文档视界 最新最全的文档下载
当前位置:文档视界 › 专题讲座三:带电粒子在匀强电场中的偏转问题

专题讲座三:带电粒子在匀强电场中的偏转问题

专题讲座三:带电粒子在匀强电场中的偏转问题
专题讲座三:带电粒子在匀强电场中的偏转问题

带电粒子在匀强电场中的加速和偏转问题

一:.两个结论

(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的。

证明:由qU 0=12m v 20及tan φ=qUl md v 20

得tan φ=Ul

2U 0

d

(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l 2。

二:.带电粒子在匀强电场中偏转的功能关系

当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =U d y ,指初、末位置间的电势差。

三:带电粒子在电场中运动问题的两种求解思路 1.运动学与动力学观点

(1)运动学观点是指用匀变速运动的公式来解决实际问题,一般有两种情况: ①带电粒子初速度方向与电场线共线,则粒子做匀变速直线运动; ②带电粒子的初速度方向垂直电场线,则粒子做匀变速曲线运动(类平抛运动)。

(2)当带电粒子在电场中做匀变速曲线运动时,一般要采取类似平抛运动的解决方法。

2.功能观点:首先对带电体受力分析,再分析运动形式,然后根据具体情况选用公式计算。

(1)若选用动能定理,则要分清有多少个力做功,是恒力做功还是变力做功,同时要明确初、末状态及运动过程中的动能的增量。

(2)若选用能量守恒定律,则要分清带电体在运动中共有多少种能量参与转化,哪些能量是增加的,哪些能量是减少的。 四:典题分析:

1 如图1所示,一电子枪发射出的电子(初速度很小,可视为零)进入加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y ,要使偏转位移增大,下列

哪些措施是可行的(不考虑电子射出时碰到偏转电极板的情况)( )

图1

A .增大偏转电压U

B .增大加速电压U 0

C .增大偏转极板间距离

D .将发射电子改成发射负离子

解析:选A 设偏转电极板长为l ,极板间距为d ,由qU 0=12m v 2

,t =l v 0

y =12at 2=qU 2md t 2,得偏转位移y =Ul 2

4U 0d ,增大偏转电压U ,减小加速电压U 0,减

小偏转极板间距离,都可使偏转位移增大,选项A 正确BC 错误;由于偏位移y =Ul 2

4U 0d 与粒子质量带电量无关,故将发射电子改成发射负离子,偏转位移不变,

选项D 错误。

2. 如图2(a)所示,两平行正对的金属板A 、B 间加有如图9(b)所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处。若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上。则t 0可能属于的时间段是( )

图2

A .0

4 B.T 2

4

D .T

8

解析:选B 两板间加的是方波电压,刚释放粒子时,粒子向A 板运动,说明释放粒子时U AB 为负,因此A 项错误,若t 0=T

2时刻释放粒子,则粒子做方向

不变的单向直线运动,一直向A 运动;若t 0=3T

4时刻释放粒子,则粒子在电场中固定两点间做往复运动,不能到达A 板;因此T 2

4时间内,粒子的运动满足题意的要求,选项B 正确。

3如图3所示,一价氢离子(11H)和二价氦离子(2

4He)的混合体,经同一加速电场加

速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )

图3

A .同时到达屏上同一点

B .先后到达屏上同一点

C .同时到达屏上不同点

D .先后到达屏上不同点

解析:选B 一价氢离子(11H)和二价氦离子(2

4He)的比荷不同,经过加速电场

的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会打在同一点。选B 。

4. 如图4所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出。若不计重力,则a 和b 的比荷(即粒子的电荷量与质量之比)是( )

图4

A .1∶2

B .2∶1

C .1∶8

D .8∶1

解析:选D 两粒子在电场中均做类平抛运动,则有沿初速度方向:x =v 0t ,垂直于初速度方向:y =12·

qE m t 2,

即y =12qE m ·

x 2

v 20,则有

q a m a ∶q b m b =y a y b ·x 2

b x 2a =21×221=8∶1,D 项正确。

5.如图3所示,一对半径均为R 1的金属板M 、N 圆心正对平行放置,两板距离为d ,N 板中心镀有一层半径为R 2的圆形锌金属薄膜,d ?R 2

图5

(1)当U MN 取什么值时,I 始终为零;

(2)当U MN 取什么值时,I 存在一个最大值,并求这个最大值; (3)请利用(1)(2)的结论定性画出I 随U MN 变化的图象。

解析:(1)当垂直N 板发射速度为v 的电子不能到达M 板时,I =0, 令此时两板间电压为U MN ,则1

2m v 2=-eU MN 得U MN =-m v 2

2e

(2)当从锌膜边缘平行N 板射出的电子做类平抛运动刚好能到达M 板边缘时,则所有电子均能到达M 板,电流最大I =ne

令此时两板间电压为U MN ′ R 1-R 2=v t , d =1

2at 2,a =U MN ′e dm

得U MN ′=2md 2v 2

e (R 1-R 2)2

(3)I 随U MN 变化的图象如图所示。

答案:(1)-m v 22e (2)2md 2v 2

e (R 1-R 2)2

ne (3)见解析图

6.如图6所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距为b 。在两板间加上可调偏转电压U ,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出。

图6

(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U 的范围; (3)求粒子可能到达屏上区域的长度。

解析:(1)设粒子在运动过程中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,则有

y =1

2at 2① L =v 0t ② v y =at

tan θ=v y

v0=

y

x,联立可得x=

L

2,

即粒子飞出电场后的速度方向的反向延长线交于两板间的中心。

(2)a=Eq m③

E=U d④

由①②③④式解得y=qUL2

2dm v20

当y=d

2时,U=

md2v20

qL2

则两板间所加电压的范围-md2v20

qL2≤U≤

md2v20

qL2

(3)当y=d

2时,粒子在屏上侧向偏移的距离最大(设为y0),则y0=(

L

2+b)tan θ

而tan θ=d

L,解得y0=

d(L+2b)

2L

则粒子可能到达屏上区域的长度为d(L+2b)

L。

答案:(1)见解析(2)-md2v20

qL2≤U≤

md2v20

qL2

(3)d(L+2b)

