡沫流动性有一定改善作用,而对泡沫体的后固化表

相关文档
相关文档 最新文档