文档视界 最新最全的文档下载
当前位置:文档视界 › 线代习题答案(1)

线代习题答案(1)

线代习题答案(1)
线代习题答案(1)

线性代数习题及答案

习题一

1. 求下列各排列的逆序数.

(1) 341782659; (2) 987654321;

(3) n (n -1)…321; (4) 13…(2n -1)(2n )(2n -2)…2. 【解】

(1) τ(341782659)=11; (2) τ(987654321)=36;

(3) τ(n (n -1)…3·2·1)= 0+1+2 +…+(n -1)=

(1)

2

n n -; (4) τ(13…(2n -1)(2n )(2n -2)…2)=0+1+…+(n -1)+(n -1)+(n -2)+…+1+0=n (n -1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.

4. 本行列式4512312123122x x x D x x x

=的展开式中包含3x 和4

x 的项.

解: 设 123412341234

()41234(1)i i i i i i i i i i i i D a a a a τ=

-∑

,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3

x 项有

(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=-

4D 展开式中含4x 项有

(1234)4(1)2210x x x x x τ-????=.

5. 用定义计算下列各行列式.

(1)

20000103000000

4; (2)12

30002030450001

. 【解】(1) D =(-1)τ

(2314)4!=24; (2) D =12. 6. 计算下列各行列式.

(1)

2141

3121

1232

5062

-----; (2) ab

ac ae bd cd de bf

cf ef

-------; (3)100110011001a b c d

---; (4)

12342341341241

23

. 【解】(1) 12

50623121

0123250

6

2

r r D

+---=--; (2) 111

4111111

D abcdef abcdef --==------;

210110

111(3)(1)111011001011;b c D a a b cd c c d d d d

abcd ab ad cd --?--?

=+-=+++--????=++++

32122113314214

41

210

2341023410234

1034101130113

(4)160.104120222004410

1

2301110004

r r c c r r c c r r r r c c r r D -+-+-++---=

==

=-------

7. 证明下列各式.

(1) 2

2222()1

1

1

a a

b b a

a b b a b +=-;

(2)

222222222

2

2

2

22

22

(1)(2)(3)(1)(2)(3)0(1)

(2)

(3)

(1)(2)(3)a a a a b b b b c

c c c

d d d d ++++++=++++++;

(3) 2

3

2

2

322

32

111()111a a a a b

b ab b

c ca b b c c c c =++

(4) 2000

0()

0000n n a b a b D ad bc c d c d

=

=-;

(5)

1

2

11

11

1111111

1

1n

n

i i i i n

a a a a a ==++??=+ ???+∑∏. 【证明】(1)

13

23

2

23()()()2()2001

()()()()()2()21

c c c c a b a b b a b b a b a b b a b a b b a b a b b

a b a b a b a b --+--=--+--+=

=-=-=--左端右端.

(2) 32

21

3142

41

222

2-2-2

232

2

21

446921262144692126

0214469212621

4469

2126

c c c c c c c c c c a a a a a a b b b b b b c c c c c c

d d d d d d ---++++++++====++++++++左端右端. (3) 首先考虑4阶范德蒙行列式:

23232

3

23

11()()()()()()()(*)11x x x a a a f x x a x b x c a b a c b c b b b

c

c c =

=------

从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为

2

22

1()()()()(),11a a ab bc ac a b a c b c ab bc ac b b c c ++---=++

但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故

2

3112

32

3

1(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得

22(1)2(1)2(1)00

000

00

(),

n n n n a

b a

b

a b

a b

D a

b

c d

c d

c d c d d

c a

d D bc D ad bc D ---=-=?-?=-

据此递推下去,可得

222(1)2(2)

112()()()()()()n n n n n n

D ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-=

=-=--=- 2().n n D ad bc ∴

=-

(5) 对行列式的阶数n 用数学归纳法.

当n =2时,可直接验算结论成立,假定对这样的n -1阶行列式结论成立,进而证明阶数为n 时结论也成立.

按D n 的最后一列,把D n 拆成两个n 阶行列式相加:

112

21

12

11111011

1

11110111111101

11

1

1

1

1

.

n n n

n n n a a a a D a a a a a a D ---++++=

+

+=+

但由归纳假设

1112

1111,n n n i i D a a a a ---=??+= ???