L

7 如图7所示直流电源的路端电压U=182V。金属板AB、CD、EF、GH相互平行、彼此靠近。它们分别和变阻器上的触点a、b、c、d连接。变阻器上ab、bc、cd段电阻之比为1∶2∶3。孔O1正对B和E,孔O2正对D和G。边缘F、H正对。一个电子以初速度v0=4×106m/s沿AB方向从A点进入电场,恰好穿过孔O1和O2后,从H点离开电场。金属板间的距离L1=2 cm,L2=4 cm,L3=6 cm。电子质量m e=9.1×10-31 kg,电量q=1.6×10-19C。正对两平行板间可视为匀强电场,求:

图7

(1)各相对两板间的电场强度。 (2)电子离开H 点时的动能。

(3)四块金属板的总长度(AB +CD +EF +GH )。 [尝试解题]

(1)三对正对极板间电压之比U 1∶U 2∶U 3=R ab ∶R bc ∶R cd =1∶2∶3。 板间距离之比L 1∶L 2∶L 3=1∶2∶3 故三个电场场强相等E =U

L 1+L 2+L 3

=1 516.67 N/C

(2)根据动能定理 eU =12m v 2-12m v 20 电子离开H 点时动能

E k =12m v 20+e U =3.64×10

-17 J (3)由于板间场强相等,则电子在竖直方向受电场力不变,加速度恒定可知电子做类平抛运动:

“竖直方向”L 1+L 2+L 3=12qE m t 2 “水平方向”x =v 0t 消去t 解得x =0.12 m

极板总长AB +CD +EF +GH =2x =0.24 m 。 [答案] (1)1 516.67 N/C (2)3.64×10-17 J (3)0.24 m

8 如图8所示,带电粒子P 所带的电荷量是带电粒子Q 的3倍,它们以相等的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入匀强电场,分别打在M 、N 点,若OM =MN ,则P 和Q 的质量之比为( )

图8

A .3∶4

B .4∶3

C .3∶2

D .2∶3

解析:选A 本题忽略了粒子重力的影响,P 和Q 在匀强电场中做类平抛运动,它们沿水平方向均以初速度v 0做匀速直线运动,根据OM =MN ,可知,它们沿竖直方向的下落时间之比为t P ∶t Q =1∶2;根据h =12at 2可得a =2h

t 2,可见,它们沿竖直方向下落的加速度之比为a P ∶a Q =4∶1;根据a =Eq m 可得m =Eq a ∝q

a ,所以m P m Q =q P q Q ·a Q a P

=3×

14=34,所以选项A 正确,答案为A 。 9.如图9所示为说明示波器工作原理的示意图,已知两平行板间的距离为d 、板长为l 电子经电压为U 1的电场加速后从两平行板间的中央处垂直进入偏转电场,设电子质量为m e 、电荷量为e 。

图9

(1)求经电场加速后电子速度v 的大小;

(2)要使电子离开偏转电场时的偏转角度最大,两平行板间的电压U 2应是多少?电子动能多大?

解析:(1)电子经电压为U 1的电场加速,根据动能定理:eU 1=1

2m e v 2,则经电场加速后电子的速度v =

2eU 1m e 。

(2)电子离开偏转电场偏转角度最大时的偏转量为d

2,电子受到偏转电场的电场力F 2=eE 2,E 2=U 2

d ,电子沿偏转电场方向做初速度为零的匀加速直线运动,有d 2=12a 2t 2,a 2=F 2m

e ,t =l v ,可解得两平行板间电压U 2=2d 2U 1l 2;又eU 22=E k -E k0,eU 1=E k0,所以E k =eU 1(1+d 2

l 2)。

答案:(1)

2eU 1m e (2)2d 2U 1l 2 eU 1(1+d 2l 2)

匀强电场中的力学问题

匀强电场中的力学问题,是常见的力电综合问题,也是高考命题的热点,这类问题有以下几种类型。 一、静止问题 处在匀强电场中的速度为零的带电物体所受的外力的合力为零时,带电物体处于静止状态。求解这类问题的基本方法是力的平衡条件。 例1如图1-a所示,有三根长度皆为L=1.00m的不可伸长的绝缘轻线,其中两根绳的一端固定在天花板上的O点,另一端分别挂有质量皆为m=1.0010-2kg的带电小球A和B,它们的电量分别为-q和+q,且q=1.0010-7C.A、B球之间用第三根线连接起来。空间存在E=1.00106N/C的匀强电场,场强方向水平向右,平衡时A、B两球的位置如图示.现将O、B之间的线烧断,由于有空气阻力,A、B两球最后会达到新的平衡为位置。问:最后两球的机械能与电势能的总和与烧断前相比减少了多少?(不计两小球间相互作用的静电力) 分析与求解:设烧断OB线后,两球最终静止后的位置如图1-b所示,此时线OA、OB与竖直方向的夹 角分别为,A球受力如图1-c所示,由力的平衡条件有:

,B球受力如图1-d所示,由力的平衡条件有: 解以上四式得:,,由此可知,最终静止后两球的位置如图1-e所示。 与烧断OB线之前相比:A球的重力势能减少了,B球的重力势能减少了 ,A球的电势能增加了,B球的电势能减少了。 两球的机械能与电势能总和减少了W=W B -W A +E A +E B ,代入已知数据解以上几式得W=6.810-2J。 本题解答中,求解最终静止后两球的位置时,若选两球整体为研究对象,则这个整体只受重力和OA线的拉力作用,由此便可很方便的知道,即OA线处在竖直位置。

(含答案)电磁感应中的动力学问题

电磁感应中的动力学问题分析 一、基础知识 1、安培力的大小 由感应电动势E =Bl v ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2、安培力的方向判断 3、导体两种状态及处理方法 (1)导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. (2)导体的非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4、解决电磁感应中的动力学问题的一般思路是 “先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力; 然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; 最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 二、练习 1、(2012·广东理综·35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金

属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻. (1)调节R x =R ,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I 及导体棒的速率v . (2)改变R x ,待导体棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x . 解析 (1)对匀速下滑的导体棒进行受力分析如图所示. 导体棒所受安培力F 安=BIl ① 导体棒匀速下滑,所以F 安=Mg sin θ② 联立①②式,解得I =Mg sin θBl ③ 导体棒切割磁感线产生感应电动势E =Bl v ④ 由闭合电路欧姆定律得I =E R +R x ,且R x =R ,所以I =E 2R ⑤ 联立③④⑤式,解得v =2MgR sin θB 2l 2 (2)由题意知,其等效电路图如图所示. 由图知,平行金属板两板间的电压等于R x 两端的电压. 设两金属板间的电压为U ,因为导体棒匀速下滑时的电流仍为I ,所以由欧姆定律知 U =IR x ⑥ 要使带电的微粒匀速通过,则mg =q U d ⑦ 联立③⑥⑦式,解得R x =mBld Mq sin θ . 答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mBld Mq sin θ 2、如图所示,两足够长平行金属导轨固定在水平面上,

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转 一、基础知识 1、带电粒子在电场中的偏转 (1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动. (3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律: ①沿初速度方向做匀速直线运动,运动时间 ????? a.能飞出电容器:t =l v 0 . b.不能飞出电容器:y =12at 2 =qU 2md t 2 ,t = 2mdy qU ②沿电场力方向,做匀加速直线运动 ? ???? 加速度:a =F m =qE m =Uq md 离开电场时的偏移量:y =12at 2 =Uql 2 2mdv 2 离开电场时的偏转角:tan θ=v y v 0 =Uql mdv 20 特别提醒 带电粒子在电场中的重力问题 (1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量). (2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都

不能忽略重力. 2、带电粒子在匀强电场中偏转时的两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=1 2mv 20 y =12at 2=12·qU 1md ·(l v 0)2 tan θ= qU 1l mdv 20 得:y =U 1l 2 4U 0d ,tan θ=U 1l 2U 0d (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l 2. 3、带电粒子在匀强电场中偏转的功能关系 当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-1 2 mv 20,其 中U y =U d y ,指初、末位置间的电势差. 二、练习题 1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关 于该带电粒子的运动,下列说法正确的是( )

匀强电场中的力学问题

匀强电场中的力学问题 匀强电场中的力学问题,是常见的力电综合问题,也是高考命题的热点,这类问题有以下几种类型。 一、静止问题 处在匀强电场中的速度为零的带电物体所受的外力的合力为零时,带电物体处于静止状态。求解这类问题的基本方法是力的平衡条件。 例1如图1-a所示,有三根长度皆为L=1.00m的不可伸长的绝缘轻线,其中两根绳的一端固定在天花板上的O点,另一端分别挂有质量皆为m=1.0010-2kg的带电小球A和B,它们的电量分别为-q和+q,且q=1.0010-7C.A、B球之间用第三根线连接起来。空间存在E=1.00106N/C的匀强电场,场强方向水平向右,平衡时A、B两球的位置如图示.现将O、B之间的线烧断,由于有空气阻力,A、B两球最后会达到新的平衡为位置。问:最后两球的机械能与电势能的总和与烧断前相比减少了多少?(不计两小 球间相互作用的静电力) 分析与求解:设烧断OB线后,两球最终静止后的位置如图1-b所示,此时线OA、OB与竖直方向的夹角分别为,A球受力如图1-c所示,由力的平衡条件有: ,B球受力如图1-d所示,由力的平衡条件有:

解以上四式得:,,由此可知,最终静止后两球的位置如图1-e所 示。 与烧断OB线之前相比:A球的重力势能减少了,B球的重力势能减少了,A球的电势能增加了 ,B球的电势能减少了。 两球的机械能与电势能总和减少了W=W B-W A+E A+E B,代入已知数据解以上几式得 W=6.810-2J。 本题解答中,求解最终静止后两球的位置时,若选两球整体为研究对象,则这个整体只受重力和OA线的拉力作用,由此便可很方便的知道,即OA线处在竖直 位置。 二、匀速直线运动问题 处在静电场中的速度不为零的带电体,所受外力的合力为零时,带电体做匀速直线运动。这两类问题的基本方法是力的平衡条件。 例2如图2所示,在水平地面上有一倾角为θ的绝缘斜面,斜面所处空间有水平向右的匀强电场,电场强度为E。有质量为m,带电量为+q的小球沿斜面匀速滑下。求 小球和斜面间的滑动摩擦因数。

带电粒子在磁场中偏转历年高考题详解

7.(08四川卷)24.如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。整个空间存在匀强磁场,磁感应强度方向竖直向下。一电荷量为q (q >0)、质量为m 的小 球P 在球面上做水平的匀速圆周运动,圆心为O ’。球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(0<θ<)2 π 。为了使小球能够在该圆周上运动,求磁感应强度大小的最 小值及小球P 相应的速率。重力加速度为g 。 解析:据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O ’。P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力 f =qvB ① 式中v 为小球运动的速率。洛仑兹力f 的方向指向O ’。根据牛顿第二定律 0cos =-mg N θ ② θ sin sin 2 R v m N f =- ③ 由①②③式得 0cos sin sin 22 =+-θ θθqR v m qBR v ④ 由于v 是实数,必须满足 θθ θcos sin 4sin 2 2 gR m qBR - ?? ? ??=?≥0 ⑤ 由此得B ≥ θ cos 2R g q m ⑥ 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为 θ cos 2min R g q m B = ⑦ 此时,带电小球做匀速圆周运动的速率为 m R qB v 2sin min θ = ⑧ 由⑦⑧式得 θθ sin cos gR v = ⑨ 8.(08重庆卷)25.题25题为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分

布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM=d.现有一正离子束以小发散角(纸面内)从C 射出,这些离子在CM 方向上的分速度均为v 0.若该离子束中比荷为 q m 的离子都能汇聚到D ,试求: (1)磁感应强度的大小和方向(提示:可考虑沿CM 方向运动的离子为研究对象); (2)离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; (3)线段CM 的长度. 解析:(1)设沿CM 方向运动的离子在磁场中做圆周运动的轨道半径为R 由1 2 R '=2 00mv qv B R = R=d 得B = mv qd 磁场方向垂直纸面向外 (2)设沿CN 运动的离子速度大小为v ,在磁场中的轨道半径为R ′,运动时间为t 由 v cos θ=v 0 得v = cos v θ R ′= mv qB = cos d θ 方法一: 设弧长为s t =s v s=2(θ+α)×R ′ t = 2v R ' ?+)(αθ (09年全国卷Ⅰ)26(21分)如图,在x 轴下