从而有

112

1121112

1111

111111.

n n n n n i i n n n

n n i i i i i i D a a a a a a a a a a a a a a a ---=-===??

+=+ ?

??

?

???++== ? ?????∑∑∑∏

8. 计算下列n 阶行列式.

(1) 11111

1

n x x D x

=

(2) 1

2222

2222

2

322

2

2

n D n

=; (3)0000

00

0000

n x y x y D x y y x

=. (4)n ij D a =其中(,1,2,

,)ij a i j i j n =-= ;

(5)21000

12

1

000120000021000

12

n D =

.

【解】(1) 各行都加到第一行,再从第一行提出x +(n -1),得

11111[(1)]

,11

n x D x n x

=+-

将第一行乘(-1)后分别加到其余各行,得

1111110[(1)]

(1)(1).0

1

n n x D x n x n x x --=+-=+---

(2) 21

311

12

2

22

10

00

010100100201000

2

n r r n r r r r D n ---=

-按第二行展开222

2010

02(2)!.002

0000

2

n n =---

(3) 行列式按第一列展开后,得

1

(1)(1)(1)10000000000

000(1)0000000

(1)(1).

n n n n n n n n x y y x y x y D x

y x y x y y

x

x y

x x y y x y +-+-+=+-=?+?-?=+

-

(4)由题意,知

11121212221

2

012110122

1

3123

n n n n n nn

n a a a n a a a D n a a a n n n --=

=---- 01221111

11111111

11

111

1

1

1

1

n n ------------后一行减去前一行

自第三行起后一行减去前一行

012211221111

1

120

000200002

000000000

2

2

n n n n --------=-按第一列展开

1122000201(1)(1)

(1)(1)200

2

n n n n n n -----=---按第列展开.

(5) 210002000001000121

001210012100012000120001200000210002100021000

12

000

12

000

12

n D =

=

+

122n n D D --=-.

即有 112211n n n n D D D D D D ----=-==-=

由 ()()()112211n n n n D D D D D D n ----+-+

+-=- 得

11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.

1

2121

2

111n n n n

a a a a a a D a a

a ++=

+

【解】各列都加到第一列,再从第一列提出1

1n

i

i a

=+

∑,得

232

32312

3

1

1111

1,1

1n n n

n i n i n

a a a a a a D a a a a a a a

=+??=++ ???

+∑ 将第一行乘(-1)后加到其余各行,得

2

311

10

1

011.0

0100

1

n

n

n

n i i i i a a a D a a ==??=+=+ ???

∑∑

10. 计算n 阶行列式(其中0,1,2,

,i a i n ≠=).

11

11

123222211

22

33

22221122331

11

112

3n n n n n n n n n n n

n n n n n n n n n n n n

a a a a a

b a b a b a b D a b a b a b a b b b b b ----------------=

.

【解】行列式的各列提取因子1

(1,2,

,)n j a j n -=,然后应用范德蒙行列式.

3121

232

2

2

2

3121

1

2

12311

113121231

12

11111()().

n n n n n n n n n n n n n j i n n j i n i

j b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤????????= ? ? ? ????????????????? ? ? ? ???

??

??

??

??

-= ???∏

11. 已知4阶行列式

41234334415671122

D =

; 试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】

41

424142234134

(1)(1)3912.344344567167

A A +++=-+-=+= 同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.

(1) 1231234

1234234 5,2 1, 2 2, 23 3.

x x x x x x x x x x x x x x ++=??+-+=??+-+=??++=? (2) 12123234345

4556 1,

56 0,

56 0, 560,

5 1.

x x x x x x x x x x x x x +=??++=??++=??++=?+=??

【解】方程组的系数行列式为

1

1101110

13113121110131

180;12105212110121

12301401230123

D -------=

=

===≠-----

1234511015101111211118;

36;

2211121131

2

3

03231150

11

1

5

2111211136;

18.

122112120133

01

2

3

D D D D --=

==

=---=

==

=--

故原方程组有惟一解,为

312412341,2,2, 1.D D D D

x x x x D D D D

=

=======- 12345123452)665,1507,1145,703,395,212.15072293779212

,,,,.

66513335133665

D D D D D D x x x x x ===-==-=∴==-==-=

13. λ和μ为何值时,齐次方程组

1231231

230,

0,20

x x x x x x x x x λμμ++=??

++=??++=? 有非零解?

【解】要使该齐次方程组有非零解只需其系数行列式

1

1

0,11121

λ

μμ= 即

(1)0.μλ-=

故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组

12341234

123412340,20,30,0

x x x ax x x x x x x x x x x ax bx +++=??+++=??

+-+=??+++=? 有非零解时,a ,b 必须满足什么条件?

【解】该齐次线性方程组有非零解,a ,b 需满足

1111211

0,11311

1a a b

=- 即(a +1)2=4b .

15. 求三次多项式230123()f x a a x a x a x =+++,使得

(1)0,(1)4,(2)3,(3)16.f f f f -====

【解】根据题意,得

0123012301230123(1)0;(1)4;(2)2483;(3)392716.

f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=

这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于

012348,336,0,240,96.D D D D D ====-=

故得01237,0,5,2a a a a ===-= 于是所求的多项式为

23()752f x x x =-+

16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为

ax +by +c =0 (a ,b 不同时为0)

按题设有

11223

30,0,0,

ax by c ax by c ax by c ++=??

++=??++=? 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为

11223

31101

x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

线性代数试题及答案.

线性代数(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若 122 21 12 11 =a a a a ,则=1 6 030322211211 a a a a 3。 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CA B =-1。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_ _2___________. 6. 设A为三阶可逆阵,??? ? ? ??=-1230120011 A ,则=*A 7。若A为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 23453 2011 11111 2 1403 54321=D ,则=++++4544434241A A A A A 9。 向量α=(2,1,0,2)T -的模(范数)______________ 。 10。若()T k 11=α与()T 121-=β正交,则=k

二、选择题(本题总计10分,每小题2分) 1。 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ ? D .r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8? B.8- C. 34?? D.3 4- 3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A *kA )(B *A k n )(C *-A k n 1)(D *A 5。 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____. )(A AC AB = 则 C B =)(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)()(D 22))((B A B A B A -=-+ 三、计算题(本题总计60分.1-3每小题8分,4-7每小题9分) 1。 计算n 阶行列式22221 =D 22222 22322 2 12 2 2-n n 2 222 . 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1= A ,求* A A 2)3(1--. 3.求矩阵的逆 111211120A ?? ?=- ? ???

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数试题及答案

2011-2012-2线性代数46学时期末试卷(A) 考试方式:闭卷 考试时间: 一、单项选择题(每小题 3分,共15分) 1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222 123123 (,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. (A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥. 4.初等矩阵(A ); (A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,, ,n ααα线性无关,则(C ) A. 12231,, ,n n αααααα-+++必线性无关; B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关; C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关; D. 以上都不对。 二、填空题(每小题3分,共15分) 6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ?? ? = ? ??? ,则1A -=

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数B期末试卷及答案

2008 – 2009学年第二学期《线性代数B 》试卷 2009年6月22日 1、 设?? ??? ?? ?? ???-=* 8030010000100001A ,则A = 、 2、 A 为n 阶方阵,T AA =E 且=+

二、单项选择题(共6小题,每小题3分,满分18分) 1、设D n为n阶行列式,则D n=0的必要条件就是[ ]、 (A) D n中有两行元素对应成比例; (B) D n中各行元素之与为零; (C) D n中有一行元素全为零; (D)以D n为系数行列式的齐次线性方程组有非零解. 2.若向量组α,β,γ线性无关,α,β,σ线性相关,则[ ]、 (A)α必可由β,γ,σ线性表示; (B) β必可由α,γ,σ线性表示; (C)σ必可由β,γ,α线性表示; (D)γ必可由β,α,σ线性表示、 3.设3阶方阵A有特征值0,-1,1,其对应的特征向量为P1,P2,P3,令P=(P1,P2,P3),则P-1AP=[ ]、 (A) 100 010 000 ?? ?? - ?? ?? ?? ; (B) 000 010 001 ?? ?? - ?? ?? ?? ; (C) 000 010 001 ?? ?? ?? ?? ?? - ; (D) 100 000 001 ?? ?? ?? ?? ?? - . 4.设α1,α2,α3线性无关,则下列向量组线性相关的就是[ ]、 (A)α1,α2,α3 - α1; (B)α1,α1+α2,α1+α3; (C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2-α3,α3-α1、 5.若矩阵A3×4有一个3阶子式不为0,则A的秩R(A) =[ ]、 (A) 1; (B)2; (C)3; (D) 4. 6.实二次型f=x T Ax为正定的充分必要条件就是[ ]、 (A) A的特征值全大于零; (B) A的负惯性指数为零; (C) |A| > 0 ; (D) R(A) = n、 三、解答题(共5小题,每道题8分,满分40分)