电容器与电场中的力学问题

专题九电容器与电场中的力学问题 电场中的带电粒子问题是高考命题频率最多的问题,题型有选择、填空和计算,其难度在中等以上。考题涉及的电场有匀强电场也有非匀强电场或交变电场,涉及的知识不全为电场知识,还有力学的有关知识。 带电粒子在电场中的运动问题大致可分为三类:其一为平衡问题;其二为直线运动问题;其三为偏转问题。解答方法首先是对带电粒子的受力分析,然后再分析运动过程或运动性质,最后确定运用的知识或采用的解题观点。(平衡问题运用的是物体的平衡条件;直线运动问题用到的是运动学公式、牛顿第二定律、能量关系;偏转问题用到的是运动的合成与分解,以及运动学中的平抛运动的规律。)本次专题就分析带电粒子在电场中的这三类问题。 电容器在高中阶段常被用来提供匀强电场,也是高考中的高频考点,关于电容器主要运用电容器的定义式,平行板电容器的决定式、匀强电场中场强与电压的关系及电容器的动态分析问题 一、电容器 1、(2012海南)9.将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d、U、E和Q表示.下列说法正确的是() A.保持U不变,将d变为原来的两倍,则E变为原来的一半 B.保持E不变,将d变为原来的一半,则U变为原来的两倍 C.保持d不变,将Q变为原来的两倍,则U变为原来的一半 D.保持d不变,将Q变为原来的一半,则E变为原来的一半 2、(2012江苏)2.一充电后的平行板电容器保持两极板的正对面积、间距和电荷量不变,在两极板间插入一电介质,其电容C和两极板间的电势差U的变化情况是()A.C和U均增大B.C增大,U减小 C.C减小,U增大D.C和U均减小 3、(2011天津)5、(6分)板间距为d的平行板电容器所带电荷量为Q时,两极板间电势差为U1,板间场强为E1.现将电容器所带电荷量变为2Q,板间距变为d,其他条件不变,这 时两极板间电势差为U2,板间场强为E2,下列说法正确的是() A.U2=U1,E2=E1 B.U2=2U1,E2=4E1 C.U2=U1,E2=2E1 D.U2=2U1,E2=2E1 4、(2010北京)6、(6分)用控制变量法,可以研究影响平行板电容器电容的因素(如图).设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ.实验 中,极板所带电荷量不变,若() A.保持S不变,增大d,则θ变大 B.保持S不变,增大d,则θ变小 C.保持d不变,减小S,则θ变小 D.保持d不变,减小S,则θ不变 二、电场中的平衡问题 5、(2010全国卷2)4、(6分)在雷雨云下沿竖直方向的电场强度约为104 V/m.已知一半径为1 mm的雨滴在此电场中不会下落,取重力加速度大小为10 m/s2,水的密度为103 kg/m3.这雨滴携带的电荷量的最小值约为() A.2×10-9 C B.4×10-9 C C.6×10-9 C D.8×10-9 C

高考物理 30带电粒子在电场中加速在磁场中偏转精解分析

高考题精解分析:30带电粒子在电场中加速在磁场中偏转 高频考点:带电粒子在电场中加速、在磁场中的偏转 动态发布:2009重庆理综第25题、2009山东理综第25题 命题规律:带电粒子在电场中加速、在磁场中的偏转是带电粒子在电磁场中运动的重要题型,是高考考查的重点和热点,带电粒子在电场中加速、在磁场中的偏转常常以压轴题出现,难度大、分值高、区分度大。 命题分析 考查方式一 考查带电粒子在恒定电场中加速、偏转、在匀强 磁场中的偏转 【命题分析】带电粒子在恒定电场中加速后进入偏转电场、然 后进入匀强磁场中的偏转是高考常考题型,此类题过程多,应 用知识多,难度大。 例1(2009重庆理综第25题)如图1,离子源A 产生的初速为 零、带电量均为e 、质量不同的正离子被电压为U 0的加速电场 加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过 极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直 于边界MN 进入磁感应强度为B 的匀强磁场.已知HO=d ,HS=2d , ∠MNQ =90°.(忽略粒子所受重力) (1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ; (2)求质量为m 的离子在磁场中做圆周运动的半径; (3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为 16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围. 【标准解答】:(1)正离子在加速电场加速,eU 0=mv 12/2, 正离子在场强为E 0的偏转电场中做类平抛运动, 2d= v 1t ,d =at 2/2,eE 0=ma , 联立解得 E 0= U 0/d. 由tan φ= v 1/ v ⊥,v ⊥=at ,解得φ=45°. (2)正离子进入匀强磁场时的速度大小v =221⊥+v v 图1

带电粒子在电场中的力学问题

带电粒子在电场中的运动问题(习题课) 电场中的带电粒子问题是高考命题频率最多的问题,题型有选择、填空和计算,其难度在中等以上。考题涉及的电场有匀强电场也有非匀强电场或交变电场,涉及的知识不全为电场知识,还有力学的有关知识。 带电粒子在电场中的运动问题大致可分为三类:其一为平衡问题;其二为直线运动问题;其三为偏转问题。解答方法首先是对带电粒子的受力分析,然后再分析运动过程或运动性质,最后确定运用的知识或采用的解题观点。(平衡问题运用的是物体的平衡条件;直线运动问题用到的是运动学公式、牛顿第二定律、动量关系及能量关系;偏转问题用到的是运动的合成与分解,以及运动学中的平抛运动的规律。)下文就分析带电粒子在电场中的这三类问题。 典型案例一、带电粒子的平衡问题 ⑴带电粒子的平衡问题。用到的知识是mg F ,qE F ==。 ⑵平行板电容器间的电场, d U E =,电容器始终与电源相连时,U 不变;在与电 源断开后再改变电容器的其它量时,Q 不变。要掌握电容表达式kd S C πε4=。 例1.(1995年上海高考)如图所示,两板间距为d 的平行板电容器与电源连接,电键x 闭合。电容器两板间有一质量为m ,带电量为q 的微粒静止不动。下 列各叙述中正确的是: A.微粒带的是正电 B.电源电动势大小为 q mgd C.断开电键k ,微粒将向下做加速运动 D.保持电键k 闭合,把电容器两板距离增大,微粒将向下做加速运动 1.如图所示,一带负电的小球悬挂在两极板相距d 的平行板电容器内, 接通开关K 后,悬线与竖直方向的偏角为 : A.若K 闭合,减小d ,则 增大 B.若K 闭合,减小d ,则 减小 C.若K 断开,增大d ,则 减小 D.若K 断开,增大d ,则 增大 2.如图所示,在两平行金属板间的匀强电场中的A 点处有一个带电微 粒保持静止状态,已知两金属板间电势差为U ,两板间距离为d , 则该带电微粒的电量与质量之比为______。 3.如图所示,平行板电容器充电后不切断电源,板间原有一个带电 尘粒在场中保持静止,现下板保持不动,上板平行向左移动(移 动距离不超过半个板长),这过程中,AB 导线中有电流流过, 电流方向是______,尘粒将______。 4.用细线悬挂质量为m 的带点小球,放在水平向右的匀强电场中,静止时悬线和竖直方向的夹角为θ,如下图所示,当悬线突然被剪断时,小球在电场中的运动情况是:

带电粒子在电场中的偏转习题

高二物理强化训练 带电粒子在电场中的运动 1. N M 、是真空中的两块平行金属板,质量为m ,电荷量为q 的带电粒子,以初速度0v 由 小孔进入电场,当N M 、间电压为U 时,粒子恰好能达到N 板,如果要使这个带电粒 子到达N M 、板间距的1/2后返回,下列措施中能满足要求的是(不计带电粒子的重力) A . 使初速度减为原来的1/2 B . 使N M 、间电压加倍 C . 使N M 、间电压提高到原来的4倍 D . 使初速度和N M 、间电压都减为原来的1/2 2. 平行金属板B A 、分别带等量异种电荷,A 板带正电,B 板带负电,b a 、两个带正电 粒子,以相同的速率先后垂直于电场线从同一点进入两金属板间的匀强电场中,并分别打在B 板上的b a ''、两点,如图所示,若不计重力,则() A . a 粒子的带电荷量一定大于b 粒子的带电荷量 B . a 粒子的质量一定小于b 粒子的质量 C . a 粒子的带电荷量与质量之比一定大于b 粒子的带电荷量与质量之比 D . a 粒子的带电荷量与质量之比一定小于b 粒子的带电荷量与质量之比 3. 如图所示是一个说明示波管工作原理的示意图,电子经电压1U 加速后垂直进入偏转电 场,离开电场时的偏转量是h ,两平行板间的距离为d ,电势差为2U ,板长为L 。为了提高示波管的灵敏度(每单位电压引起的偏转量 2 U h ),可采用的方法是() A.增大两板间的电势差2U B.尽可能使板长L 短些 C.尽可能使板间距离d 小一些 D.使加速电压1U 升高一些

4. 一带电粒子以速度0v 沿竖直方向垂直进入匀强电场E 中,如图所示,经过一段时间后, 其速度变为水平方向,大小仍为0v ,则有() A . 电场力等于重力 B . 粒子运动的水平位移等于竖直位移的大小 C . 电场力做的功一定等于重力做的功的负值 D . 粒子电势能的减小量一定等于重力势能的增加量 5. 在显像管的电子枪中,从炽热的金属丝不断放出的电子进入电压为U 的加速电场,设其 初速度为零,经加速后形成横截面积为S 、电流为I 的电子束。已知电子的电荷量为e 、质量为m ,则在刚射出加速电场时,一小段长为l ?的电子束内的电子个数是() A . eU m eS l I 2? B. eU m e l I 2? C. eU m eS I 2 D. eU m e l IS 2? 6. 如图所示,用细线拴着一带负电的小球在方向竖直向下的匀强电场中,在竖直平面内做 圆周运动,且电场力大于重力,则下列说法正确的是() A . 当小球运动到最高点A 时,细线张力一定最大 B . 当小球运动到最低点B 时,细线张力一定最大 C . 当小球运动到最低点B 时,小球的线速度一定最大 D . 当小球运动到最低点B 时,小球的电势能一定最大 7. 如图所示,B A 、是一对平行的金属板,在两板间加上一周期为T 的交变电压U ,A 板 的电势0=A ?,B 板的电势B ?随时间的变化规律如图所示。现有一电子从A 板上的小孔进入两板间的电场区内,设电子的初速度和重力的影响可忽略。则() A . 若电子是在0=t 时刻进入的,它将一直向B 板运动 B . 若电子是在8 T t = 时刻进入的,它可能时而向A 板运动,时而向B 板运动,最后打在B 板上 C . 若电子是在83T t = 时刻进入的,它可能时而向B 板运动,时而向A 板运动,最后打在B 板上 D . 若电子是在2T t = 时刻进入的,它可能时而向B 板运动,时而向A 板运动 8. 如图所示,水平放置的两平行金属板,其中板长m L 0.1=,板间距离m d 06.0=,上 板带正电,下板带负电,两板间有一质量g m 1.0=、点电荷量C q 7 10 4-?-=的微粒沿

专题讲座三:带电粒子在匀强电场中的偏转问题

带电粒子在匀强电场中的加速和偏转问题 一:.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的。 证明:由qU 0=12m v 20及tan φ=qUl md v 20 得tan φ=Ul 2U 0 d (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l 2。 二:.带电粒子在匀强电场中偏转的功能关系 当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =U d y ,指初、末位置间的电势差。 三:带电粒子在电场中运动问题的两种求解思路 1.运动学与动力学观点 (1)运动学观点是指用匀变速运动的公式来解决实际问题,一般有两种情况: ①带电粒子初速度方向与电场线共线,则粒子做匀变速直线运动; ②带电粒子的初速度方向垂直电场线,则粒子做匀变速曲线运动(类平抛运动)。 (2)当带电粒子在电场中做匀变速曲线运动时,一般要采取类似平抛运动的解决方法。 2.功能观点:首先对带电体受力分析,再分析运动形式,然后根据具体情况选用公式计算。 (1)若选用动能定理,则要分清有多少个力做功,是恒力做功还是变力做功,同时要明确初、末状态及运动过程中的动能的增量。 (2)若选用能量守恒定律,则要分清带电体在运动中共有多少种能量参与转化,哪些能量是增加的,哪些能量是减少的。 四:典题分析: 1 如图1所示,一电子枪发射出的电子(初速度很小,可视为零)进入加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y ,要使偏转位移增大,下列

带电粒子在电场中加速与偏转

带电粒子在电场中的加速和偏转 (1)带电粒子在匀强电场中运动的计算方法 用牛顿第二定律计算:带电粒子受到恒力的作用,可以方便的由牛顿第二定律以及匀变速直线运动的公式进行计算。 用动能定理计算:带电粒子在电场中通过电势差为U AB的两点时动能的变化是,则。 如图真空中有一对平行金属板,间距为d,接在电压为U的电源上,质量为m、电量为q的正电荷穿过正极板上的小孔以v0进入电场,到达负极板时从负极板上正对的小孔穿出。不计重力,求:正电荷穿出时的速度v是多大? 解法一、动力学 由牛顿第二定律:① 由运动学知识:v2-v02=2ad ② 联立①②解得: 解法二、由动能定理 解得 知识点二:带电粒子在电场中的偏转 (1)带电粒子在匀强电场中的偏转 高中阶段定量计算的是,带电粒子与电场线垂直地进入匀强电场或进入平行板电容器之间的匀强电场。如图所示:

(2)粒子在偏转电场中的运动性质 受到恒力的作用,初速度与电场力垂直,做类平抛运动:在垂直于电场方向做匀速直线运动;在平行于电场方向做初速度为零的匀加速直线运动。 (U为偏转电压,d为两板间的距离,L为偏转电场的宽度(或者是平行板的长度),v0为经加速电场后粒子进入偏转电场时的初速度。) (3)带电粒子离开电场时 垂直电场线方向的速度 沿电场线方向的速度是 合速度大小是:,方向: 离开电场时沿电场线方向发生的位移 偏转角度也可以由边长的比来表示,过出射点沿速度方向做反向延长线,交入射方向与点Q,如图:

设Q点到出射板边缘的水平距离为x,则 又, 解得: 即带电粒子离开平行板电场边缘时,都是好像从金属板间中心线的中点处沿直线飞 出的,这个结论可直接引用。 知识点三:带电粒子在电场中的加速与偏转问题的综合 如图所示,一个质量为m、带电量为q的粒子,由静止开始,先经过电压为U1的电场加速后,再垂直于电场方向射入两平行金属板间的匀强电场中,两金属板板长为,间距为d,板间电压为U2。 1、粒子射出两金属板间时偏转的距离y

带电粒子在电场中的偏转习题#(精选.)

高二物理强化训练 带电粒子在电场中的运动 1. N M 、是真空中的两块平行金属板,质量为m ,电荷量为q 的带电粒子,以初速度0v 由小孔进入电场,当N M 、间电压为U 时,粒子恰好能达到N 板,如果要使这个带电粒 子到达N M 、板间距的1/2后返回,下列措施中能满足要求的是(不计带电粒子的重力) A . 使初速度减为原来的1/2 B . 使N M 、间电压加倍 C . 使N M 、间电压提高到原来的4倍 D . 使初速度和N M 、间电压都减为原来的1/2 2. 平行金属板B A 、分别带等量异种电荷,A 板带正电,B 板带负电,b a 、两个带正电粒子,以相同的速率先后垂直于电场线从同一点进入两金属板间的匀强电场中,并分别 打在B 板上的b a ''、两点,如图所示,若不计重力,则() A . a 粒子的带电荷量一定大于b 粒子的带电荷量 B . a 粒子的质量一定小于b 粒子的质量 C . a 粒子的带电荷量与质量之比一定大于b 粒子的带电荷量与质量之比 D . a 粒子的带电荷量与质量之比一定小于b 粒子的带电荷量与质量之比 3. 如图所示是一个说明示波管工作原理的示意图,电子经电压1U 加速后垂直进入偏转电场,离开电场时的偏转量是h ,两平行板间的距离为d ,电势差为2U ,板长为L 。为了提高示波管的灵敏度(每单位电压引起的偏转量2 U h ),可采用的方法是() A.增大两板间的电势差2U B.尽可能使板长L 短些 C.尽可能使板间距离d 小一些 D.使加速电压1U 升高一些

4. 一带电粒子以速度0v 沿竖直方向垂直进入匀强电场E 中,如图所示,经过一段时间后, 其速度变为水平方向,大小仍为0v ,则有() A . 电场力等于重力 B . 粒子运动的水平位移等于竖直位移的大小 C . 电场力做的功一定等于重力做的功的负值 D . 粒子电势能的减小量一定等于重力势能的增加量 5. 在显像管的电子枪中,从炽热的金属丝不断放出的电子进入电压为U 的加速电场,设其 初速度为零,经加速后形成横截面积为S 、电流为I 的电子束。已知电子的电荷量为e 、质量为m ,则在刚射出加速电场时,一小段长为l ?的电子束内的电子个数是() A . eU m eS l I 2? B.eU m e l I 2? C. eU m eS I 2 D.eU m e l IS 2? 6. 如图所示,用细线拴着一带负电的小球在方向竖直向下的匀强电场中,在竖直平面内做 圆周运动,且电场力大于重力,则下列说法正确的是() A . 当小球运动到最高点A 时,细线张力一定最大 B . 当小球运动到最低点B 时,细线张力一定最大 C . 当小球运动到最低点B 时,小球的线速度一定最大 D . 当小球运动到最低点B 时,小球的电势能一定最大 7. 如图所示,B A 、是一对平行的金属板,在两板间加上一周期为T 的交变电压U ,A 板 的电势0=A ?,B 板的电势B ?随时间的变化规律如图所示。现有一电子从A 板上的小孔进入两板间的电场区内,设电子的初速度和重力的影响可忽略。则() A . 若电子是在0=t 时刻进入的,它将一直向 B 板运动 B . 若电子是在8T t = 时刻进入的,它可能时而向A 板运动,时而向B 板运动,最后打在B 板上 C . 若电子是在8 3T t = 时刻进入的,它可能时而向B 板运动,时而向A 板运动,最后打在B 板上 D . 若电子是在2 T t = 时刻进入的,它可能时而向B 板运动,时而向A 板运动 8. 如图所示,水平放置的两平行金属板,其中板长m L 0.1=,板间距离m d 06.0=,上板带正电,下板带负电,两板间有一质量g m 1.0=、点电荷量C q 7 104-?-=的微粒沿