线代08答案 线性代数试题库

苏州大学《线性代数》课程(第八卷)答案 共3页 院系 专业 一、填空题:(30%) 1、 3 )(a b - 2、 AB C =-1 3、 0=A 4、 ()()A r b A r =, 5、 )()(B r A r ≤ 6、 ??? ? ? ??=101020001X 7、 1=t 8、8-=A 9、 ()T A 4,4, 2--=β 10、 ()0,21=αα 二、(8%)解:=+++++++++33333322222 211111 1232323a c c b b a a c c b b a a c c b b a 3 3333322222 2111111262626a c c b c a a c c b c a a c c b c a ++-++-++- ==++-++-++-3 33 33 22222 11111 272727a c c b c a c c b c a c c b c m a b c a b c a b c 773 3 3 2221 11=- (8%) 三、(10%)解:I BA BA A 82-=* 1 1)2(8)]2([8--*-=-=I A A A I A B (5%) ???? ? ? ??-=--4121 41 ) 2(1 I A A (3%) ??? ? ? ??-=242B (2%) 四、(6%)解:令()321,, βββ=B 则())3,2,1( 00, , 321==?==j A A A A AB j ββββ 因0≠B ,所以存在一个j β是0=x A T 的一个非零解 (3%) 0=?A ?30217-=?=+t t (3%) 五、(10%)解:

线性代数期末试题及参考答案

线性代数期末试卷及参考答案 一、单项选择题(每小题3分,共15分) 1.下列矩阵中,( )不是初等矩阵。 (A )001010100?????????? (B)100000010?? ?? ?? ???? (C) 100020001????????? ?(D) 100012001????-?????? 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。 (A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+ 3.设A 为n 阶方阵,且2 50A A E +-=。则1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1() 3A E + 4.设A 为n m ?矩阵,则有( )。 (A )若n m <,则b Ax =有无穷多解; (B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量; (C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。 5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则 () (A )A 与B 相似(B )A B ≠,但|A-B |=0 (C )A=B (D )A 与B 不一定相似,但|A|=|B| 二、判断题(正确填T ,错误填F 。每小题2分,共10分) 1.A 是n 阶方阵,R ∈λ,则有A A λλ=。() 2.A ,B 是同阶方阵,且0≠AB ,则 111)(---=A B AB 。()

线性代数期末试题(同济大学第五版)(附答案)

线性代数试题(附答案) 一、填空题(每题2分,共20分) 1.行列式0 005002304324321= 。 2.若齐次线性方程组?? ? ??=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。 3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。 4.A 为n n ?阶矩阵,且ο=+-E A A 232,则1-A 。 5. 321,,ξξξ和321,,ηηη是3R 的两组基,且 32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。 7.设=?? ?? ? ?????---=??????????)(,111012111,321212113AB tr AB B A 之迹则 。 8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--?A A 。 9.二次型x x x x x x f 2 32 22 132123),,(--=的正惯性指数为 。 10.矩阵?? ?? ? ?????1042024λλA 为正定矩阵,则λ的取值范围是 。 二、单项选择(每小题2分,共12分)