带电粒子在三种典型电场中的运动问题解析

一、带电粒子在点电荷电场中的运动 【例1】如图1所示,在O 点放置正点电荷Q ,a 、b 两点连线过O 点,且Oa=ab ,则下列说法正确的是 A 将质子从a 点由静止释放,质子向b 点做匀 加速运动 B 将质子从a 点由静止释放,质子运动到b 点的速率为υ,则将α粒子从a 点由静止释放后运动到b /2 C 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2υ D 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆/2 〖解析〗:由于库仑力变化,因此质子向b 做变加速运动,故A 错;由于a 、b 之间电势差恒定,根据动能定理有2/2qU m υ=,可得 υ=由此可判断B 正确;当电子以O 为圆心做匀速圆周运动时,有2 2Qq k m r r υ=成立, 可得υ,据此判断C 错D 对。答案:BD 2、根据带电粒子在电场的运动判断点电荷的电性 【例2】 如图2所示,实线是一簇未标明方向的由点电荷Q 产生的电场线,若带电粒子q (|Q|>>|q |)由a 运动到b ,电场力做正功。已知在a 、b 两点粒子所受电场力分别为F a 、F b ,则下列判断正确的是 A 若Q 为正电荷,则q 带正电,F a >F b B 若Q 为正电荷,则q 带正电,F a <F b C 若Q 为负电荷,则q 带负电,F a >F b D 若Q 为负电荷,则q 带正电,F a <F b 〖解析〗:由于粒子从a 到b 电场力做正功,可知电场力指向外侧,Q 、q 带同种电荷;电场线密集的地方场强大,由F=qE 得,a 点的电场力大,故A C 正确。答案:AC 3、根据带电粒子在点电荷电场中的运动轨迹,判断带电粒子的性质 【例3】 如图3所示,实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a 、b 是轨迹上的两点,若带电粒子只受电场力作用,根据此图判断正确的是 A 带电粒子所带电荷的符号 B 带电粒子在a 、b 两点的受力方向 C 带电粒子在a 、b 两点的速度何处最大 D 带电粒子在a 、b 两点的电势能何处最大 〖解析〗:由于不清楚电场线方向,只知道粒子受力情况是不能判断粒子所带电性的,故A 错;根据粒子所做曲线运动条件可知,在a 、b 两点粒子所受电场力方向都在电场线上且大致向左,根据电场力做功情况可判断粒子动能和电势能变化情况。 答案:BCD 4、根据带电粒子运动情况,判断电势、电势差的大小关系 【例4】 如图4所示,为一点电荷产生的电场中的三条电场线,已知电子从无穷远处运动至A 点电场力做功8eV ,(无穷远处电势能为零),则下列说法正确的是 A φA <0 B φA >φB C φA =8V D U AB >8V 〖解析〗:根据W ∞A = E P∞-E PA =8eV 得E PA =-8eV ;再由E PA =q φ=-8eV 得φA =8V>0,可见这是正电荷电场,电场线方向从A 指向B ,根据沿着电场线方向电势逐渐降低,可知φA >φB ,A 点相对于无穷远处即零电势点的电势是8V 所以A 、B 两点

带电粒子在电场中加速与偏转

带电粒子在电场中的加速和偏转 (1)带电粒子在匀强电场中运动的计算方法 用牛顿第二左律il?算:带电粒子受到恒力的作用,可以方便的由牛顿第二泄律以及匀变速直线运动的公式进行计算。 用动能定理计算:带电粒子在电场中通过电势差为U Q的两点时动能的变化是 心二人乞二&处;叨才 则 2 2。 如图真空中有一对平行金属板,间距为d,接在电压为U的电源上,质量为m、电呈:为q的正电荷穿过正极板上的小孔以V。进入电场,到达负极板时从负极板上正对的小孔穿出。不计重力,求:正电荷穿岀时的速度v是多大? 解法一、动力学 由牛顿第二圧律: 由运动学知识:v:-v0:=2ad② 联立①②解得: 解法二、由动能立理

知识点二:带电粒子在电场中的偏转 (1)带电粒子在匀强电场中的偏转 高中阶段左虽汁算的是,带电粒子与电场线垂直地进入匀强电场或进入平行板电容器之 间的匀强电场。如图所示: y (2)粒子在偏转电场中的运动性质 受到恒力的作用,初速度与电场力垂直,做类平抛运动:在垂直于电场方向做匀速直线运动;在平行于电场方向做初速度为零的匀加速直线运动。 偏转电场鱼度,E斗 d 粒子的加速度,。斗 ma 粒子在偏转电场中运动时间:t丄 旳 (U为偏转电压,d为两板间的距离,L为偏转电场的宽度(或者是平行板的长度), V。为经加速电场后粒子进入偏转电场时的初速度。) (3)带电粒子离开电场时 垂直电场线方向的速度%二%

合速度大小是:v u 存,方向:UP 离开电场时沿电场线方向发生的位移 2 2沁f 偏转角度也可以由边长的比来表示,过出射点沿速度方向做反向延长线,交入射方向与 点Q ,如图: 又2 2滋外o , v o 沁诺 L x =— 解得: 2 L 即带电粒子离开平行板电场边缘时,都是好像从金属板间中心线的中点夕处沿直线飞 出的,这个结论可直接引用。 沿电场线方向的速度是 设Q 点到岀射板边缘的水平距离为x,则

匀强电场中力学问题

匀强电场中力学问题 Company number:【0089WT-8898YT-W8CCB-BUUT-

1.如图所示,一带电粒予射入一固定在O点的点电荷的电场 中,粒子运动轨迹如图中虚线abc所示,图中实线是同心圆弧,表示电场的等势面,不计重力,可以判断: A.此粒子一直受到静电排斥力作用 B.粒子在b点的电势能一定大于在a点的电势能 C.粒子在b点的速度一定大于在a点的速度 D.粒子在a点和c点的速度大小一定相等 2.某带电粒子仅在电场力作用下由A点运动到B点,电场 线和粒子在A点的初速度及运动轨迹如图所示,可以判 定: A.粒子在A点的加速度大于它在B点的加速度 B.粒子在A点的动能小于它在B点的动能 C.粒子在A点的电势能小于它在B点的电势能 点的电势低于B点的电势 3.一个点电荷,从静电场中的a点移到b点,其电势能的变化为 零,则: 、b两点的场强一定相相等 B.该点电荷一定沿等势线移动

C.作用于该点电荷的电场力与其移动方向总是垂直的 、b两点的电势一定相等 4.在静电场中: A.电场强度处处为零的区域内,电势也一定处处为零 B.电场强度处处相同的区城内,电势也一定处处相同 C.电场强度的方向总是跟等势面垂直的 D.沿着电场强度的方向,电势总是不断降低的 5.若带正电荷的小球只受到电场力作用,则它在任意一段时间 内: A.一定沿电场线由高电势处向低电势处运动 B.一定沿电场线由低电势处向高电势处运动 C.不一定沿电场线运动,但一定由高电势处向低电势处运动 D.不一定沿电场线运动,也不一定由高电势处向低电势处运动 6.一个带正电的质点,电量q=×10-9C,在静电场中由A点移到B 点.在这个过程中,除电场力外,其他力作的功为×10-5J,质点的动能增加了×10--5J,则a、b两点间的电势差U ab为: ×104V ×104V ×104V ×104V

带电粒子在电场中类平抛运动和磁场中的偏转试题

专题40 带电粒子在电场中类平抛运动和磁场中的偏转 高考命题潜规则解密40:带电粒子在电场中的类平抛运动、在磁场中的偏转 规则验证:2012年新课标理综第25题、2011全国理综第25题、2008天津理综第23题、2008宁夏理综第24题 命题规律:带电粒子在电场中的类平抛运动、在磁场中的偏转是带电粒子在电场磁场中运动的重要题型,是高考考查的重点和热点,一般以压轴题出现,难度大、分值高、区分度大。 命题分析 考查方式一考查带电粒子在倾斜边界电场中的类平抛运动、在磁场中的匀速圆周运动 【命题分析】电粒子在倾斜边界上的类平抛运动可迁移在斜面上的平抛运动问题的分析方法、在磁场中的匀速圆周运动可依据洛伦兹力等于向心力列方程解答。此类题难度中等。 典例1.(2012年新课标理综第25题)如图,一半径为R的圆表示一柱形区域的横截面(纸面)。在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b 3。现将点离开该区域,离开时速度方向与直线垂直。圆心O到直线的距离为R 5 磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b点离开该区域。若磁感应强度大小为B,不计重力,求电场强度的大小。

典例2(2011全国理综第25题)如图,与水平面成45°角的平面MN将空间分成I和II两个区域。一质量为m、电荷量为q(q>0)的粒子以速度v0从平面MN上的P0点水平向右射入I区。粒子在I区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E;在II区运动时,只受到匀强磁场的作用,磁感应强度大小为B,方向垂直于纸面向里。求粒子首次从II区离开时到出发点P0的距离。粒子的重力可以忽略。 考查方式二考查带电粒子在电场中的类平抛运动、在有界磁场中的匀速圆周运

电磁感应中的力学问题

电磁感应中的力学问题 ————导棒问题分类评析 电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。要将电磁学和力学的知识综合起来应用。 一、基础知识 1、.楞次定律、右手定则、左手定则的区别 (1) “因动而电”——用右手定则,“因电而动”——用左手定则。 (2)在应用楞次定律时,注意“阻碍’’含义可推广为三种表达方式:①阻碍原磁通量的变化;②阻碍导体的相对运动(来拒去留);③阻碍原电流的变化(自感现象)。 2、两种感应电动势:感生和动生电动势 3、安培力公式、楞次定律和法拉第电磁感应定律是解决此类问题的重要根据,在应用法拉第电磁感应定律时应注意:①区分?、??、 t ? ??的含义; ② 理解E=BLv 和 (B S S B E n E n E n t t t ????===???或)的应 用 。 一 般 (B S S B E n E n E n t t t ????===???或)用来求平均电动势和感生电动势,E=BLv 用来求瞬时电动势 和动生电动势; ③在匀强磁场中,B 、L 、v 相互垂直,导体平动切割磁感线时E=BLv ,绕固定转轴匀速转动时2 BL E=2 ω。 4、导棒类问题动态电路分析的一般思路:磁通量变化→感应电动势→感应电流→安培力→合外力→加速度→速度→感应电动势→……周而复始地循环,当a=0时,导体达到稳定状态,速度达到最大值.上述分析的过程与思路也可以简明表示如下: ????→↑↓←?????电磁感应 导体在磁场中导体运动感应电动势 阻碍 电路闭合安培力感应电流 5、处理导体切割磁感线运动有三种观点:(1)力的观点;(2)能量观点;(3)动量观点.这类问题的实质是不同形式能量的转化过程,从功与能的观点人手,弄清导体切割磁感线运动过程中的能量转化关系,往往是解决这类问题的关键,也是处理此类问题的捷径之一。 二、导棒在匀强磁场中常见的运动问题 1、单导棒模型常见的几种情况: (1)如下图所示.单杆ab 以一定的初速度v 0在光滑水平轨道上作加速度越来越小的减速运动,在安培力作用下最终静止,则回路中产生的焦 耳热Q=mv 2 /2。

带电粒子在电场中偏转..

3-1 第一章 静电场—3 第3节 电容器与电容、带电粒子在电场中的运动 【考纲知识梳理】 一。电容器1. 构成: 2. 充放电:3.电容器带的电荷量: 4.电容器的电压:(1)额定电压:(2)击穿电压: 二.电容1.定义: 2.定义式: 3.电容的单位: 4.物理意义: 三.平行板电容器 1.平行板电容器的电容的决定式:d d k C S S 41εεπ∝?= 2.平行板电容器两板间的电场:可认为是匀强电场,E=U/d ★电容器两类动态变化的分析 四.带电粒子在电场中的运动 1.带电粒子的加速: 2. 带电粒子在匀强电场中的偏转: ★带电粒子在电场中运动时重力的处理 ★先加速再偏转规律 ★示波管⑴构造:电子枪、偏转电极,荧光屏(如图6-4-4) ⑵工作原理 如果在偏转电极XX ¢和Y Y ¢之间都没有加电压,则电子枪射出的电子沿直线打在荧光屏中央,在屏上产生一个亮点 YY '上所加的是待显示的信号电压U ,在屏上产生的竖直偏移y '与U 成正比. XX '上所加的机内锯齿形电压,叫扫描电压. 当扫描电压和信号电压的周期相同时,荧光屏上将出现一个稳定的波形. 五。静电平衡状态下的导体 ⑴处于静电平衡下的导体,内部合场强处处为零. ⑵处于静电平衡下的导体,表面附近任何一点的场强方向与该点的表面垂直. ⑶处于静电平衡下的导体是个等势体,它的表面是个等势面. ⑷静电平衡时导体内部没有电荷,电荷只分布于导体的外表面. 导体表面,越尖的位置,电荷密度越大,凹陷部分几乎没有电荷. 六。尖端放电 七。静电屏蔽 一、电容器问题 1、 (2011·阜阳模拟)如图所示,在平行板电容器正中有一个带电微粒.S 闭合时,该微粒恰好能保持静止.在以下两种情况下:①保持S 闭合,②充电后将S 断开.下列说法能实现使该带电微粒向上运动打到上极板的是( ) A.①情况下,可以通过上移极板M 实现 B.①情况下,可以通过上移极板N 实现 C.②情况下,可以通过上移极板M 实现 D.②情况下,可以通过上移极板N 实现 2、如图6-3-1的电路中,电容器的两极板始终和电源相连,若将两极板间的距离增大,电路中将出现的情况是() 有电流流动,方向从a 顺时针流向b 有电流流动,方向从b 逆时针流向a 图6-4- 4

相关文档
相关文档 最新文档