1.矩阵()==≠≠???? ? ???????=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。 A 、1 B 、2 C 、3 D 、4 2. 齐次线性方程组???=--=++-020 23214321x x x x x x x 的基础解系中含有解向量的个数是( ) A 、1 B 、2 C 、3 D 、4 3.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( ) A 、-1 B 、-2 C 、0 D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( ) A 、B=E B 、A=E C 、A=B D 、AB=BA 5.已知=?? ?? ? ?????==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或2 6.下列矩阵中与矩阵合同的是??? ? ???? ? ?-50 00210 002 ( ) A 、??????????---200020001 B 、?? ??? ?????-500020003 C 、?? ?? ??????--100010001 D ????? ?????100020002 三、计算题(每小题9分,共63分) 1.计算行列式),2,1,0(00000 022 11 210n i a a c a c a c b b b a i n n n ΛΛ ΛΛΛΛΛΛΛΛ=≠其中

《线性代数》期末试卷 A 答案及评分标准

A卷 2015—2016学年第一学期《线性代数》期末试卷答案 (32学时必修) 专业班级 姓名 学号 开课系室应用数学系 考试日期 2016年1月15日

注意事项: 1.请用黑色或蓝色笔在试卷正面答题(请勿用铅笔答题),反面及附页可作草稿纸; 2.答题时请注意书写清楚,保持卷面清洁; 3.本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废; 4. 本试卷正文共7页。 说明:试卷中的字母E 表示单位矩阵;*A 表示矩阵A 的伴随矩阵; )(A R 表示矩阵A 的秩;1-A 表示可逆矩阵A 的逆矩阵. 一、填空题(请从下面6个题目中任选5个小题,每小题3分;若 6个题目都做,按照前面5个题目给分) 1.5阶行列式中,项4513523124a a a a a 前面的符号为【 负 】. 2.设1 3 5 2 4 1312010131 1--= D ,)4,3,2,1(4=i A i 是D 的第4行元素的代数余子 式,则4443424122A A A A +-+ 等于【 0 】.

3.设102020103B ?? ? = ? ?-?? ,A 为34?矩阵,且()2A =R ,则()AB =R 【 2 】. 4.若向量组123(1,1,0),(1,3,1),(5,3,)t ==-=ααα线性相关,则=t 【 1 】. 5.设A 是3阶实的对称矩阵,????? ??-=1m m α是线性方程组0=Ax 的解,??? ? ? ??-=m m 11β是线 性方程组0)(=+x E A 的解,则常数=m 【 1 】. 6.设A 和B 是3阶方阵,A 的3个特征值分别为0,3,3-,若AB B E =+,则行列式 =+-|2|1E B 【 -8 】. 二、选择题(共5个小题,每小题3分) 1. 设A 为3阶矩阵,且2 1||=A ,则行列式|2|*-A 等于【 A 】. (A) 2-; (B) 2 1 -; (C) 1-; (D) 2. 2. 矩阵110120001?? ? ? ??? 的逆矩阵为【 A 】. (A) 210110001-?? ?- ? ???; (B) 210110001?? ? ? ???; (C) 110120001-?? ? - ? ? ??; 110110001?? ? ? ??? .

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

国际学院2011年线代期末试卷

江西财经大学 11-12第一学期期末考试试卷 试卷代码:12063A 考试时间 110分钟 授课课时:48 课程名称:Linear Algebra (主干课程) 适用对象:2010级国际学院 1. Filling in t he Blanks (3’×6=18’) (1) If ????????????=30 00320023404321A , then det (adj(A ))= . (2) If ????????????-=212 313 1211 1143 21A , then =+++44434241A A A A . (3)If ??????????--=1110161011A , and ???? ??????-=150401821B , then =T AB . (4) Let A be (4×4) matrix, and -1,2,3,6 are the eigenvalues of A . Then the eigenvalues of A -1 are . (5) Let ???? ??????-=??????????-=222,104βα. Then the tripe products )(βαα??= . (6) If ???? ??????--=11334221t A and B is a nonzero matrix, AB =0, then t = . 2. There are four choices in each question, but only one is correct. You should choose the correct one into the blank. (3’×6=18’) (1) Let A and B are (3×3) invertible matrices, then ( ) is not always correct. (A) T T T A B AB =)( (B) 111)(---=A B AB (C) T T A A )()(11--= (D) 222)(A B AB = (2) Let A and B be (n ×n ) matrices, then ( ) (A) AB =0?A =0 or B =0 (B) AB ≠0?A ≠0 and B ≠0 (C) AB =0?|A|=0 or |B|=0 (D) AB ≠0?|A|≠0 and |B|≠0

相关文档